
Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-8 No. 2 August 2020

Page | 61 Copyright @ 2020 Authors

D.O.I : 10.46528/JK.2020.V10I08N02.08

Performance Analysis of KVM and XEN Hypervisor for Resource

Monitoring in Cloud Computing

Nitesh Saxena,

 M. Tech Scholar,

Poornima University, Jaipur

onlynitesh.smcet@gmail.com

Dr. Madan Lal Saini,

Associate Professor,

Poornima University, Jaipur

madan.saini@poornima.edu.in

ABSRTACT

There are different choices when choosing a hypervisor

for different requirements like the performance of the

hypervisor, for how long time we are using the

technology, how easy to merge with different available

platforms, what are the profitable inferences and

support for different guests and functions. In our

research paper, we tried to help all by making you all

able to select the perfect hypervisor among KVM and

XEN by testing them out on the basis of various

parameters. Optimization of Xen Hypervisor and

Optimization of KVM Hypervisor was made possible

by carrying out various tests with different loads done

during this research work.

Keywords: KVM, VM, HVM, XEN, IOPS.

1. INTORDUCTION

Cloud computing is technology that provides us internet

based services on demand and ease of using them from

anywhere as these are ubiquitous in nature. The services

uses computing stacks from the infrastructure available

placed on virtual machines to provide software services.

 Fig 1.1 Architectural Diagram of Cloud

Computing

In this work, we have installed Ubuntu on two

hypervisors i.e. KVM and XEN. By taking various

parameters i.e. Disk I/O, CPU performance, network

performance and memory management, we compared

the two hypervisors XEN and KVM to analyze their

performances. Firstly, we have installed ganglia in our

host system to measure the performance of the guest

and the host machine. Then we have installed one VM

and measured the performance and then we installed

another VM to increase the load and checked the

performance of the hypervisor. Secondly, we have

installed Citrix server and then installed one virtual

machine and checked the performance and then

installed another VM and measured the performance on

the basis of parameters. In the results, we have analyzed

the overall performance of XEN and KVM, their

performance separation and scalability in a measureable

manner and after the comparison we came on to a

conclusion that the major difference between these two

hypervisors was with the scalability factor. We have

seen that KVM used to get crashed when we load 4 or

above guests over it which is not the case of XEN. If we

talk about kernel compile test then XEN is far ahead of

KVM but in case of I/O intensive tasks then KVM takes

a clear lead. The KVM’s performance is also better

during isolation ever so slightly then XEN. We will

comparing these two by including Xen with full

virtualization (HVM) and KVM with para virtualized

I/O.

There are many considerations when selecting a

hypervisor such as the performance, how mature the

technology is, how it integrates with existing systems,

the commercial implications and guest and functionality

support. In this section, there’s a guide that sets out to

help you select the most appropriate hypervisor. Within

this section, we compared two major hypervisors –

KVM and XEN. Here is a snapshot of the hypervisors

and a bit about each:

1.1 Kernel Virtual Machine: - A Linux based open

source hypervisor. First introduced into the Linux

kernel in February 2007, it is now a mature

hypervisor and is probably the most widely

deployed open source hypervisor in an open source

http://www.flexiant.com/2014/01/30/how-do-you-select-a-hypervisor/
http://www.flexiant.com/2014/01/30/how-do-you-select-a-hypervisor/

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-8 No. 2 August 2020

Page | 62 Copyright @ 2020 Authors

D.O.I : 10.46528/JK.2020.V10I08N02.08

environment. KVM is used in products such as

Redhat Enterprise Virtualization (RHEV).

1.2 XEN: Xen provides a mechanism by which a guest

operating system can be given direct access to a

physical device. The guest OS can then use existing

device driver.

1.3 Theoretical Aspects of Targeted Work

Many researchers have used different monitoring of

resources, correlation between resources and workload

predication in cloud to work out a feasible and

acceptable solution using various existing & modified

procedure to read, analyze, and evaluate the details. In

this chapter we will discuss virtualization techniques,

resource monitoring setup and correlation coefficients

with reference to the research works carried out by

various researchers.

2. VIRTUALIZATION TECHNIQUES

In today computing scenario the process of

virtualization represents to make a virtual type of

something like virtual platforms of computer hardware,

storage devices and network resources. It is a procedure

which reasonably divides the resources of system

between various processes provided by mainframe

computers. The virtualization term represent to execute

many operating system on one physical host machine

using Xen tool. The optimize approach to implement

visualization that is essential to clear understanding of

various solution of vitalization which is recently

available. The main objective to discuss about general

terms of four virtualization procedure commonly use

today specifically guest operating system, shared

kernel, hypervisor and kernel level.

Guest Operating System Virtualization: It is easiest

process of virtualization where typical original

operating systems like Linux, UNIX, Windows and

MacOS X run on physical host computer system. A

virtualization application is executing this operating

system in a similar way as other applications like

spreadsheet and word processor would execute on host

system. The virtualization process basically control

access to resource of physical hardware on behalf of

each virtual machine and responsible to start, stop and

manage individual VM. This virtualization process

involves in a binary rewriting process that contains

scanning the stream of instruction of running guest

system and substituting any privileged instruction with

safe simulation. The outcome of creating guest system

considers it directly run on hardware system slightly

than a virtual machine within an application. Guest

operating system virtualization technologies examples

are VMware Server and Virtual Box.

Fig 2.1: General Diagram of Guest Operating

System Virtualization

In the figure 2.1 the virtualization process various

virtual machines operate guest operating system execute

on top of host operating system in similar way as other

process. Obviously there are many abstraction layer

between the essential host hardware system and guest

operating systems are not favorable to performance of

high levels of virtual machine. This approach has

benefit which is not essential to change either host or

guest operating system and no special CPU hardware is

needed for virtualization support.

Shared Kernel Virtualization: This type of

virtualization also referred to as system level and

operating system virtualization also taking the benefits

of architectural design of OS based on UNIX and

Linux. If you correctly understand the process of shared

kernel virtualization it also helps to understand about

the two major component of UNIX and Linux operating

system. The kernel represent to core part of operating

system and simply it handles complete instruction used

to occur in between of operating system and physical

hardware. The next main component comprises all the

libraries, files and utilities represent to root file system

which is main function of operating system. Each

virtual guest operating system in shared kernel

virtualization contain their own root file system but

share the similar kernel of host operating system. In this

virtualization the kernel is able to change dynamically

current root file system known as chroot to another root

file system without reboot the complete system. The

shared kernel virtualization is capable to extend

possibly one of main drawback of this virtualization is

that the guest operating system must be well-suited with

kernel version that is being shared. For example in

shared kernel approach it is possible to execute

Microsoft windows with this shared kernel approach

and it is possible to design Linux guest system for

kernel version 2.6 to share a kernel version 2.4. The

best example of shared kernel virtualization is Linux

Server, Solaris Zones and Containers, FreeVPS and

OpenVZ.

http://www.virtuatopia.com/index.php/File:Guest_os_diagram.jpg

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-8 No. 2 August 2020

Page | 63 Copyright @ 2020 Authors

D.O.I : 10.46528/JK.2020.V10I08N02.08

Fig 2.2: General Diagram of Shared Kernel

Virtualization

Kernel Level Virtualization: In this type of

virtualization a specific modified kernel execute the

host operating system that consists additional designed

to manage and control various virtual machines which

is containing a guest operating system. Individual guest

execute its own kernel while same constraints apply in

guest operating system necessary to compile for similar

hardware whereas they are running like shared kernel

virtualization. In examples it is include Kernel based

Virtual Machine (KVM) and User Mode Linux (UML).

The below diagram gives a summary of kernel level

virtualization

Fig 2.3: General Diagram of Kernel Level

Virtualization

Hypervisor Virtualization: The code can run in a

range with protection levels which is also referred to as

rings provided by CPU family of x86. The operating

system kernel typically executes with highest level

privilege in Ring 0 and the execution of code in this

ring represent to execution in system space, kernel

mode and supervisor mode. Rest of the code like

execution of application on operating system activates

in less privileged ring usually ring 3. The program uses

in hypervisor virtualization is hypervisor also referred

to as type 1 virtual machine monitor or VMM directly

execute on host machine hardware in ring 0. The

process used to handle the allocation of memory and

resource for virtual machine in extension to provide

environment for administration and monitoring tools at

higher level. The CPU ring 0 is occupying by

hypervisor, the guest operating system uses kernels

executing on system necessarily execute in less

confidential CPU rings. Maximum kernels of operating

system are obviously written to execute in ring 0 for

simplest reason which is need to perform tasks those are

existing only in ring, like the skill to execute restricted

CPU instructions and modified memory directly. There

are four types of Hypervisor Virtualization.

Para virtualization: In this type of virtualization guest

operating system kernel can be change specially execute

on hypervisor. Usually the restricted operation will

execute only in ring 0 of CPU with invokes to

hypervisor called as hyper calls and hypervisor

performs the job on behalf of guest kernel. This

naturally restrict to support operating system belongs to

open source technology like Linux which modified and

registered operating system and owners allowed to

make the changes in essential code to target a particular

hypervisor. The facility of guest kernel directly

communicates with hypervisor results than other

virtualization techniques in maximum level of

performance.

Full Virtualization: The unmodified guest operating

system support are provided by full virtualization and

term unmodified represent to operating system kernels

that have not change to execute on hypervisor so still

run restricted operations as still executing in ring 0 of

CPU. In this condition CPU simulation to handle and

change restriction also secure CPU actions made by

unchanged kernels of guest operating system which is

provided by hypervisor. Inopportunely the simulation

application needs both resources of time and system to

control resultant in substandard levels of performance

while compared to that provided by para virtualization.

Hardware Virtualization: This type of virtualization

controls properties of virtualization constructed into

recent groups of CPUs from both Intel and AMD. These

virtualization technologies represent to as Intel VT and

AMD-V that provide essential extensions to execute

unchanged virtual machine of guest without expenses

extend in full virtualization CPU emulation.

In the simplest relationship the new processors provide

an extension restrict mode above ring 0 where the

hypervisor can operate basically exit ring 0 existing for

unchanged guest operating system. Xen, VMware ESX

Server and Microsoft's Hyper-V technology are

examples of hypervisor based virtualization.

Fig 2.4: General Diagram of Full Virtualization

http://www.virtuatopia.com/index.php/File:Shared_kernel_diagram.jpg
http://www.virtuatopia.com/index.php/File:Hypervisor_diagram.jpg

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-8 No. 2 August 2020

Page | 64 Copyright @ 2020 Authors

D.O.I : 10.46528/JK.2020.V10I08N02.08

KVM Hypervisor: It is open source virtualization

architecture for Linux distribution and it is represent to

virtualization layer in Kernel based virtual machine. A

hypervisor is an application which allows various guest

operating systems to share hardware of single host. In

the virtualization environment of KVM the performance

improvement and reorganization management is done

by Linux Kernel which is act as Type 2 Hypervisor. The

processor, memory, hard disk, network and other

resources use coordinates calls and virtual machine

environment created by hypervisor through the

operating system of host machine. The KVM needs a

processor with hardware virtualization additions to

connect with guest OS. The KVM has been bundled

with Linux operating system can be installed along with

Linux Kernel. Various guest operating system can work

with kernel virtual machine with Berkeley software

distribution, Solaris, Windows, Haiku, ReactOS, Plan 9,

and the AROS Research OS. Additionally the QEMU

an alternative version can use KVM to execute Mac

OSX. It is full virtualization technique for Linux on

Intel 64 and AMD 64 hardware which involved kernel

of mainline Linux.

The KVM hypervisor supports following characteristics

1. Over-committing: It represents to additional

virtualized CPUs and memory allocation in

comparison to present system resources.

2. Thin provisioning: It permits to assign the flexible

storage and optimizes available flexible storage and

optimizes the space for guest virtual machine.

3. Disk I/O throttling: It offers the ability to fix a

bound on disk I/O requests sent from virtual

machine to host machine.

4. Automatic NUMA balancing: Increase application

performance which is running on NUMA hardware

systems.

5. Virtual CPU hot add capability: It offers the ability

to improve processing power as required on

executing virtual machine without interruption.

Resource monitoring setup: The hierarchical design

targeted at association of clusters which is represent to

ganglia. In a cluster to monitor state depends on a

listen/announce protocol based on multicast and uses a

tree of point to point between representatives cluster

nodes to combine clusters and aggregate their state. A

well-known multicast address based for a membership

protocol used heartbeat messages by Ganglia within

each cluster. The reception of heartbeat is use to

maintain membership which represents availability of

node and non-reception of heartbeat over a small

multiple of periodic announcement interval that is

symbol of a node is unavailable. When major

modification occurs individual mode monitors its local

resources and monitoring data contained by multicast

packets to a specific multicast address. Both types of

metrics on specific multicast address are listened by all

nodes and collection or maintenance for data

monitoring of all other nodes. Each node must have

approximate view of whole cluster’s state and state is

simply reconstructed after a crash. Multiple clusters are

combined in ganglia together with point to point

connections of a tree where each leaf node identified as

a node specific cluster being combined whereas nodes

higher up in tree specify aggregation points. The copy

of individual cluster’s monitoring data contained by

each cluster node and individual leaf node logically

represents a distinct cluster whereas individual non-leaf

node logically represents a group of clusters. Multiple

cluster nodes to handle failures for each leaf node and

aggregation is done by polling child node at specific

point in tree at periodic intervals. Data monitoring from

both leaf nodes and aggregation points exported using

similar process, namely a TCP connection to the node

being polled followed by a read of all its monitoring

data.

In the implementation process we use mainly two

daemons like gmond and gmetad a command line

program gmetric and library at client side. The gmond

daemon provides single cluster monitoring by executing

listen/announce protocol and replying to client requests

by returning XML representation of its monitoring data.

In a cluster every node executes gmond. On the other

hand Ganglia Meta Daemon (gmetad) provides multiple

clusters associations. A tree with TCP connections

among various gmetad daemons allows monitoring

information for various clusters to be aggregated. The

application specific metrics can be publish by gmetic

command line program used by application whereas

client side library provides programmatic access to a

subset of Ganglia’s attributes.

Table 2.1 EXPERIMENT AND PARAMETERS

PARAMETERS DETAIL

Components Values

Processor Intel(R) Core(TM) i3-

5005U CPU@ 2.00GHz

Core 4

RAM 12 GB

OS UBUNTU 16.04 LTS

OS type 64-bit

Memory 1 TB

Hypervisor XEN, KVM

Memory(KVM) 100 GB

RAM and

CORE(KVM)

4 GB RAM and 2 core

Memory(XEN) 100 GB

RAM and

CORE(KVM)

4 GB RAM and 2

core

http://searchenterpriselinux.techtarget.com/definition/Solaris
http://searchwindowsserver.techtarget.com/definition/Windows

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-8 No. 2 August 2020

Page | 65 Copyright @ 2020 Authors

D.O.I : 10.46528/JK.2020.V10I08N02.08

 CPU utilization: Amount of CPU that has been

used by each virtual machine on the host 100%

represented all CPUs..

Virtual CPU usage = usage ÷ (number of virtual

CPUs × core frequency)

 Memory Utilization: For achieving best

performance, the host memory was had to be large

enough to accommodate the active memory of the

virtual machines. The active memory can be smaller

than the virtual machine memory in size. That

allowed us to over-provision memory, but ensured

that the virtual machine active memory was smaller

than the host memory.

 I/O Read: The number of read input/output

operations generated by a process, that included file,

network, and device I/O’s. I/O Reads directed to

CONSOLE (console input object) handles were not

counted.

 I/O Write: The number of write input/output

operations generated by a process that included

file, network, and device I/O’s. I/O Writes

directed to CONSOLE (console input object)

handles were not counted.

3. EXPERIMENTAL RESULTS AND ANALYSIS

Description of scenarios:

This experimentation is analysis of the performances of

two hypervisors namely, XEN and KVM on the basis of

various parameters used in different load conditions.

We have installed Ubuntu 16.04 LTS as host on the

system and created virtual machines of Ubuntu 16.04

LTS on both the hypervisors with multiple loads. The

scenario for the experimentation is described below:

SCENARIO PROCESSES

Scenario 1 Ubuntu 16.04 LTS on

KVM hypervisor

Scenario 2 Ubuntu 16.04 LTS on

XEN hypervisor

 Table 3.1 Details of different scenarios

Scenario 1:

In this scenario, we have installed Ubuntu 16.04 LTS on

KVM hypervisor as guest with multiple loads. After

that results have been evaluated by Ganglia Monitoring

tool. The parameters of results are cpu utilization,

memory utilization, IO read and IO write time.

Scenario 2:

In this scenario, we have installed Ubuntu 16.04 LTS on

XEN hypervisor as guest with multiple loads. After that

results have been evaluated by Citrix XEN server. The

parameters of results are cpu utilization, memory

utilization, IO read and IO write time.

Experimental Details:

For all the results and comparisons of hypervisors to be

performed as fairly as possible, some thought has been

put into how all the results should be performed. Mainly

with regard to each result and the parameters, such as

cpu utilization, memory utilization, IO read and IO

write time. So project has fix parameter to design the

virtual machine after that result evaluated.

Fig 3.1 Diagram of Experimental Setup

Results and Discussion:

The performance analysis of the scenarios discussed

above is as follows:

Scenario 1: Analysis using KVM hypervisor:

In this scenario VM is created on KVM hypervisor and

the performance was analyzed using ganglia monitoring

tool.

Fig. 3.2: Local host report of load, memory, C.P.U. and

network.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-8 No. 2 August 2020

Page | 66 Copyright @ 2020 Authors

D.O.I : 10.46528/JK.2020.V10I08N02.08

Table 3.2 Ganglia local host report

Summary of figure 3.2: This figure shows the details

of the localhost in terms of load, memory, CPU and

network for the last one hour. In this observation the

load is represented in load per processes, the memory

used in bytes, the CPU utilization in percentage and

network load in bytes/sec.

Fig 3.3: Network Metrics

Summary of figure 3.3: This figure shows the network

metrics and giving the details about bytes received,

bytes sent, packets received, packets sent, total running

processes and total processes.

 Fig 3.4: CPU Metrics

Summary of figure 3.4: This figure shows the CPU

metrics and giving details about CPU an idle time, CPU

idle time, CPU nice time, CPU system usage, CPU user

time and Input/output values.

Fig 3.5: Cluster overview of localhost

Summary of figure 3.5: This figure shows the cloud

cluster load, cloud cluster memory performance graph,

cloud cluster network and cloud cluster CPU

performance graphs for the localhost.

Fig 3.6: Cluster overview of guest (192.168.122.200)

Table 3.3 Ganglia local host report 2

Summary of figure 3.6: This figure shows the cloud

cluster load, cloud cluster memory performance graph,

Cloud cluster network and cloud cluster CPU

performance graphs for the guest (192.168.122.200).

Here the total CPUs are 6, Hosts up are 2, current load

average are 20%, 38% and 97% and average utilization

is 33%.

NODE MEMO

RY

VALU

ES

CPU VALU

ES

LOCALHO

ST

USE 1.5G USER 12.6%

 SHARE 0.0 NICE 0.0%

 CACHE 8.5G SYSTE

M

11.7%

 BUFFE

R

70.6M WAIT 3.4%

 SWAP 887.9K IDLE 72.3%

NODE MEMO

RY

VALU

ES

CPU VALU

ES

LOCALHO

ST

USE 657.4M USER 3.6%

 SHARE 0.0 NICE 0.6%

 CACHE 647.7M SYSTE

M

10.9%

 BUFFE

R

63.1M WAIT 6.8%

 SWAP 0.0 IDLE 78.2%

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-8 No. 2 August 2020

Page | 67 Copyright @ 2020 Authors

D.O.I : 10.46528/JK.2020.V10I08N02.08

Fig 3.7: Network Metrics

Summary of figure 3.7: This figure shows the network

metrics and giving the details about bytes received,

bytes sent, packets received, packets sent, total running

processes and total processes for the guest.

 Fig 3.8: CPU Metrics

Summary of figure 3.8: This figure shows the CPU

metrics and giving details about CPU aidle time, CPU

idle time, CPU nice time, CPU system usage, CPU user

time and Input/output values for guest.

5.3.2 Scenario 2: Analysis using XEN hypervisor:

The results obtained during the performance analysis on

citrixXenserver are given below:

Fig 3.9: Performance graph

Summary of figure 3.9: This figure shows the

performance graph for the virtual machine running on

Xen server.

Fig 3.10: Disk performance graph (in GBps)

Summary of figure 3.10: This figure shows the disk

read/write performance(in GBps) for the VM(s)

installed on Xen server.

Fig 3.11: CPU performance graph (%)

Summary of figure 3.11: This figure shows the CPU

performance of the Xen server VM(s) on increased

load.

Comparison of the performances of KVM and XEN

on the basis of parameters:

PARAMETERS KVM XEN

C.P.U 0.999ms 0.993ms

MEMORY

UTILIZATION
10 GB 8.5 GB

IO WRITE 0.855GBps 0.834GBps

IO READ 0.852GBps 0.894GBps

Table: 3.4 Comparisons between KVM and XEN

4. RESULTS:

In this work, we have installed Ubuntu on two

hypervisors i.e. KVM and XEN. There we have

compared the performance of both the hypervisors on

the basis of following parameters i.e. Disk I/O, CPU

performance, Network performance and memory

management. Firstly, we have installed ganglia in our

host system to measure the performance of the guest

and the host machine. Then we have installed one VM

and measured the performance and then we installed

another VM to increase the load and checked the

performance of the hypervisor. Secondly, we have

installed Citrix server and then installed one virtual

machine and checked the performance and then

installed another VM and measured the performance on

the basis of parameters. In the results, we have

presented a quantitative comparison of Xen and KVM

focused on overall performance, performance isolation,

and scalability. The most striking difference that we

have found between the two systems was in scalability.

KVM had substantial problems with guests crashing,

beginning with 4 guests. KVM had better performance

isolation than Xen, but Xen's isolation properties were

also quite good. The overall performance results were

mixed, with Xen out- performing KVM on a kernel

compile test and KVM out- performing Xen on I/O-

intensive tests. We would like to extend our comparison

to include Xen with full virtualization (HVM) and

KVM with para virtualized I/O.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-8 No. 2 August 2020

Page | 68 Copyright @ 2020 Authors

D.O.I : 10.46528/JK.2020.V10I08N02.08

REFRENCES

[1] Fredric Stumpf and Claudia Eckert, “Enhancing

Trusted Platform Modules with Hardware-Based

Virtualization Techniques”, The Second International

Conference on Emerging Security Information, Systems

and Technologies, IEEE 2008.

[2] Irfan Ahmad and Palo Alto,” Easy and Efficient

Disk I/O Workload Characterization in VMware ESX

Server”, IEEE Conference, 2007

[3] Ao Ma, Yang Yin, Wenwu Na, Xiaoxuan Meng,

Qingzhong Bu1 and Lu Xu1, “Scrubbing in Storage

Virtualization Platform for Long-term Backup

Application”, International Conference on Availability,

Reliability and Security, 2009.

[4] Sébastien Varrette, Mateusz Guzek, Valentin

Plugaru, Xavier Besseron and Pascal Bouvry,” HPC

Performance and Energy-Efficiency of Xen, KVM and

VMware Hypervisors”, 25th International Symposium

on Computer Architecture and High Performance

Computing, 2013.

[5] Thomas Muller and Alois Knoll,” Virtualization

Techniques for Cross Platform Automated Software

Builds, Tests and Deployment”, Fourth International

Conference on Software Engineering Advances, 2009.

[6] Karim Chine,”Scientific computing environments in

the age of virtualization toward a universal platform for

the cloud”, OSSC, 2009.

[7] J. Brandt, F. Chen, V. De Sapio, A. Gentile, J.

Mayo, P. P´ebay, D. Roe, D. Thompson, and M.Wong,”

Combining Virtualization, Resource Characterization,

and Resource Management to Enable Efficient High

Performance Computer Platforms Through Intelligent

Dynamic Resource Allocation” IEEE 2010.

[8] Ziye Yang, Haifeng Fang, Yingjun Wu, Chunqi Li,

Bin Zhao” Understanding the Effects of Hypervisor I/O

Scheduling for Virtual Machine Performance

Interference” , IEEE 4th International Conference on

Cloud Computing Technology and Science, 2012.

[9] Sébastien Varrette, Mateusz Guzek, Valentin

Plugaru, Xavier Besseron and Pascal Bouvry“HPC

Performance and Energy-Efficiency of Xen, KVM and

VMware Hypervisors” 25th International Symposium

on Computer Architecture and High Performance

Computing, 2013.

[10] Alexandru-Cătălin Bujor and Răzvan Dobre

“KVM IO Profiling” IEEE 4th International Conference

on Cloud Computing Technology and Science, 2012.

[11] Gauri Joshi, S.T. Shingade and M.R. Shirole ”

Empirical Study of Virtual Disks Performance with

KVM on DAS IEEE International Conference on

Advances in Engineering & Technology Research

ICAETR, 2014.

[12] Jinho Hwang, K. K. Ramakrishnan and Timothy

Wood," NetVM: High Performance and Flexible

Networking Using Virtualization on Commodity

Platforms", IEEE transactions on network and service

management, vol. 12, no. 1, march 2015.

[13] P. Vijaya Vardhan Reddy, Lakshmi Rajamani

“Performance Comparison of Different Operating

Systems in the Private Cloud with KVM Hypervisor

Using SIGAR Framework” International Conference on

Communication, Information & Computing Technology

(ICCICT), Jan. 16-17, Mumbai, India.

[14] Michele Stecca, Corrado Moiso, Martino Fornasa,

Pierpaolo Baglietto, and Massimo Maresca,” A

Platform for Smart Object Virtualization and

Composition” IEEE Internet of things Vol. 2 No. 6,

December 2015.

[15] Moritz Raho, Alexander Spyridakis, Michele

Paolino, Daniel Raho,” KVM, Xen and Docker: a

performance analysis for ARM based NFV and Cloud

computing” 978-1-5090-1201-5/15/$31.00 c

2015 IEEE.

