<u>A Study of the Service Quality in Indian Banking Sector on Customer</u> <u>Satisfaction</u>

*Ms. Veronica Madan

**Dr. Shilpi Khandelwal

Abstract

Service quality has become a popular subject of investigation in the area of behavioral sciences where all organizations wish to understand the consumer psyche to serve them better in this competitive scenario. This study pertains to study the service quality from the viewpoint of bankers from different public, private and foreign banks in Rajasthan. This study aims at examining the impact of various variables of service quality pertaining to the P's of service marketing mix on the customer satisfaction. It involves a primary research conducted through a survey of 349 bankers as respondents. An adapted questionnaire was used for this purpose. Multiple regression was used for hypothesis testing to examine the relationship between the service marketing mix components (product, price, place, promotion, people, process, physical evidence based on reliability, responsiveness, security, feedback management, ease of use and the overall customer satisfaction. This study has practical implications in terms of providing inputs to the bankers to identify the significance of the various variables in impacting customer satisfaction and thus, accordingly formulating their policies and procedures.

Keywords: behavioral sciences, bankers, service quality, service marketing mix, customer satisfaction, procedures.

Introduction

Service quality has been defined as the difference between the customers' expectations and the actual service performance (Parasuraman et al., 1988). Also, Wai- Ching Poon (2008) documented that a consumer's feeling of satisfaction from a service arises when he compares a product's or service's perceived performance with his/ her expectations in relation to the banking services. It was stated by Amadeo, K. (2018) that retail banking renders various financial services to individuals even starting with a zero balance. The three most important functions that were identified can be seen as credit, deposit and money management. With the conceptualization and implementation of online banking in our economy, the impact on the society is visible

(Koregaonkar, K. T., 2016). It has massively transformed the traditional banking services and this transformation has provided the customers with the convenience of anywhere and anytime banking.

There is immense competition these days in the banking industry just like the other sectors operating in the economy. Due to borderless financial transactions possible at the click of a mouse, globalization is spreading massively. Though, there is shrinking of the profit margins of the banks due to globalization and accompanying financial crisis existing in the financial markets as it has resulted in the elevating cost of risk, basically, the loan defaults and partly due to competitive pricing. Thus, currently, the banks are highly focused on the issues of risk and cost management as never before. The online banking transactions actually involve lesser processing costs and a part of these savings could be forwarded to customers in terms of high value proposition (Lee, Kwon and Schumann, 2005). Service quality serves as an input towards building customer trust which become customer satisfaction and ultimately, brings out customer loyalty as an output (Prameela, Azeem, & Devi, 2012). Raza, et al. (2015) that documented a very significantly positive relationship between reliability, tangibility, responsiveness and assurance responsiveness with satisfaction of the consumers. Even, Sakhaei et al. (2013) had identified reliability as a really significant dimension of the service quality. Responsiveness implies providing a quick solution to any of the customers' problems (Zhilin, Y., et al, 2003). Security has indeed become a point of concern for the financial institutions (Gregory D. Williamson, 2006). Even, Siu and Mou (2005) that there have been the four key dimensions comprising credibility, problem handling, efficiency and security or privacy to measure the e-banking customer service quality. Considering these justifications, the mentioned variables were used in the current study.

Review of Literature

There are a lot of theories and many instruments such as E-SERVQUAL to measure e-SQ but they can't be accepted as universal unless and until it is thoroughly validated via extensive research in the context of different countries and cultures (Boddewyn, et al, 1999). This has been proven overtime as in United Kingdom, the dimensions of e-SQ that were recognized were site setting, accessibility, site interface, attention, trust and credibility (Jayawardhena, C., 2004). For Hongkong, these dimensions were credibility, problem handling, efficiency and security (Noel Y. M. Siu and Jeremy C. W., 2005). For Sweden, the identified variables were efficiency, credibility,

security, fulfillment, web- site aesthetics and system availability (Kenova V. and Jonasson P., 2006) and in the case of Taiwan, these dimensions were fulfillment, efficiency, privacy, system availability, compensation, contact, website aesthetics and customization (Wu Yu-Lung, et al, 2008). Research gap identified from these studies is that all of them were in foreign context. A consensus is missing.

In an empirical study conducted in relation to the customers of a huge European retail bank, it was found that internet banking had a really great and significant connection to the customer retention in compared to the traditional ways of delivery (Boehm, 2008). It was reported that the banks in U.S. having intense online presence were more profitable (Acharya et. al., 2008). It was stated that innovations in online banking services were likely to foster the banks' ability for retaining the profitable customers (Nielsen; 2002). Abdul, H.M. and Moydheen, S.Y. (2015) documented that the variables including ease of use, customer support, security, transactions and payments were observed to have significantly impacted customer satisfaction for the e-banking transactions. factors including website design and low price, service quality was one of those dimensions that played a vital role in the customer satisfaction (Zeithaml et al, 2002). Research gaps were highlighted as lack of representative sample, concrete variable selection, incomplete results and many studies missing implementation research.

Research Methodology

Descriptive research design has been used in the current paper. This research was conducted on a sample of 349 respondents who were the front desk bank employees working in the state of Rajasthan. Public, private and foreign banks were visited based on convenience sampling. Data was collected using an adapted questionnaire¹aimed at measuring customer satisfaction from the view point and experience of the respondents based on their regular customer handling. The responses were collected on Likert's-5 point scale. The statements were based on 7 components as product, price, place, promotion, people, process and physical evidence. These components were further based on elements of service quality, namely, reliability (R), responsiveness (RS), security (S), feedback management (FM) and ease of use (EU). The representation of the following statements for 'Product' have been done as P_R, P_{RS}, P_S, P_{FM}, P_{EU}, for 'Price' PR_R, PR_{RS}, PR_S, PR_{FM}, PR_{EU}, for 'Place' as PL_R, PL_{RS}, PL_S, PL_{FM}, PL_{EU}, for 'Promotion' as PRO_R, PRO_{RS}, PRO_S, PRO_{FM},

PRO_{EU}, for 'People' as PEO_R, PEO_{RS}, PEO_S, PEO_{FM}, PEO_{EU}, 'Process' as PROC_R, PROC_{RS}, PROC_S, PROC_{FM}, PROC_{EU} and for 'Physical Evidence' as PE_R, PE_{RS}, PE_S, PE_{FM}, PE_{EU}.

Objective 1: To examine the impact of product service quality on customer satisfaction.

Objective 2: To examine the impact of price service quality on customer satisfaction.

Objective 3: To examine the impact of place service quality on customer satisfaction.

Objective 4: To examine the impact of promotion service quality on customer satisfaction.

Objective 5: To examine the impact of people service quality on customer satisfaction.

Objective 6: To examine the impact of process service quality on customer satisfaction.

Objective 7: To examine the impact of physical evidence service quality on customer satisfaction.

H₀1a: There is no impact of reliability of product on customer satisfaction.

H₀1b: There is no impact of responsiveness of product on customer satisfaction.

H₀1c: There is no impact of security of product on customer satisfaction.

H₀1d: There is no impact of feedback management of product on customer satisfaction.

H₀1e: There is no impact of ease of use of product on customer satisfaction.

H₀2a: There is no impact of reliability of price on customer satisfaction.

H₀2b: There is no impact of responsiveness of price on customer satisfaction.

H₀2c: There is no impact of security of price on customer satisfaction.

H₀2d: There is no impact of feedback management of price on customer satisfaction.

H₀2e: There is no impact of ease of use of price on customer satisfaction.

H₀3a: There is no impact of reliability of place on customer satisfaction.

H₀3b: There is no impact of responsiveness of place on customer satisfaction.

H₀3c: There is no impact of security of place on customer satisfaction.

H₀3d: There is no impact of feedback management of place on customer satisfaction.

H₀3e: There is no impact of ease of use of place on customer satisfaction.

H₀4a: There is no impact of reliability of promotion on customer satisfaction.

H₀4b: There is no impact of responsiveness of promotion on customer satisfaction.

H₀4c: There is no impact of security of promotion on customer satisfaction.

H₀4d: There is no impact of feedback management of promotion on customer satisfaction.

H₀4e: There is no impact of ease of use of promotion on customer satisfaction.

H₀5a: There is no impact of reliability of people on customer satisfaction.

 H_0 5b: There is no impact of responsiveness of people on customer satisfaction.

H₀5c: There is no impact of security of people on customer satisfaction.

H₀5d: There is no impact of feedback management of people on customer satisfaction.

 H_05e : There is no impact of ease of use of people on customer satisfaction.

H₀6a: There is no impact of reliability of physical evidence on customer satisfaction.

H₀6b: There is no impact of responsiveness of physical evidence on customer satisfaction.

H₀6c: There is no impact of security of physical evidence on customer satisfaction.

 H_0 6d: There is no impact of feedback management of physical evidence on customer satisfaction.

H₀6e: There is no impact of ease of use of physical evidence on customer satisfaction.

H₀7a: There is no impact of reliability of process on customer satisfaction.

H₀7b: There is no impact of responsiveness of process on customer satisfaction.

H₀7c: There is no impact of security of process on customer satisfaction.

H₀7d: There is no impact of feedback management of process on customer satisfaction.

 H_07e : There is no impact of ease of use of process on customer satisfaction.

Multiple regression was used for testing the hypothesis mentioned above.

Data Analysis and Interpretation

Impact of 'Product' component on Customer Satisfaction

It can be represented from Table 1 that the mean score for service quality was 95 and the highest mean score for Product was for 'Reliability' (P_R) and lowest for responsiveness (P_{RS}) and security (P_S) for a total sample of 349 respondents.

	Mean	Std. Deviation	Ν
service quality score	95.00	37.727	349
P _R	2.77	1.186	349
P _{RS}	2.71	1.210	349
Ps	2.71	1.186	349
P _{FM}	2.72	1.221	349

Table 1: Descriptive Statistics for Product

	P _{EU}	2.72	1.224	349
--	-----------------	------	-------	-----

Table 2 reflects statistically positive correlation between the independent variables including P_R , P_{RS} , P_S , P_{FM} , P_{EU} and service quality score (customer satisfaction) as p<0.05.

Table 2: Correlations to	r product and service quant	<u>y</u>					
		service quality					
		score	Pr	P _{RS}	Ps	Рғм	P _{EU}
Pearson Correlation	service quality score	1.000	.891	.902	.907	.897	.878
	PR	.891	1.000	.779	.778	.758	.790
	P _{RS}	.902	.779	1.000	.799	.770	.752
	Ps	.907	.778	.799	1.000	.824	.760
	P _{FM}	.897	.758	.770	.824	1.000	.761
	Peu	.878	.790	.752	.760	.761	1.000
Sig. (1-tailed)	service quality score		.000	.000	.000	.000	.000
	P _R	.000		.000	.000	.000	.000
	P _{RS}	.000	.000		.000	.000	.000
	Ps	.000	.000	.000		.000	.000
	Рғм	.000	.000	.000	.000		.000
	P _{EU}	.000	.000	.000	.000	.000	

ble 2: Correlations for product and service quality

Table 3 shows that a fit model has been obtained using the stipulated variables. With enter method, $F_{(5,343)}=2788.98$ at p<0.05 and from table 4, the following regression equation has been obtained:

SERVICE QUALITY= $2.029 + 0.207(P_R) + 0.255(P_{RS}) + 0.215(P_S) + 0.223(P_{FM}) + 0.189(P_{EU})$

This implies that with 0.207 units change in P_R , the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀1a is rejected. With 0.255 units change in P_{RS} , the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀1b is rejected. With 0.215 units change in P_S, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀1b is rejected. With 0.215 units change in P_S, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀1c is rejected. With 0.223 units change in P_{FM}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀1d is rejected. With 0.189 units change in P_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀1d is rejected. With 0.189 units change in P_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀1d is rejected. With 0.189 units change in P_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀1e is rejected.

Table 3: ANOVA^a for Product and service quality

Model		Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	483426.267	5	96685.253	2788.983	0.001 ^b
	Residual	11890.730	343	34.667		
	Total	495316.997	348			

a. Dependent Variable: service quality score

b. Predictors: (Constant), P5, P2, P4, P1, P3

Table 4: Coefficients^a for product variables

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	Т	Sig.
1	(Constant)	2.029	0.851		2.385	0.018
	PR	6.571	0.511	0.207	12.863	0.001
	P _{RS}	7.962	0.496	0.255	16.049	0.001
	Ps	6.841	0.550	0.215	12.427	0.001
	Рғм	6.888	0.507	0.223	13.592	0.001
	Peu	5.837	0.475	0.189	12.287	0.001

Dependent Variable: service quality score

Impact of 'Price' component on Customer Satisfaction

It can be represented from Table 5 that the mean score for service quality was 95 and the highest mean score for Price was for 'Ease of Use' (PR_{EU}) and lowest for feedback management (PR_{FM}) for a total sample of 349 respondents.

Table 5: Descriptive Statistics for Price

	Mean	Std. Deviation	N
service quality score	95.00	37.727	349
PR _R	2.73	1.183	349
PR _{RS}	2.71	1.234	349
PRs	2.72	1.198	349
PR _{FM}	2.70	1.168	349
PREU	2.74	1.224	349

Table 6 reflects statistically positive correlation between the independent variables including PR_R, PR_{RS}, PR_S, PR_{FM}, PR_{EU} and service quality score (customer satisfaction) as p<0.05.

		service quality score	PR _R	PR _{RS}	PRs	PR _{FM}	PR _{EU}
	service quality score	1.000	.889	.905	.900	.897	.868
	PRR	.889	1.000	.786	.768	.755	.762
Pearson	PR _{RS}	.905	.786	1.000	.811	.786	.734
Correlation	PRs	.900	.768	.811	1.000	.813	.725
Sig. (1-tailed)	PRFM	.897	.755	.786	.813	1.000	.762
	PREU	.868	.762	.734	.725	.762	1.000
	service quality score		.000	.000	.000	.000	.000
	PR _R	.000		.000	.000	.000	.000
	PR _{RS}	.000	.000		.000	.000	.000
	PRs	.000	.000	.000		.000	.000
	PRFM	.000	.000	.000	.000		.000
	PREU	.000	.000	.000	.000	.000	

Table 6 : Correlation matrix for price and service quality

Table 7 shows that a fit model has been obtained using the stipulated variables. With enter method, $F_{(5,343)}=2635.93$ at p<0.05 and from table 8, the following regression equation has been obtained:

SERVICE QUALITY=1.690 + $0.212(PR_R)$ + $0.242(PR_{RS})$ + $0.219(PR_S)$ + $0.208(PR_{FM})$ + $0.211(PR_{EU})$

This implies that with 0.212 units change in PR_R, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀2a is rejected. With 0.242 units change in PR_{RS}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀2b is rejected. With 0.219 units change in PR_S, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀2b is rejected. With 0.219 units change in PR_S, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀2c is rejected. With 0.208 units change in PR_{FM}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀2d is rejected. With 0.211 units change in PR_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀2d is rejected. With 0.211 units change in PR_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀2e is rejected.

Table 7: ANOVA^a for price and service quality

Model		Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	482753.396	5	96550.679	2635.939	0.001 ^b
	Residual	12563.601	343	36.629		
	Total	495316.997	348			

a. Dependent Variable: service quality score

b. Predictors: (Constant), PR_{EU}, PR_S, PR_R, PR_{FM}, PR_{RS}

 Table 8 : Coefficients^a for price variables

				Standardized		
		Unstandardize		Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1.690	.879		1.923	.055
	PR _R	6.757	.515	.212	13.121	.000
	PR _{RS}	7.413	.522	.242	14.211	.000
	PRs	6.896	.545	.219	12.659	.000
	PRFM	6.716	.550	.208	12.204	.000
	PR _{EU}	6.507	.463	.211	14.041	.000

a. Dependent Variable: service quality score

Impact of 'Place' component on Customer Satisfaction

It can be represented from Table 9 that the mean score for service quality was 95 and the highest mean score for Price was for 'Reliability, feedback management, ease of use' (PL_R , PL_{FM} , PL_{EU}) and lowest for responsiveness, security (PL_R , PL_S) for a total sample of 349 respondents.

Table 9: Descriptive Statistics for place variable

	Mean	Std. Deviation	Ν
service quality score	95.00	37.727	349
PL _R	2.73	1.226	349
PL _{RS}	2.68	1.229	349
PLs	2.68	1.157	349
PL _{FM}	2.73	1.178	349
PLEU	2.73	1.238	349

Table 10 reflects statistically positive correlation between the independent variables including PL_R, PL_{RS}, PL_S, PL_{FM}, PL_{EU} and service quality score (customer satisfaction) as p<0.05.

Fable 10: Correlations	s for	place	and	service	quality
------------------------	-------	-------	-----	---------	---------

		service quality score	PL _R	PL _{RS}	PL _S	PL _{FM}	PL _{EU}
Pearson	service	1.000	.901	.879	.905	.904	.878
Correlation	quality score						
	PL _R	.901	1.000	.780	.772	.772	.789
	PL _{RS}	.879	.780	1.000	.789	.759	.700
	PLS	.905	.772	.789	1.000	.820	.723
	PL _{FM}	.904	.772	.759	.820	1.000	.772
	PL _{EU}	.878	.789	.700	.723	.772	1.000
Sig. (1-tailed)	service		.000	.000	.000	.000	.000
	quality score						
	PL _R	.000		.000	.000	.000	.000
	PL _{RS}	.000	.000		.000	.000	.000
	PLs	.000	.000	.000		.000	.000
	PL _{FM}	.000	.000	.000	.000		.000
	PL _{EU}	.000	.000	.000	.000	.000	

Table 11 shows that a fit model has been obtained using the stipulated variables. With enter method, $F_{(5,343)}$ =97142.67 at p<0.05 and from table 12, the following regression equation has been obtained:

SERVICE QUALITY=1.785 + $0.210(PL_R)$ + $0.200(PL_{RS})$ + $0.244(PL_S)$ + $0.208(PL_{FM})$ + $0.235(PL_{EU})$

This implies that with 0.210 units change in PL_R , the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀3a is rejected. With 0.200 units change in PL_{RS} , the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀3b is rejected. With 0.244 units change in PL_S , the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀3b is rejected. With 0.244 units change in PL_S , the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀3c is rejected. With 0.208 units change in PL_{FM} , the service quality changes by one unit. Since, p<0.05, thus the impact is

statistically significant at 5% level of significance. Hence, H_03d is rejected. With 0.235 units change in PL_{EU} , the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H_03e is rejected.

Table 11: ANOVA ^a for	place and service q	uality

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	485713.382	5	97142.676	3469.520	0.001 ^b
	Residual	9603.615	343	27.999		
	Total	495316.997	348			

a. Dependent Variable: service quality score

b. Predictors: (Constant), PLEU, PLRS, PLS, PLR, PLFM

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1.785	.763		2.338	.020
	PLR	6.470	.459	.210	14.088	.000
	PL _{RS}	6.142	.425	.200	14.441	.000
	PLs	7.951	.491	.244	16.190	.000
	PL _{FM}	6.672	.486	.208	13.716	.000
	PL _{EU}	7.167	.412	.235	17.400	.000

Table 12: Coefficients^a for place variables

a. Dependent Variable: service quality score

Impact of 'Promotion' component on Customer Satisfaction

It can be represented from Table 13 that the mean score for service quality was 95 and the highest mean score for Price was for 'feedback management' (PRO_{FM}) and lowest for responsiveness (PRO_{RS}) for a total sample of 349 respondents.

quality

	Mean	Std. Deviation	N
service quality score	95.00	37.727	349
PROR	2.68	1.236	349
PRO _{RS}	2.65	1.181	349

PROs	2.70	1.217	349
PROFM	2.74	1.231	349
PRO _{EU}	2.73	1.228	349

Table 14 reflects statistically positive correlation between the independent variables including PRO_{R} , PRO_{RS} , PRO_{FM} , PRO_{EU} and service quality score (customer satisfaction) as p<0.05.

Table 14: C	Table 14: Correlations for promotion and service quality								
		service	PRO _R	PRO _{RS}	PROs	PRO _{FM}	PRO _{EU}		
		quality							
		score							
Pearson	service	1.000	.875	.896	.909	.901	.884		
Correlation	quality								
	score								
	PRO _R	.875	1.000	.793	.771	.738	.747		
	PRO _{RS}	.896	.793	1.000	.821	.754	.728		
	PROs	.909	.771	.821	1.000	.815	.756		
	PRO _{FM}	.901	.738	.754	.815	1.000	.780		
	PRO _{EU}	.884	.747	.728	.756	.780	1.000		
Sig. (1-	service		.000	.000	.000	.000	.000		
tailed)	quality								
	score								
	PRO _R	.000		.000	.000	.000	.000		
	PRO _{RS}	.000	.000		.000	.000	.000		
	PROs	.000	.000	.000		.000	.000		
	PRO _{FM}	.000	.000	.000	.000		.000		
	PRO _{EU}	.000	.000	.000	.000	.000			

Table 15 shows that a fit model has been obtained using the stipulated variables. With enter method, $F_{(5,343)}$ =96914.74 at p<0.05 and from table 16, the following regression equation has been obtained:

SERVICE QUALITY=3.367 + 0.176(PRO_R) + 0.231(PRO_{RS}) + 0.202(PRO_S) + 0.245(PRO_{FM}) + 0.241(PRO_{EU})

This implies that with 0.176 units change in PRO_R, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀4a is rejected. With 0.231 units change in PRO_{RS}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀4b is rejected. With 0.202 units change in PRO_S, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀4b is rejected. With 0.202 units change in PRO_S, the service quality changes by one unit. Since, p<0.05, thus the impact

is statistically significant at 5% level of significance. Hence, H₀4c is rejected. With 0.245 units change in PRO_{FM}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀4d is rejected. With 0.241 units change in PRO_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀4e is rejected.

Table 15: ANOVA^a for promotion and service quality

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	484573.715	5	96914.743	3094.190	0.001 ^b
	Residual	10743.282	343	31.322		
	Total	495316.997	348			

a. Dependent Variable: service quality score

b. Predictors: (Constant), PRO_{EU}, PRO_{RS}, PRO_{FM}, PRO_R, PRO_S

		Unstandardized Coefficients		Standardized Coefficients		
Model		B Std. Error		Beta	t	Sig.
1	(Constant)	3.367	.796		4.230	.000
	PRO _R	5.376	.449	.176	11.977	.000
	PRO _{RS}	7.377	.503	.231	14.667	.000
	PROs	6.250	.523	.202	11.948	.000
	PROFM	7.523	.475	.245	15.840	.000
	PRO _{EU}	7.390	.437	.241	16.902	.000

Table 16: Coefficients^a for promotion variables

a. Dependent Variable: service quality score

Impact of 'People' component on Customer Satisfaction

It can be represented from Table 17 that the mean score for service quality was 95 and the highest mean score for People was for 'feedback management' (PRO_{FM}) and lowest for responsiveness (PRO_{RS}) for a total sample of 349 respondents.

	Mean	Std. Deviation	Ν			
service quality score	95.00	37.727	349			
PEOR	2.67	1.224	349			
PEO _{RS}	2.70	1.174	349			
PEOs	2.74	1.207	349			
PEOFM	2.73	1.230	349			
PEO _{EU}	2.67	1.197	349			

Table 17: Descriptive Statistics for people and service quality

Table 18 reflects statistically positive correlation between the independent variables including PEO_R, PEO_{RS}, PEO_S, PEO_{FM}, PEO_{EU} and service quality score (customer satisfaction) as p<0.05.

Table 18: Correlations for people and service quality								
		service	PEO _R	PEO _{RS}	PEOs	PEO _{FM}	PEO _{EU}	
		quality						
		score						
Pearson	service	1.000	.891	.886	.902	.924	.854	
Correlation	quality							
	score							
	PEO _R	.891	1.000	.794	.756	.769	.753	
	PEO _{RS}	.886	.794	1.000	.782	.774	.703	
	PEOs	.902	.756	.782	1.000	.839	.696	
	PEO _{FM}	.924	.769	.774	.839	1.000	.771	
	PEO _{EU}	.854	.753	.703	.696	.771	1.000	
Sig. (1-	service		.000	.000	.000	.000	.000	
tailed)	quality							
	score							
	PEO _R	.000		.000	.000	.000	.000	
	PEO _{RS}	.000	.000		.000	.000	.000	
	PEOs	.000	.000	.000		.000	.000	
	PEO _{FM}	.000	.000	.000	.000		.000	
	PEO _{EU}	.000	.000	.000	.000	.000		

Table 19 shows that a fit model has been obtained using the stipulated variables. With enter method, $F_{(5,343)}$ =97178.49 at p<0.05 and from table 20, the following regression equation has been obtained:

SERVICE QUALITY=2.357 + 0.212(PEO_R) + 0.196(PEO_{RS}) + 0.230(PEO_S) + 0.273(PEO_{FM}) + 0.186(PEO_{EU})

This implies that with 0.212 units change in PEO_R, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀5a is rejected. With 0.196 units change in PEO_{RS}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀5b is rejected. With 0.230 units change in PEO_S, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀5b is rejected. With 0.230 units change in PEO_S, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀5c is rejected. With 0.273 units change in PEO_{FM}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀5d is rejected. With 0.186 units change in PEO_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀5d is rejected. With 0.186 units change in PEO_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀5d is rejected. With 0.186 units change in PEO_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀5e is rejected.

Table 19: ANOVA^a for people and service quality

Model		Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	485892.475	5	97178.495	3536.755	.000 ^b
	Residual	9424.522	343	27.477		
	Total	495316.997	348			

a. Dependent Variable: service quality score

b. Predictors: (Constant), PEO_{EU}, PEO_S, PEO_{RS}, PEO_R, PEO_{FM}

 Table 20: Coefficients^a for people variables

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	2.357	.759		3.106	.002
	PEOR	6.530	.440	.212	14.854	.000
	PEO _{RS}	6.298	.453	.196	13.891	.000
	PEOs	7.201	.469	.230	15.344	.000
	PEOFM	8.370	.493	.273	16.991	.000
	PEO _{EU}	5.850	.403	.186	14.525	.000

a. Dependent Variable: service quality score

Impact of 'Physical Evidence' component on Customer Satisfaction

It can be represented from Table 21 that the mean score for service quality was 95 and the highest mean score for Physical evidence was for 'security' (PE_S) and lowest for feedback management (PE_{FM}) for a total sample of 349 respondents.

Table 21: Descriptive Statistics for physical evidence and

service quality

	Mean	Std. Deviation	Ν
service quality score	95.00	37.727	349
PE _R	2.71	1.195	349
PE _{RS}	2.71	1.220	349
PEs	2.73	1.227	349
PE _{FM}	2.70	1.172	349
PE _{EU}	2.71	1.216	349

Table 22 reflects statistically positive correlation between the independent variables including PE_R , PE_{RS} , PE_{FM} , PE_{EU} and service quality score (customer satisfaction) as p<0.05.

Table 22: C	Table 22: Correlations for physical evidence and service quality						
		service	PE _R	PE _{RS}	PEs	PE _{FM}	PE _{EU}
		quality					
		score					
Pearson	service	1.000	.898	.889	.912	.905	.869
Correlation	quality						
	score						
	PER	.898	1.000	.772	.774	.787	.794
	PE _{RS}	.889	.772	1.000	.821	.766	.698
	PEs	.912	.774	.821	1.000	.835	.745
	PE _{FM}	.905	.787	.766	.835	1.000	.767
	PE _{EU}	.869	.794	.698	.745	.767	1.000
Sig. (1-	service		.000	.000	.000	.000	.000
tailed)	quality						
	score						
	PER	.000		.000	.000	.000	.000
	PE _{RS}	.000	.000		.000	.000	.000
	PEs	.000	.000	.000		.000	.000
	PE _{FM}	.000	.000	.000	.000		.000
	PE _{EU}	.000	.000	.000	.000	.000	

Table 23 shows that a fit model has been obtained using the stipulated variables. With enter method, $F_{(5,343)}$ =96598.09 at p<0.05 and from table 24, the following regression equation has been obtained:

SERVICE QUALITY= $2.552 + 0.213(PE_R) + 0.232(PE_{RS}) + 0.223(PE_S) + 0.215(PE_{FM}) + 0.206(PE_{EU})$

This implies that with 0.213 units change in PE_R, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀6a is rejected. With 0.232 units change in PE_{RS}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀6b is rejected. With 0.223 units change in PE_S, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀6b is rejected. With 0.223 units change in PE_S, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀6c is rejected. With 0.215 units change in PE_{FM}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀6d is rejected. With 0.206 units change in PE_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀6d is rejected. With 0.206 units change in PE_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀6d is rejected. With 0.206 units change in PE_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀6e is rejected.

 Table 23: ANOVA^a for physical evidence and service quality

				· ·		
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	482990.451	5	96598.090	2687.950	.001 ^b
	Residual	12326.546	343	35.937		
	Total	495316.997	348			

a. Dependent Variable: service quality score

b. Predictors: (Constant), PE_{EU}, PE_{RS}, PE_{FM}, PE_R, PE_S

Table 24: Coefficients^a for physical evidence variables

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	Т	Sig.
1	(Constant)	2.552	.862		2.961	.003
	PE _R	6.732	.534	.213	12.615	.000
	PE _{RS}	7.182	.502	.232	14.318	.000
	PEs	6.860	.567	.223	12.101	.000

PE _{FM}	6.924	.564	.215	12.273	.000
PE _{EU}	6.393	.476	.206	13.425	.000

a. Dependent Variable: service quality score

Impact of 'Process' component on Customer Satisfaction

It can be represented from Table 25 that the mean score for service quality was 95 and the highest mean score for Process was for 'ease of use' (PRO_{EU}) and lowest for feedback management (PRO_{FM}) for a total sample of 349 respondents.

Table 25: Descriptive Statistics for process and service

quality

	Mean	Std. Deviation	Ν
service quality score	95.00	37.727	349
PROC _R	2.72	1.243	349
PROC _{RS}	2.73	1.224	349
PROCs	2.75	1.147	349
PROC _{FM}	2.68	1.177	349
PROCEU	2.76	1.232	349

Table 26 reflects statistically positive correlation between the independent variables including $PROC_R$, $PROC_{RS}$, $PROC_S$, $PROC_{FM}$, $PROC_{EU}$ and service quality score (customer satisfaction) as p<0.05.

Table 26: Correlations for process and service quality							
		service	PROC _R	PROC _{RS}	PROCs	PROC _{FM}	PROC _{EU}
		score					
		score					
Pearson	service	1.000	.897	.899	.913	.902	.855
Correlation	quality						
	score						
	PROC _R	.897	1.000	.789	.783	.771	.744
	PROC _{RS}	.899	.789	1.000	.807	.758	.708
	PROCs	.913	.783	.807	1.000	.837	.722
	PROC _{FM}	.902	.771	.758	.837	1.000	.753

	PROC _{EU}	.855	.744	.708	.722	.753	1.000
Sig. (1-	service		.000	.000	.000	.000	.000
tailed)	quality						
	score						
	PROC _R	.000		.000	.000	.000	.000
	PROC _{RS}	.000	.000		.000	.000	.000
	PROCs	.000	.000	.000		.000	.000
	PROC _{FM}	.000	.000	.000	.000		.000
	PROC _{EU}	.000	.000	.000	.000	.000	

Table 27 shows that a fit model has been obtained using the stipulated variables. With enter method, $F_{(5,343)}$ =97156.72 at p<0.05 and from table 28, the following regression equation has been obtained:

SERVICE QUALITY=1.219 + 0.216(PROC_R) + 0.247(PROC_{RS}) + 0.224(PROC_S) + 0.210(PROC_{FM}) + 0.200(PROC_{EU})

This implies that with 0.216 units change in PROC_R, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀7a is rejected. With 0.247 units change in PROC_{RS}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀7b is rejected. With 0.224 units change in PROC_S, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀7c is rejected. With 0.210 units change in PROC_{FM}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀7c is rejected. With 0.200 units change in PROC_{FM}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀7d is rejected. With 0.200 units change in PROC_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀7d is rejected. With 0.200 units change in PROC_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀7d is rejected. With 0.200 units change in PROC_{EU}, the service quality changes by one unit. Since, p<0.05, thus the impact is statistically significant at 5% level of significance. Hence, H₀7e is rejected.

Model		Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	485783.621	5	97156.724	3495.588	0.001
	Residual	9533.376	343	27.794		
	_ Total	495316.997	348			

Table 27: ANOVA^a for process and service quality

a. Dependent Variable: service quality score

b. Predictors: (Constant), PROCEU, PROCRS, PROCFM, PROCR, PROCS

Table 28: Coefficients^a for process variables

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	Т	Sig.
1	(Constant)	1.219	.769		1.585	.114
	PROC _R	6.562	.434	0.216	15.106	0.001
	PROC _{RS}	7.602	.439	0.247	17.299	0.001
	PROCs	7.372	.527	0.224	13.991	0.001
	PROC _{FM}	6.744	.490	0.210	13.761	0.001
	PROCEU	6.115	.384	0.200	15.905	0.001

a. Dependent Variable: service quality score

Findings and Discussion

It has been found from the current study that all the hypothesis including H_01a , H_01b , H_01c , H_01d , H_01e , H_02a , H_02b , H_02c , H_02d , H_02e , H_03a , H_03b , H_03c , H_03d , H_03e , H_04a , H_04b , H_04c , H_04d , H_04e , H_05a , H_05b , H_05c , H_05d , H_05e , H_06a , H_06b , H_06c , H_06d , H_06e , H_07a , H_07b , H_07c , H_07d and H_07e have been rejected as p<0.05. Thus, all the independent variables have a statistically significant relationship with service quality at 5% level of significance. This clearly indicates that the service quality parameters of reliability, responsiveness, security, feedback management and ease of use as delivered through the 7 P's of service marketing in the banking industry impacted the satisfaction of the bank clients.

Conclusion

It can be concluded from this study that reliability, responsiveness, security, feedback management and ease of use as delivered through product, price, place, promotion, people, process and physical

ISSN: 2278-4632 Vol-10 Issue-7 No. 2 July 2020

evidence play a pivotal role in affecting the satisfaction levels of the bank customers or clients. This research has been useful in providing insights regarding the impact of the stipulated factors on customer satisfaction. In this extremely competitive world with constant technological upgradations, the only element constant is change. Thus, its important to examine the behavior and perceptions towards customer satisfaction as it is the ultimate goal of any organization. This study reveals the situation in Rajasthan, thus, there exists a scope to replicate this study in different parts of the country and then, consolidation of the results can showcase the nationwide situation. Having obtained significant relationships for all the stipulated variables, confirmatory studies can be conducted for these variables. This study would also serve as an important contribution for the existing literature.

References

Abdul, H.M. and Moydheen, S.Y. (2015). A study on customer satisfaction in internet banking with special reference to Tirchirappalli District. *International Journal of Marketing and*

Technology, 5(2), pp.72–78.

Acharya, R.N., Kagan, A. and Lingam, S.R. (2008). Online Banking Applications and Community Bank Performance. International Journal of Bank Marketing, 26(6), pp. 418-439.

Amadeo, K. (May 12,2018). What Is Retail Banking? Types and Economic Impact How It Work and How It Affects the U.S. Economy. Doi: <u>https://www.thebalance.com/what-is-retail-banking-3305885</u>

Boddewyn, Jean J., Iyer, G. R. (1999). International business research: Beyond Deja Vu?.

Management International Review, 39(2), pp.161-184.

Boehm, M. (2008). Determining the Impact of Internet Use on a Customer's Lifetime. Journal of Interactive Marketing, 22(3), pp. 2-22.

Gregory D. W. (2006). Enhanced Authentication In Online Banking. Journal of Economic Crime Management, 4(2). Doi:

http://www.utica.edu/academic/institutes/ecii/publications/articles/51D6D996-90F2-F468-AC09C4E8071575AE.pdf

Jayawardhena, C. (2004). Measurement of service quality in internet banking: the development

of an instrument. Journal of Marketing Management, 20(1-2), pp. 185-207.

Kenova V. and Jonasson P. (2006). *Quality Online Banking Services*, Technical Report, Jonkoping

International Business School.

Koregaonkar, K. T. (2016). Digital India: A Program to transform India into a Digitally Empowered Society. International Journal of Business Quantitative Economics and Applied Management Research, 2(9), pp. 41-52.

Lee, et al. (2005). Segmenting the Non-Adopter Category in the Diffusion of Internet Banking. International Journal of Bank Marketing, 23(5), pp. 414-437.

Nielsen, J.F. (2002). Internet Technology and Customer Linking in Nordic Banking. International Journal of Service Industry Management, 13(5), pp. 475–495.

Noel Y. M. Siu and Jeremy C. W. (2005). Measuring Service Quality in Internet Banking ; The Case of Hong Kong. *Journal of International Consumer Marketing*, 17(4) , pp. 99-116

Parasuraman, A., Zeithaml, V. A. and Berry, L. L. (1988). Servqual: A multiple-item scale for measuring consumer perceptions of service quality. Journal of retailing, 64(1), pp.12.

Raza, S.A., Jawaid, S.T. and Hassan, A. (2015). Internet banking and customer satisfaction in Pakistan. *Qualitative Research in Financial Markets*, 7(1), pp. 24–36.

Sakhaei, S.F., Afshari, A.J. and Esmaili, E. (2013). The impact of service quality on customer satisfaction in internet banking. *Journal of Mathematics and Computer Science*, 99(1), pp. 33–40.

Siu, N.Y.M. and Mou, J.C.W. (2005). Measuring service quality in internet banking the case of Hong Kong. *Journal of International Consumer Marketing*, 17(4), pp. 99–116.

Wai- Ching Poon (2008). Users' adoption of e-banking services: The Malaysian Perspective. Journal of Business and Industrial Marketing, 23(1).

Wu Yu-Lung, et al. (2008). The Use of E-SQ to establish the internet bank service quality table. *IEEE International Conference on Industrial Engineering and Engineering Management*, pp. 1446-1450.

Zeithaml, et al. (2002). Service Excellence in Electronic Channels. *Managing Service Quality*, 12(13), pp. 135-138.

Zhilin, Y., Peterson, R.T and Cai, S. (2003). Service quality dimensions of Internet retailing: an exploratory analysis. Journal of Services Marketing ,17(7), pp. 685-700.