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We consider quantum metrology in noisy environments, where the effect of noise and decoherence  
limits the achievable gain in precision by quantum entanglement. We show that by using tools from 
quantum error-correction this limitation can be overcome. This is demonstrated in two scenarios, 
including a many-body Hamiltonian with single-qubit dephasing or depolarizing noise, and a single- 
body Hamiltonian with transversal noise.  In both cases we show that Heisenberg scaling, and 
hence a quadratic improvement over the classical case, can be retained. Moreover, for the case of  
frequency estimation we find that the inclusion of error-correction allows, in certain instances, for a 
finite optimal interrogation time even in the asymptotic limit. 
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Introduction.— Parameter estimation is a problem of 
fundamental importance in physics, with widespread ap- 
plications in gravitational-wave detectors [1, 2], frequency 
spectroscopy [3, 4], interferometry [5, 6], and atomic 
clocks [7, 8]. Quantum metrology offers a significant 
advantage over classical approaches, where the usage of 
quantum entanglement leads to an improved scaling in 
the achievable precision [9, 10]. However, noise and de- 
coherence jeopardize this effect, reducing the quadratic 
improvement with system size to only a constant gain 
factor in many scenarios [10–12]. 

General upper bounds on the possible gain have been 
derived suggesting that no  improvement in  the  scaling 
of precision is possible in the presence of uncorrelated, 
Markovian noise including local depolarizing or dephas- 
ing noise [11, 12]. For non-Markovian noise [13], and noise 
with a preferred direction transversal to the  Hamilto- 
nian evolution [14], a scaling of    (N −3/4) and    (N −5/6) 
was found respectively, where N denotes the number of 
probes (see also [15] for results on correlated noise). This 
is, however, still below the quadratic improvement at- 
tainable in the noiseless case. Moreover, for frequency 
estimation the optimal interrogation time, i.e. the opti- 
mal time to perform the measurement, tends to zero for 
large N in both these cases making a physical realization 
for large N impractical. 

In this letter we show that, by relaxing  the  restric- 
tions implicit in standard quantum metrology, namely 
that the only systems available are the N probes, and the 
unitary dynamics are generated by  local Hamiltonians, 
the no-go results for the case of uncorrelated, Markovian 
noise [10–12, 14] can be circumvented, and Heisenberg 
scaling can be restored. Specifically, by encoding quan- 
tum information into several qubits one can effectively 
reduce noise arbitrarily at the logical level thereby re- 
taining the Heisenberg limit in achievable precision. The 
required overhead is only logarithmic, i.e. each qubit is re- 
placed by m =   (log N ) qubits.  Moreover, we show that 
in the case of frequency estimation the optimal interro- 
gation time in certain scenarios considered here is finite 
and independent of the system size, in stark contrast to 
all frequency estimation protocols studied to date. As the 
methods we employ can be readily implemented experi- 
mentally, at least for moderate system sizes, our result 

To be more precise, let us consider a system of Nm 
qubits which we imagine to be decomposed into N blocks 
of m qubits with m odd (see Fig. 1). First, we consider a 
class of many-body Hamiltonians, HI (m) = 1/2σz

⊗m, act- 
ing on each of the blocks, and uncorrelated, single-qubit 
dephasing or depolarizing noise (scenario I). Here, and in 
the following, σx,y,z, denote the Pauli operators. We show 
that, depending on the number of probe systems, N , one 
can choose a sufficiently large m (not exceeding (log N )) 
such that the Heisenberg limit is achieved even in pres- 
ence of noise and that the optimal measurement time is 
constant. Furthermore, we generalize this model to ar- 
bitrary local noise and show that for short measurement 
times the Heisenberg limit can be retrieved.   Whereas 
this model may appear somewhat artificial, it neverthe- 
less serves as a good example to illustrate how quantum 
error-correction can be used to restore the Heisenberg 
scaling. 

The second, and more physically important, scenario 

we consider is that of a local Hamiltonian, HII = 1/2σ(1), 
and local, transversal σx-noise on all qubits.  We show 

that this scenario can be mapped, for short times, to 
scenario I, and hence demonstrate how quantum error- 

correction (and other tools) can be used to arbitrarily 
suppress noise and restore Heisenberg scaling in preci- 
sion just as in the noiseless case [16]. The key idea of our 
approach lies in the usage of auxiliary particles to en- 
code and protect quantum information against the influ- 
ence of noise and decoherence as done in quantum error- 
correction. In addition, the encoding needs to be chosen 
in such a way that the Hamiltonian acts non-trivially onto 
the encoded states, such that the information on the un- 
known parameter is still imprinted onto the system. As 

long as H is many-body and the noise is local (scenario 
I), or the Hamiltonian is local and the noise is transversal 
(scenario II), both conditions can be met simultaneously. 

Background.—We begin by describing the standard 
scenario in quantum metrology. A probe is prepared in a 
possibly entangled state of N particles and subsequently 
undergoes an evolution that depends on some parameter, 
λ, after which it is measured. This process is repeated 

ν times and λ is estimated from the statistics of the 
measurement outcomes. The achievable precision δλ is 
lower-bounded by the  quantum  Cramér-Rao bound  [17], 

paves the way for the first feasible experimental realiza- δλ ≥     1  
 

νF(ρλ) 
with F the quantum Fisher information 
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Scenario I.—The evolution of the Nm qubits is gov- 
erned by the class of Hamiltonians (see Fig. 1) H(m) = 
1 ΣN H , H = σ⊗m, where H acts on block k.  We 
2 

k=1 k k z k 

 
 
 

 
FIG. 1. Illustration of a quantum metrology scenario using 
error-correction. We consider N blocks of size m (here m = 

assume locality with respect to the blocks, i.e. this sit- 
uation is equivalent to having N , d-level systems with 
d = 2m. We describe the overall dynamics by Eq. (1), 
where the decoherence mechanism is modeled by Eq. (2). 
In the noiseless case (γ = 0), the maximal attainable 
QFI  is  given  by  F  =  (∂θ/∂λ)2N 2  and  is  obtain√ed  by  a 

5). In scenario I, all particles in each block are affected by a 

Hamiltonian HI = 1/2σ⊗m. In scenario II, only the lowest 

GHZ-type state, |GHZL⟩ = (|0L⟩⊗N + |1L⟩⊗N )/ 
|0L⟩ = |0⟩⊗m  and |1L⟩ = |1⟩⊗m. 

2, with 

(green) particle of each block is affected by the Hamiltonian 

HII = 1/2σz , and m − 1 ancilla particle (red) are used to 
generate an effective m-body Hamiltonian. In both scenarios, 
all particles are affected by (local) noise, and each block serves 
to encode one logical qubit. 

 
 

cal) probe states, = O(N ) , leading to the so-called 
standard quantum limit. Entangled probe states, such 
as the GHZ state, lead to = O(N 2), i.e. a quadratic 
improvement in precision, the so-called Heisenberg limit. 
In frequency estimation, time is also a variable that can 
be optimized, and the quantity of interest in this case is 
given by /t. We refer the reader to Appendix A for 
details. 

In the presence of noise, however, a number of no-go 
results show that for many uncorrelated noise models, 
including dephasing and depolarizing noise,  the  possi- 
ble quantum enhancement is limited to a constant factor 
rather than a different scaling with N [11, 12].  To be 
more specific, we describe the time evolution of the state 
by a master equation of Lindblad form 

ΣN 

Let  us  now  consider  the  standard  metrological  sce- 
nario in the presence of local dephasing noise, acting on 
all qubits, where the noise operators commute with the 
Hamiltonian evolution. In this case Eq. (1) can be solved 
analyticall y and the res ulting state is given by ρλ(t) = 

Ez(p)⊗Nm    Uλ|ψ⟩⟨ψ|Uλ
†    ,  where  Uλ  =  exp(−iθλH)  and 

z(p)ρ = pρ+(1    p)σzρσz, with p = (1+e−γt)/2, are act- 
ing on all physical qubits. Phase estimation corresponds 
to the case where t = t0, for some fixed time t0, and 
the parameter to be estimated is θλ = λ resulting from 
the unitary evolution for time t0. Note that in this case 
one can start directly with the equation for ρλ(t),  with 
p being time independent, and a time independent gate 
Uλ = exp( iλH) (see Appendix B). As the subsequent 
discussion is independent of whether p is time dependent 
or not, we simply write p in the following whenever it 
does not lead to any confusion. 

We now encode each logical qubit in m physical qubits. 
On each block of m qubits we make use of an error- 
correction code, similar to the  repetition code,  capable 
of correcting up to (m − 1)/2 phase-flip  errors  (recall 
that  we  chose  m  to  be  odd),  with  code  words  |0L⟩  = 

ρ˙(t) = −iλ[H, ρ] + L (ρ), (1) (|0x⟩⊗m  + |1x⟩⊗m)/    2,  |1L⟩√=  (|0x⟩⊗m  − |1x⟩⊗m)/√2, 
j 

j=1 where  |0x⟩   =  (|0⟩ + |1⟩)/   2, |1x⟩   =  (|0⟩ − |1⟩)/   2. 

where the action of the single qubit map Lj is given by 
The error-correction procedure consists of projecting onto 

subspaces, P→ , spanned by {σ→k|0x⟩⊗N , σ→k|1x⟩⊗N }, where 
γ (j) 

 
 

 
(j) 

 
(j) 

 
(j) 

 
(j) 

 
(j) 

→k   =   (k1, . . . , km)  with  ki   ∈   {0, 1}.    Here,  σ→k denotes 
Ljρ = (−ρ + µxσx    ρσx     + µyσy    ρσy      + µzσz    ρσz    ), the m qubit local operator, σk1   ⊗ σk2  . . . ⊗ σkm .   After 

(2) 
and γ  denotes the strength of the  noise. The  choice 
H  = H   = 1/2 σ(i) and µ   = 1, µ   = µ   = 0 cor- 

obtaining  outcome  →k  the  correction  operation  σ
→k   is  ap- 

plied.  As long as fewer than (m 1)/2 σz  errors occur 
we obtain no error at the logical level. Otherwise, a log- 

0 i   z z x y 

responds to local unitary evolution and local, uncorre- 
lated, and commuting dephasing noise scenario consid- 

ical σ(L) error occurs. Hence, the noise  at  the  logical 
level can again be described as logical phase-flip noise, 

ered in [10], whereas for the same Hamiltonian the choice (L) (L) (L) 

µx = 1, µy = µz = 0 corresponds to transversal noise 
Ez    (p) (ρ) = pLρ + (1 − pL)σz    ρσz    , with 

considered in [14]. The choice µx = µy = µz = 1/3 corre- m−1     

sponds to local depolarizing noise. We remark that this 
approach includes phase estimation for fixed t = t0, and 
frequency estimation when t can be optimized. 

pL = 
Σ2 

 
k=0 

pm−k(1 p)k, (3) 
k 

For any such scenario investigated so far the attainable 
precession  scales worse  than  O(N −1),  and  the  optimal 

where pL > p for p > 1/2.  For small errors, i.e. (1 p) 
1, the Taylor expansion of p can be approximated by 

L m+1 m 

interrogation time tends to zero whenever the noise is 
not vanishing (see Appendix B for details). 

pL  =  1 − 
order in (1 

m 
m+1 

2 
(1 − p) 2       + O[(1 − p) 2 +1], to leading 

Quantum metrology with error-correction.—We now 
demonstrate that error-correction can be used to recover 
the Heisenberg limit in the presence of noise in the two 
scenarios (scenario I and II) mentioned above. For the 

p).   That is, noise at the logical level is 
exponentially suppressed. 

We   now  consider   a   logical  GHZ   state,   |GHZL⟩   = 
(|0L⟩⊗N + |1L⟩⊗N )/    2, as input state [18].  At the logical 

level, H acts as a logical σ(L) operation, H |0 ⟩ = |0 ⟩, 
narios, our technique asymptotically allows for a finite, 
non-zero optimal time to perform measurements in con- 
trast to all current metrological protocols. 

Hk|1L⟩  =  −|1L⟩,  and  the  (time)  evolved  state,  |ψL⟩  = 
Uλ  GHZL       =   (e−iNθλ/2  0L   

⊗N   +  eiNθλ/2  1L   
⊗N )/    2, 

remains within the logical subspace. The state is 

2 

case of frequency estimation we show that, in certain sce- 

m 
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then subjected to phase noise acting on each of the 
qubits. After correcting errors within each block of m 
qubits, phase noise at the logical level is reduced (see 
above).  The stat e. af te r er. ror-correction is given by 
L    =  [   L(pL)]⊗N   .  L       ψL. .    As  a  result,  the  situa- 

tion is equivalent to the standard phase estimation sce- 
nario with a single-qubit, σz Hamiltonian and local phase 
noise, where the error probability is, however, exponen- 
tially suppressed. 

Let us now bound the precision for both phase and fre- 
quency estimation. As ρ is of rank 2 the Fisher informa- 

We now show that the Heisenberg limit is attainable 
also in this case. To this aim, we attach to each of the 
system qubits m 1 ancilla qubits, not affected by the 
Hamiltonian, that may also be subjected to (directed) lo- 
cal noise (see Fig. 1). In practice, this may be achieved 
using qubits associated with different degrees of free- 
dom (e.g. other levels in an atom), or another type of 
physical system. The situation is hence similar to sce- 
nario I, i.e. we have Nm qubits that are decomposed 
into N blocks of size m.  The Hamiltonian is given by 

H = 1 
ΣN 

H , H  = σ(1) ⊗ I⊗m−1. and we consider 
tion can be easily calculated [12] (see Appendix B), and 
for  phase  estimation  one  finds     (ρλ)  =  (2pL      1)2N N 2. 
In contrast to the standard scenario, where the strength 
of  the  noise  is  independent  of  N ,  here  pL  can  be  made 
arbitrarily close to 1. Hence, one encounters a quadratic 
scaling and thus recovers the Heisenberg limit. For any 
fixed value of p and m, we have Heisenberg scaling up 
to a  certain,  finite-system  size,  Nmax.  For  example, 
for  p   =   1  −  10−3   we  find  (2pL  −  1)   =   1  −  ǫL   with  
ǫL   ≈  6 × 10−6, 2 × 10−8, 1.3 × 10−15  for  m  =  3, 5, 11 
respectively.    Hence,  (2pL  − 1)2N   =  O(1),  i.e.    a  con- 
stant  close  to  1,  as  long  as  2NǫL   ≪  1.    Thus,  for  N 

transversal noise acting on each of the Nm qubits, see 
Eqs. (1,2). 

In the following we show that the above situation can 
indeed by mapped precisely to the  situation considered 
in scenario I. To  this  end,  imagine  that  after  prepar- 
ing the entangled (encoded) resource state (i.e. a logi- 
cal GHZ state GHZL ), we apply an entangling unitary 
operation † to all qubits, allow them to freely evolve 
according to Eq. (1), and apply before the final mea- 
surement.  The result is that the evolution takes place 
with respect to a unitarily transformed master equa- 
tion  ρ̇  =  −iλ[H̃ , ρ] + 

ΣNm 
L̃  (ρ),  where  H̃   =  U HU †, 

up  to  Nmax   =  O(1/ǫL)  our  error-correction  technique j=1    j 
 

 and  L̃  ρ  =  γ    −ρ + (Ũσ(j)Ũ †)ρ(Ũ σ(j)Ũ†) .  Here, U = would yield Heisenberg scaling in precision. More impor- 
t antly ,  if  m  =  O(log N ),  and  using  the  approximation 

j 2 
Q 

x x 
⊗ Vk  with  Vk  = CX , where Vk  acts on a 

m <  2m,  it  can  be  shown  that  (2pL  − 1)2N   →  1 k=1 j=2 
m+1 

2 

and F ≈ N 2 for N → ∞ as long as 4N (2 
   
1 − p) ≪ 1. 

single block, and CX = (Had ⊗ Had)CP (Had ⊗ Had)† 
with CP = diag(1, 1, 1, −1) the controlled phase gate, 

Thus, the QFI can be stabilized, and the Heisenberg limit 
is attained, with only a logarithmic overhead [19]. 

If instead of phase estimation we consider frequency 
estimation, i.e. θλ = λt, we obtain (see Appendix B) 
F(ρλ)    =    t  (2pL(t)  −  1)     N  ,   where   2pL(t)  −  1    = 

and Had the Hadamard operation. The action of such a 
transformation has been studied and applied in the con- 
text of simulating many-body Hamiltonians [21]. It is 

straightforward  to  verify  that  [21]  U HkU †   =  VkHkVk
†   

= 
σ(1)  ⊗ σ⊗m−1,  U σ(j)U †    =  V  σ(j)V

†    
=  σ(j),  where  the 

e−γL(m,γ,t)t, and γL(m, γ, t) is the noise parameter at the z x  
x
 k  x k x 

logical  level.   Assuming  that  γt        1  the  optimization 
of    /t  over t  can be  easily performed.   Assuming  that 
m = (log N ) the optimal interrogation time and  the 
bound on precision for an arbitrary number of m are pre- 
sented in Appendix B . We find that the optimal interro- 
gation time decreases for larger system sizes N . However, 
topt gets larger with increasing m, and can hence be much 
more  feasible  in practice.   Assuming  that  γt       1  and 
m  =     (log N ),  pL  can  be  approximated  using  Stirling’s 

— 2 

formula and we find topt = N  m  →   1   . Thus the op- 

transformed Hamiltonian,    Hk  †, acts within a block. 
Up to Hadamard operations on particles 2, . . . m, this cor- 
responds to the situation described in scenario I, i.e. an 
m-qubit Hamiltonian, Hk  = σz

⊗m, and local, single-qubit 
noise (X noise on particle 1 and Z noise on all ancilla 
particles). As shown in Appendix C one can achieve 
Heisenberg scaling for any local noise model using logical 
GHZ states as input states.  This implies that we also 
achieve Heisenberg scaling—at least for short measure- 
ment times, t ∝ N −1/2 [22]—for transversal local noise, 

O(log N ). 

timal measurement in our scenario can be performed at a 
finite time for large N . This is to be contrasted with the 
optimal times for previously considered frequency estima- 
tion scenarios, based on GHZ and other entangled states, 
where topt → 0 for large N [10, 14]. The maximum QFI 

Experimental realization.— We now consider a simpli- 
fied version of scenario II, where only particles that are af- 
fected by the Hamiltonian are affected by noise, i.e. noise 
is part of the coupling process, involving a two-qubit error 
correction code which can be easily demonstrated exper- 

2(1− 1 ) 2 

per unit time is then given by F = N m     →  N    , imentally.  The error correction code with  |0L⟩ = |0⟩|0x⟩, 
t   opt 

 2 

2γm m 
2γe2 |1L⟩  =  |0⟩|1x⟩  as  codewords,  is  capable  of  correcting  ar- 

and the Heisenberg limit is approached for N → ∞. 

In Appendix C we show that  any  kind of  local error 
can be treated in this way. This is done by using an error-
correction code that corrects for arbitrary single- qubit 
errors rather than just bit-flip errors, and where 

the Hamiltonian still acts as a logical σ(L) operator on the 
codewords. We find that one obtains Heisenberg scaling 
for short measurement times, t ∝ N −1/2. 

Scenario II.—Let us now consider the physically more 
relevant scΣenario where the Hamiltonian is given by H  = 
H0 = 1/2    i σ

i , and transversal noise [20]. 

bitrary σx errors occurring on the first qubit, while the 
Hamiltonian still acts as a logical σL after the transforma- 
tion . This opens the way for simple proof-of-principle 
experiments in various set-ups, including trapped ions or 
photonic systems, where a total of 2N qubits prepared in 
a GHZ-type states suffices to obtain a precision O(N −1). 

Conclusion and outlook.—We have demonstrated that 
quantum error-correction can be applied in the context of 
quantum metrology and allows one to restore Heisenberg 
scaling in several scenarios. This includes  the  estima- 
tion of the strength of a multi-qubit Hamiltonian in the 

ρ 

where the required block size is again m = 
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presence of arbitrary independent local noise, as well as 
a single-body Hamiltonian in the presence of transversal 
noise. In the latter case, an improvement in the precision 
from O(N −5/6), previously shown in [14], to O(N −1) is 

counts as a resource but the additional resource of the 
total running time, T = νt, has to be taken into account. 
The QFI for pure input states, ρ = |ψ⟩⟨ψ|, is then given 
by F(ρλ) = ( ) 4Var(H)ρ , where Var(H)ρ denotes 

demonstrated. Furthermore, for frequency estimation we 
have shown that the interrogation time can be finite and 
independent of N in contrast to all previously known pa- 
rameter estimation protocols. This demonstrates that, 
even though recent general bounds suggest a limitation 
of the possible gain in noisy quantum metrology to a con- 
stant factor for dephasing or depolarizing noise, this is ac- 
tually not the case in general. It remains an open question 
whether tools from quantum error-correction can also be 
applied in other metrology scenarios, most importantly 
in the context of estimating local Hamiltonians in the 
presence of parallel (phase) or depolarizing noise [23]. 

Acknowledgements.—This work was supported by the 
Austrian Science Fund (FWF): P24273-N16, Y535-N16, 
SFB F40-FoQus F4012-N16, J3462. 

Note added.—After completing this work we learned 
about independent work using similar approaches [24– 
26]. 

the variance of H with respect to the state ρ. If the aim 
is to estimate frequency the bound in precision, Eq. (A1), 

 
 

can be written as δλ  T   1 in order to account 
F(ρλ(t))/t 

for the total running time  T .  Here,  the  QFI  obtained 
per unit time, (ρλ(t))/t, has to be optimized over time 
leading to an optimal interrogation time topt. 

 
 

Appendix B: Fisher Information 

 
In this section we briefly recall the definition and some 

properties of the quantum Fisher information, (ρ). The 
latter is defined as [17] 

F(ρ) = tr(ρ′Lρ) = tr(ρL2), (B1) 

where the Hermitian operator Lρ is the symmetric loga- 
rithmic derivative of ρ and is defined via the equation 

dρ 
= ρ′ ≡ 

1 
(ρL  + L ρ). (B2) 

APPENDICES 

 
In the following appendices we provide detailed calcu- 

dλ 2 ρ ρ 

ΣWriting    ρ    in    its    spectral    decomposition    as    ρ = 

i pi |Ψi⟩ ⟨Ψi|, it can be easily seen that 
lations for the main results in the paper. Specifically, 
Sec. A includes a brief review of phase and frequency 
estimation. In Sec. B we discuss the quantum Fisher 
information (QFI), and provide a proof of finite, non- 

 

Lρ = 2 
Σ 

 
j,k:pj +pk 

1 
 

 

pj + pk 
0 

⟨Ψj | ρ′ |Ψk⟩ |Ψj⟩ ⟨Ψk| ,(B3) 

zero optimal time and Heisenberg scaling in precision for 
scenario I. In Sec. C we show how our error-correcting 
scheme is capable of dealing with arbitrary local noise 
provided we consider short measurement times. 

which leads to 
Σ 

F(ρ) = 2 
j,k:pj +pk 

  1 
| ⟨Ψ | ρ′ |Ψ ⟩ |2. (B4) 

0 

 

 
Appendix A: Phase and frequency estimation 

 
We start by describing the standard scenario in quan- 

tum metrology. A probe is prepared in a possibly entan- 
gled state of N particles. It undergoes an evolution that 
depends on some parameter, λ, and the probe is mea- 
sured afterwards. The overall process is repeated ν times 
and λ is estimated from the statistics of the measurement 
outcomes.  The achievable precision in the estimation of 
λ, δλ, which measures the statistical deviation of the es- 
timator from the actual parameter, is lower-bounded by 
the quantum Cramér-Rao bound [17], 

δλ ≥ √ 
1 

, (A1) 

The computation of the  QFI is  in general hard since 
the diagonalization of ρ is required. However, there exist 
several upper bounds on the Fisher information in the 
literature [11, 12]. 

Throughout the paper we consider the situation where 

ρλ  =  Uλ   (ρ0)Uλ
†
,  with  Uλ  =  e−iλH  for  some  Hamilto- 

nian, H, and initial state, ρ0. Here, denotes a com- 
pletely positive, trace-preserving map that is independent 
of the parameter to be estimated. Such a map could re- 
sult, for example, from solving the master equation, in 
case the unitary and dissipative evolution are commut- 
ing, from approximating the solution of the master equa- 
tion for short times, or from a time-independent evolution 
which the system is subject to. 

In the case of phase estimation, i.e. θλ = λ, ρ′
λ = 

−i[H, ρλ] and one obtains for the QFI 
νF(ρλ) Σ (pj − pk)  2 

 
 where F denotes the quantum Fisher information of the F(ρλ) = 2 p  + p | ⟨Ψj| H |Ψk⟩ |  .(B5) 

state ρλ resulting from the evolution of the initial state of 
j k 

j,k:pj +pk /=0 

the N probes [17]. Note that the bound can be reached 
asymptotically, i.e. for ν → ∞. 

For  frequency  estimation,  where  ρ′
λ 

obtains 
=  −it2[H, ρλ],  one 

In the noiseless case we have ρλ = Uλρ0Uλ
†
, where Uλ = 

e−iθλH  for some Hamiltonian H.  In the literature one F(ρ 
Σ 

) = 2t2 (pj — pk) | ⟨Ψ | H |Ψ ⟩ | (.B6) 

distinguishes between phase estimation, where θλ = λ is 
λ 

j,k:pj +pk    0 

 

pj + pk j k 

the parameter to be estimated, and frequency estimation, 
where θλ = λt and the frequency λ has to be estimated. 
In the later case not only the number of particles,  N , 

Note that the sums in Eqs. (B5,B6) run over (2N ) 
terms. Furthermore, if ρλ = (σλ)⊗N , for some single 

2 
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ρ 

O 

= → 

√ 

O 

→ 

E | ⟩ ⟨ | 

− 

| ⟨Ψ | H |Ψ ⟩ |0 1
p + p

 

2 2 2N 2 

2γe2 t  2 

2γm m 
2γe2 

1 

2 

N 
2 

| ⟩ | ⟩ | ⟩ 

 

qubit state, σλ, (which is the case for local Hamiltonians 
and local noise acting on a product state as input state) 
it can be shown that F [(σλ)⊗N ] = NF [(σλ)], and the 
Fisher information scales linearly in N . 

In  the  noiseless  case,  where  ρλ   =  Uλ(ρ0)Uλ
†
,  it  can 

We  now  consider  the  process  at  the  logical  level, 
i.e. where error-correction has been employed and we ob- 
tain p(t) = pL(t) with pL(t) given by Eq. (3) in the main 
text. The optimal interrogation time and QFI can be 
straightfor ward ly determined. Using the approximation 

m m+1 m +1 
easily be  seen  that  for  pure  input  states  Eqs.  (B5,B6) 
reduce to 

pL  = 1 − m+1     (1 − p)  2       + O[(1 − p) 2 ] as indicated 
2N 2 

in the main text), together with F(ρλ) = (2pL − 1) N  , 

F(ρλ) = 4Var(H)ρλ (B7) and assuming that m = O(log N ) and γt is small,  opti- 

F(ρλ ) = t24Var(H)ρ (B8) 
mization of /t over t yields for the optimal interrogation 
time and precision bound: 

respectively, where Var(H)ρ = ⟨H2⟩ρ − ⟨H⟩2  denotes the   2  
m+2 

variance of H with respect to the state ρ = |ψ⟩⟨ψ|.  1  
 

 It follows that for uncorrelated (classical) input states, the  precision  of  phase  and  frequency  estimation  is 
 

 

topt = 
2   m 

 m+1 γ 2      (3 + Nm) (B10) 

bounded by δλ ≥ 
   

and δλ
√

T 
νN 

   
1 respectively, 
N 

        
F 

m+1 
2 

N 2 Nm + 2 
 

 

 2N 

as the QFI can only scale as O(N ) for such states. This 
 

 

t 
=       

 m+1       2  . Nm + 3 

is also known as the standard quantum limit.   In con- 
trast,  a scaling of (N 2) for the QFI is possible for 
entangled probe states, leading to the so-called Heisen- 

opt 2  m+1 
2 

γ 2      (3 + Nm) 
m+2 

 
 

 
— 2 

berg limit with an attainable precision of δλ = 1/(
√

νN ) Using Stirling’s approximation we obtain t opt N   m  
 2 

and δλ
√

T ≥  1 respectively.  The bound is achieved by 
 

 

    1       and F 

 
2(1− 1 ) 

=  N m → 

2γm m 

N as stated in the 

(GHZ) state,  GHZ  = ( 0 ⊗N + 1 ⊗N )/   2. 
When taking noise into account, Heisenberg scaling can 

however no longer be achieved.  For instance,  as shown 
in [11], if we consider noise described by Eq. (2) in the 

main text.   Notice that above equations are only valid 
for sufficiently large m, m = (log N ), and we have used 
m = ln N to arrive at the final result. 

As a  second example  let  us  compute  the  QFI  for 
main text, where γ 0  and  µz  =  1, µx  =  µy  =  0, the standard metrology scenario with a  local Hamilto- 

Σ the ultimate precision in frequency estimation is given nian,  H  = σ(i), and depolarizing noise described 
√ q  i   z 

 

 

 2γ by δλ   T ≥ . In contrast the best classical strategy 
 

 

 

by  p  =  e−2γL δt/3   (see  Sec.  C).  As  in  this  case  the  lo- 

yields a bound δλ
√

T ≥ 

√   
2γe/N, i.e. only a gain by a 

cal noise commutes with the local Hamiltonian we have 
ρλ  = U ⊗N [D(p)⊗N (ρ0)](U †)⊗N .   If the initial state, ρ0, 

constant factor is found.  Notice that the GHZ state— λ λ ⊗N 
which is optimal in the noiseless case—has an optimal is  the  GHZ  s.taEte the eigenbasis, {|Ψi⟩}, of [D(p) (ρ0)] 

interrogation time topt =    1  ,  but  does  not  provide 
 

. 
is given by .k 

 
 

,  where  |→k|  /=  0, N ,  and  the  two  states 

any gain in the noisy case.  For the case of transversal 
noise  the  achievable  precision  and  correspqonding  inter- |Ψ0,1⟩ = 1/

√
2(|0⟩

⊗N  
± |1⟩

⊗N 
).  This can be easily veri- 

rogation time were shown to be δλ
√

T ≥ (9γ)1/3 

2N 5/3 
     N 

⊗N 1 − p 

topt = (3/γN )1/3 respectively [14]. Note that in both 
cases, the interrogation time tends to zero as N gets 

D(p) 
 

NΣ−1   
1 − p 

 N −k Σ 

(ρ0) = 
2 

ρ0+ 

large, making a physical realization of the optimal pro- 
tocol very challenging. In fact, for larger measurement 
times it has been shown that the scaling O(N −5/6) can- 

pk 

2 
k=0 

P [1l ⊗ 1l . . . ⊗ tr1,...N−k(ρ0)]P, 
P 

not be achieved [14]. 
We  now  compute  the  QFI,  in  the  case   of 

phase estimation,  for  scenario  I  where  ρλ  = 

z(p)⊗N (Uλ  GHZ    GHZ  Uλ
†
).       The   only   two   non- 

vanishing eigenvalues of ρλ are 
1 

where the sum runs over all possible permutations, and 
tr1,...N−k(ρ0) denotes the reduced state of qubits (N 
k + 1), . . . , N . Thus, the eigenstates of ρλ are the states 
Uλ |Ψi⟩.   Since  Uλ  commutes  with  H,  we  need  to  deter- 
mine  the  overlaps  ⟨Ψi| H |Ψj⟩.   As  H  is  diagonal  in  the 
computation basis this overlap vanishes for i /= j unless 

p0,1 = (1 ± (2p − 1)2N ), (B9) {i, j}={0, 1}. Thus, the QFI is given by 

and   the   corresponding   eigenstates   are   |Ψ0,1⟩ = 
e−iθλN/2 |0⟩

⊗N 
± eiθλN/2 |1⟩

⊗N 
.  All other eigenvalues are F = 4 

(p0 − p1)2 
 

 

0 1 

2 p2N 
2

 

= 
( 1+p )N + ( 1−p )N 

N , 

zero and do not contribute to the QFI. This can be seen 
by ,co. nEsidering the k,ernel of ρλ whic. hEis given by the span where p 

2 
h N N 

i 
=  1 1+p +  1−p ± p 

2 

(B11) 
denote the .→ → .→ → 0,1 2 2 2 

of .k   | |k| /= 0, N   .  As ⟨Ψ0,1| H .k    = 0 for |k| /= 0, N 

and | ⟨Ψ0| H |Ψ1⟩ | = N/2, we obtain for the QFI 

F(ρλ) = 4(p0 − p1) | ⟨Ψ0| H |Ψ1⟩ |   = (2p − 1) N . 

Similarly, for frequency estimation we have 

eigenvalues of |Ψ0,1⟩ respectively. 

 
Appendix C: Local noise 

 
Here we show that the error-correction method pre- 

2 2N 2 
F(ρλ) = t (2p(t) − 1) N  . sented in scenario I, with H = H(m) given by H(m) = 

2Nγ 

N 

m 

λ 

√ 
√ 

fied as 

, and 

N 

preparing the probe in the Greenberger-Horne-Zeilinger opt 

≥ 
2 

2 

2 
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L  

L F ≈ 

m 

z 

O 

≪ 

1 ΣN 
 

H , H = σ⊗m, apply to any kind of local noise if 
 

If we apply error-correction before performing the final 
2 

k=1 k k z 

we consider short measurement times. We first consider 
local depolarizing noise, and then demonstrate that the 
results also hold for arbitrary local noise. Depolarizing 
noise is described by the completely positive map 

measurement, the noise for each block acts as depolariz- 
ing noise at the logical level with parameter pL > p for p 
sufficiently large [32]. That is, the situation at the logical 
level is equivalent to a standard metrology scenario with 
local Hamiltonian, σz, and depolarizing noise described 
by pL = e−2γL δt/3.  The QFI in this  case is given by (see 

E(ρ) = pρ + 
(1 − p) Σ

3 

4 
i=0 

σiρσi = pρ + 
(1 − p) 

1l. (C1) 
2 

Sec. B)  

  p2N 

F  =  
( 1+pL )N  + ( 1−pL )N  

N 

 

 
2, (C5) 

2 2 

On each block, one uses an error-correction code cor- 
responding to graph states [27], e.g. a 5-qubit code cor- 
responding to a ring graph, that can correct an arbitrary 
error on one qubit [28–31]. Using such a code in a con- 
catenated fashion allows one to reduce noise at the logi- 
cal level to an arbitrary degree as long as γ < γCode. In 
fact, one finds that the noise at the logical level is log- 
ical  depQolarizing  noise  [32].    Let  |G⟩  be  a  graph  state, 

|G⟩  =      (j,k)∈E  Ujk|+⟩⊗m,  where  Ujk  =  diag(1, 1, 1, −1) 
is a phase gate acting on qubits j, k, and the graph is 
described by edges (j, k) ∈ E. Defining the logical states 

|0L⟩ = (|G⟩ + σz
⊗m|G⟩)/

√
2, 

|1L⟩ = (|G⟩ − σz
⊗m|G⟩)/

√
2, (C2) 

and  can  be  approximated,  for  pL  sufficiently  close  to  1, 

as p3N/2N 2. Note that this QFI would be obtained 
whenever the state ρλ is described by Eq. (C4). 

Noise at the logical level can be exponentially reduced 
when using a concatenated error-correction code [32, 33]. 
For the concatenated 5-qubit code with n concatenation 
levels the block size is m = 5n. For n = 1 one finds that 
the probability, q, to have no error at the logical level is 
well approximated by [32, 33] 

qL = q5 + 5q4(1 − q), (C6) 

where  q  =  (1 + 3p)/4,  and  qL  =  (1 + 3pL)/4  for  depo- 
larizing noise. That is all events that correspond to zero 
error (probability q5) or one error at one of the qubits 
(5 instances, each with probability q4(1 − q)) can be cor- 

the  action  of  Hk  on  these  logical states  is  given  by 
Hk|0L⟩  =  |0L⟩  and  Hk|1L⟩  =  −|1L⟩.   That  is  Hk  acts 

as a logical phase flip, σ(L). If we only consider the 
noisy Σpart  of  the  evolution,  which  on  each  block  is  

given  by 
k=1 Lk, this leads to depolarizing noise acting on each 

of the qubits, ρ̃t = [D(p)]⊗N (ρ) with 

rected by the code leading to no error at the logical level. 
A simple concatenation of Eq. (C6) leads to the logical 
error probability when using a concatenated code [34]. 
One finds that the effective noise parameter, γL, is expo- 
nentially suppressed [33]. Similar to dephasing noise, for 
m = (log N ) we again recover a quadratic scaling of the 
QFI and hence of the achievable precision. 

A generalization to arbitrary local noise is straight- 

D(p)ρ = pρ + 1 − p Σ
3

 
 
σ(k)ρσ(k) = pρ + 1 − p 

 
1l(C3) 

forward.   The  reason is that  quantum error-correction 
codes can deal with any kind of local noise, as long as the 

 

 
and p = e−2γt/3. 

4 j j 

j=0 
2 probability q for no error is sufficiently large. In fact, as 

shown in [32], Pauli noise acting on the individual qubits 
is mapped to (logical) Pauli noise at the logical level. The 
probability to have no error at the logical level is given by 

As the noise and unitary evolution do not commute 
the master equation can not be easily solved as in the 
case of dephasing noise. However, we might approximate 
the solution for short evolution times using the Trotter 
expansion. For times δt2N 1 the output state is well 
approximated by 

Eq. (C6) and the above approximations still hold when 
dealing with concatenated codes. Alternatively, one can 
actually bring arbitrary local noise process described by 
a completely positive map,  or noise in a master equa- 
tion described by a local Liovillian, to a standard form 
corresponding to local depolarizing noise.  This  is  done 
by means of depolarization, i.e. by applying certain lo- 

ρ(δt) = [D(p)]⊗N Uδt|ψ⟩⟨ψ|Uδ
†
t 

 

. (C4) 
cal unitary operations randomly, and might increase the 
noise level by a constant factor [35]. 
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