
Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-5 No. 9 May 2020

Page | 145 www.junikhyat.com Copyright ⓒ 2020 Authors

A New Approach for Java Based Kernel

Sakina Saifee
1
, Dr. Sonali Kothari

2

1
Indore Institute of Science & Technology, Indore, Madhya Pradesh, India

2
Sant Gadge Baba Amravati University, Amravati, Maharashtra, India

Abstract:

Kernel Interpreter is In-Kernel Interpreter that can

make kernel understand the high level language.

Kernel today only understands the system calls and

work accordingly which makes it difficult for

programmer to communicate with kernel. Here we

introduce a new architecture for building in-kernel

interpreter that will compiles high level language or

Java code to native code or low level language

instructions for execution in the kernel i.e. a kernel

along with an interpreter that will correctly translate

high-level language all its way to machine readable

code, and will demonstrate that Java language can

be integrated into kernel which could provide

benefits with all its features to kernel and its process.

Keywords

High level Language Kernel, High Level

Language OS, Java Based OS, Java Kernel, Kernel

Interpreter Integration.

Introduction

Each computer system has a set of programs for

user interaction and hardware interaction which is

known as operating system or OS. Of all the

programs in computer system most important

program tends to be the kernel which is also called

the heart of OS. Whenever system boots it has to be

loaded into RAM(Random Access Memory) and also

many other procedures that are critical are needed to

be executed for the computer system to work.

Whenever a program needs to use hardware resource

it must first request the Operating System (OS). Then

kernel is suppose to evaluate the request and then if

the kernel decidesto give the permission to access the

resource then it communicates with the right

hardware component on the behalf of the user

program. To include this mechanism today's

operating system believes that the supply of

specific hardware features that do not allow user

programs for direct interaction with low-level

hardware components or to grant access to

arbitrary memory locations especially , the

hardware that runs the minimum of two execution

modes for the CPU differently i.e. for user programs

a non privileged mode called User Mode and for the

kernel a privileged mode called Kernel Mode.

Kernel

Kernels are the server that answers requests; these

requests can come either from a process running on a

CPU or an external device issuing an interrupt

request. The Logic behind the kernel-user interface is

upright: a user-space application get encode into the

bytecode format and submit it to the kernel and then

the kernel decodes the bytecode and again construct

the filter. Then the kernel forwards the request to

special programs called device drivers which control

the hardware, manages the file system and sets

interrupts for the CPU to enable multitasking. Many

kernels also are responsible in checking that

incorrect programs do not interfere with the

operation of other programs, by denying access to

memory that has never been allocated to them and

restricting the total time CPU will consume. One of

the most important advantage of having such kernel

is that it will provide CPU scheduling, memory

management, file management and other OS

functions through system calls[1]. And also it's one

large process running entirely during a single address

space.

Issue with the kernels is the drivers. While

installing any hardware into computer system one

needs to make sure that the hardware has particular

driver available. Now when you decide to switch

your OS not all hardware might be compatible.

Also the major problem is the disconnection that

occurs between users and kernel’s developers[2].

Due to low level languages the user cannot operate

or read the bugs without completely understanding

the kernel.

Related Work

The J-Kernel [3] is an operating system built with

Java Virtual Machine (JVM). It has been developed

with the features of traditional operating system to

provide the additional features that may not be found

at the language level. J-Kernel goals to dene clear

boundaries between protection domains. These are

called task in J-Kernel. This makes management of

resources and termination of task tractable and also

analysis of the inner tasks communication get

simplified. By limiting the shared types object

among task it creates the boundary i.e., only special

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-5 No. 9 May 2020

Page | 146 www.junikhyat.com Copyright ⓒ 2020 Authors

object called capabilities can be shared and all other

objects are directed towards the single task. This J-

Kernel to efficiently revoke the capabilities without

even adding any time cost to non-capability objects.

The most significant benefit of J-Kernel is its flexible

protection models, less time consumptions for

software components communication and

independency of OS. The Implementation of J-

Kernel has been entirely in Java [4] and is expected

to run on standard Java Virtual Machine (JVMs).

The reason behind implementing Java was its

capability for being used as general purpose safe

language and also because of its virtual machine that

are widespread and easy to work with. Java itself

provides multiple protection domains by using single

JVM which uses sandbox model for applet, and that

model is at now very restrictive in use.

However, even with sophisticated optimization it

seems likely that Java programs will not run as fast

as C programs. Second, all current language-based

protection systems are designed around a single

language, which limits developers and doesn't handle

legacy code. Software fault isolation [5] and

verification of assembly language [6, 7, 8, 9] may

someday offer solutions, but are still an active area of

research.

Methodology Used for Existing Kernel

C Based Kernel

C language is nearly a portable programming

language. It is the closest language to machine and

also it is universally available for every processor's

architecture. We can easily find out at least one C

compiler for the every existing architecture.

Nowadays we have highly optimized binaries that

are been generated by modern compilers which

makes it difficult to improve on their receiving

output with hand written assembly codes. For system

programming such as operating system and

embedded systems C is the perfect language as it has

arbitrary memory address access and also the pointer

arithmetic features available. At the hardware or

software boundary, computer systems and micro-

controllers map their peripherals and Input/output

pins into memory addresses. System's Applications

should have to read and write to such custom

memory addresses so that they can easily

communicate with the planet. Hence C language's

ability to manipulate with the arbitrary memory

address is imperative for system programming. The

matter arises because C features a very small run

time. And therefore the memory footprint for its code

is smaller than for many other languages. The crucial

part of kernel’s design is all about the abstraction

levels that it provides where the security and policies

should be implemented. Kernel security is very

important mechanism for maintaining security at

higher levels.

Java Based Kernel

Importance of Java in Kernel

Security may be a specialty for Java implementations

generally. A java based OS benefits from language

wide security measures to supply an honest set of

security measures.

The Java programming language comprises of

memory protection between threads and by

completely eliminating pointers and enforcing strict

checking on array access which restricts the access to

the data members and member functions.

Java enables the class loader to load new classes into

virtual machine at run time, these class loaders can

be user defined also. This class loader will then fetch

Java bytecode from some address or link of file

system or URL and will submit the bytecode again to

virtual machine. After this the Virtual machine will

check on the bytecode for assuring it to be legal and

will then integrate the new class. At the time of

integrating if the bytecode will reference to other

classes then class loader will be called recursively

and will load those referring classes too.

Java Threads can implement suspend, setPriority and

stop methods that modifies the state at which thread

is upon. The affected domain can here call on other

domains and then can suspend the thread so that the

execution can be stopped while holding on to the

critical lock or on the other resources. Conversely,

the callee [1] that is malicious can hold on to a thread

object and can modify its state after the return of an

execution back to caller.

Java will make programs and driver’s code portable

and enable them to use the classpath facilities.

Java also can be liable for I/O operations, for

instance by providing a call that permits the program

to break into kernel mode to do port-based I/O.

Use of java libraries with the device drivers can

resolve the matter of performances and code

conversion. And also by using java the device drivers

and system servers, can then be trusted, a big

prerequisite in security aware sites.

Working of Java In Kernel Kernels implemented

with Java are capable systems that may support

multiple and cooperative tasks , which would run

inside Java Virtual Machine (JVM) only. Such

capabilities will help in access control list that is it

will be implemented in naturally safe language, the

principle of least privilege will be supported and also

the execution of operations will quick.

A service provider on whom programs are going

to depend on in order to function is not strictly

necessary. All services and programs will be all part

of a system in a way by which they can communicate

with each other with simple function calls. Resource

management will remain inherent part of the system.

Many security headaches appearing before will

simply disappear by using the type safety and bounds

checking features of the core Java language. The

code that are been already executed will be ready for

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-5 No. 9 May 2020

Page | 147 www.junikhyat.com Copyright ⓒ 2020 Authors

dynamic optimization according to the load

characteristics of the system and hence for the

integrated architecture. Dynamic binary translation

will ensure for legacy code execution.

Device drivers run in user mode and can use the

Java libraries. JVM’s multithreading facilities will be

used implicitly which will give a positive impact on

multiprocessor’s performance which can also avoid

the disturbance caused by Input / Output .

Implementation of separate domains for network

and system servers and thus isolate the core system

from a possible network security breach are often

done.

The Java based Kernel [1] uses Java's built-in

serialization features [10] to repeat an argument: the

Java based Kernel will serialize an argument into an

array of bytes, then deserialize the byte array to

supply a fresh copy of the argument.

This makes it convenient as because the built in Java

classes are serializable and it would involve

overhead that is considerable. And therefore the Java

based kernel will provide quick copy mechanism in

which the direct copies of object with their fields

would be made without any use of intermediary byte

array.

Comparison Between Kernels

Table 1. Comparison between different kernels

System Operation Platform Time

L4 Round trip IPC P5-133 1.82μs

Exokernel Protected control

transfer(r/t)

Dec-5000 2.40μs

Eros Round trip IPC P5-120 4.90μs

J-Kernel Method invocation with

3args

P5-133 3.77μs

The results are contrasted with a 3-argument method

invocation in the Java based Kernel[1]. The Java

based Kernel's performance is comparable with the

three very fast systems. It is important to note that

L4, Exokernel and Eros are implemented as a mix of

C and assembly language code, while J-Kernel

consists of Java classes without native code support.

Improved implementations of JVMs and JITs are

likely to enhance the performance of the J-Kernel[1].

Problem with Java Based Kernel

The Java based Kernel takes 60x to 180x longer

than regular method invocation [1]. In MS-VM it

takes significant fraction of cost in invocation which

is necessary to enter the stub. It also needs the

synchronization cost while changing thread segment

and while looking up on current thread.

Approximately these operations take for about 70%

of the cross-task call on MS-VM and 80% on Sun-

VM. Now the time required for NT kernel threads to

switch between two contexts is 8.6s and here Java

adds on to 1-2s of overhead. Here by this gives us

confirmation about Java being costly on cross –task

call situations for Java Based Kernel LRMI. Though

the micro-benchmarks results are encouraging in

which the time consumption of cross-task in Java

based Kernel is 50x lower than in NT kernel.

However it still incurs a stiff penalty over a plain

method invocation. Critical code paths itself

inspected that the management of threads and lock

acquisition contributes to much of the time that is

being consumed. The largest amount of time being

used in cross-task is copying of the argument. The

allocation of small objects also dominates the cost

and appears difficult to optimize by more than a

small factor.

Proposed Work

The canonical implementation of High Level

language is an interpreter. A high level language is

ideally an abstraction independent of particular

implementations. The interpreter must analyze each

statement within the program whenever it's executed

then perform the specified action.

Here interpreters does not execute the source code

as it is but convert it into machine likable form or

some more compact internal form (Kernel

recognizable form). Interpreter can also define high

level language with which the Kernel Language(C

Language) the semantics are given. It tells a reader

about the expressiveness and elegance of OS. It also

enables the interpreter to interpret its source code.

This Interpreter can present a highly customized

user interface employing the user interface and

input/output facilities of the language.

The most important and significant dimension of

design and implementation of such interpreter is

whether the feature of the high level language or

interpreted language is been implemented with the

equivalent feature in the low level language or the

interpreter’s hot language.

Figure 1. Presented flowchart for the Java interpreted

kernel

Conclusion

This is a new approach for building in-kernel JIT

interpreters that guarantee correctness through high-

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-5 No. 9 May 2020

Page | 148 www.junikhyat.com Copyright ⓒ 2020 Authors

level policy rules in user-space applications, to

lower-level, across the user-kernel space boundary,

and to native code in-kernel. It also guarantees

advantages of using language-based protection are

portability and good cross-domain performance. An

analysis of known interpreter vulnerabilities

demonstrates that it prevents all classes of security

vulnerabilities for kernel interpreters. We believe

that this is a promising direction since it achieves

flexibility, safety, and good performance.

References

[i] Jitk: A Trustworthy In-Kernel Interpreter Infrastructure

,Xi Wang, David Lazar, Nickolai Zeldovich, Adam

Chlipala, Zachary Tatlock MIT CSAIL and University of

Washington

[ii] J-Kernel: a Capability-Based Operating System for

Java Thorsten von Eicken, Chi-Chao Chang, Grzegorz

Czajkowski, Chris Hawblitzel, Deyu Hu, and Dan

Spoonhower ,Department of Computer Science Cornell

University

[iii] C. Hawblitzel, C. C. Chang, G. Czajkowski, D. Hu,

and T. von Eicken. Implementing Multiple Protection

Domains in Java. 1998 USENIX Annual Technical

Conference, p. 259-270, New Orleans, LA, June 1998.

[iv] J. Gosling, B. Joy, and G. Steele. The Java language

specication.Addison-Wesley,1996.

[v] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.

Graham. Ecient Software-Based Fault Isolation. 14th

ACMSymposium on Operating Systems Principles, p.

203216, Asheville, NC, December 1993.

[vi] G. Morrisett, D.Walker, K. Crary, and N. Glew. From

System F to Typed Assembly Language. 25th ACM

Symposium on Principles of Programming Languages. San

Diego, CA, January 1998.

[vii] G. Necula and P. Lee. Safe Kernel Extensions

Without Run-Time Checking. 2nd USENIX Symposium

on Operating Systems Design and Implementation, p.

229243, Seattle, WA, October 1996.

[viii] G. Necula. Proof-carrying code. 24th ACM

Symposium on Principles of Programming Languages, p.

106119, Paris, 1997.

[ix] Z. Shao. Typed Common Intermediate Format. 1997

USENIX Conference on Domain-Specific Languages,

Santa Barbara, California, October 1997.

[x] JavaSoft. Remote Method Invocation Specification.

http://java.sun.com.

