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ABSTRACT 

 
Different high speed Transport layer protocols have been designed and proposed in the literature to improve the 

performance of standard TCP on high BDP links. They are mainly different in their increase and decrease formulas of their 

respective congestion control algorithm. Most of these high speed protocols consider every packet drop in the network as an 

indication of congestion and they immediately reduce their congestion window size. Such an approach will usually result in 

under utilization of available bandwidth in case of noisy channel conditions. We take CUBIC as a test case and have 

compared its performance in case of normal and noisy channel conditions. The throughput of CUBIC was drastically 

degraded from 50Mbps to 0.5Mbps when we introduced a random packet drops with 0.001 probability. When the 

probability of the packet drops increases then the throughput gets decreases. Indeed, we need to complement existing 

congestion control algorithms with some intelligent mechanisms that can differentiate whether a certain packet drop is 

because of congestion or channel error thus avoid unnecessary window reduction. In order to distinguish between packets 

drops, we have developed a k-NN based module to guess whether the packet drops are due to the congestion or any other 

reasons. After integrating this module with CUBIC algorithm, we have observed significant performance improvement. 
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1. INTRODUCTION 

 
High speed networks [1] refer to the networks that usually have higher rate of data transmission such as high 

speed LAN and Ethernet. The rate may be varying from few Mega bit per seconds (Mbps) to Giga bit per 

seconds (Gbps). The common applications of high speed networks are telemedicine, videoconferencing and 

weather simulations etc. High speed network may perform better in the situation where the end system may 

regulate their flow of data for using the available network resources efficiently without more loads on the 

system. When there are more loads on the systems then it leads to congestion and throughput collapse. Simply 

high speed networks are introduced to sends a large amount of data quickly. Network congestion refers to the 

situation in which the capacity of a network is exceeded by the number of packets sent to it. It may mean load on 

the network. When this load is keep below the total capacity of the network then it is called congestion control. 

Congestion is possible in any system that involves waiting. In network congestion occurs because routers 

and switches has queue which stores the packets. We can easily understand congestion control by taking an 

example of congestion control in TCP. TCP [2] is an acknowledged based protocol in which a receiver must 

sends an acknowledgment to the sender after receiving a packet. Sender can only sent a new packet after an 

ACK has been received from receiver. One of the important duties of the TCP is congestion control.TCP handle 

congestion in three steps: slow start, congestion avoidance and congestion detection. This slow start has an 

exponentially increase. This increase is dictated by the size of the congestion window (maximum number of 

packets that can be transmitted at a particular time) which starts with one maximum segment size (maximum 

amount of data that a segment can hold). During the connection creation the maximum segment size is 

determined by using the option of the same name. When an acknowledgment is received for the send segment 

the size of the cwnd is increased to 1 MSS. As the name implies the window start slowly and increases 

exponentially. For example the sender start with congestion window is equal to one maximum segment size 

means that sender can sends only one segment. For example we have seven segments, when an ACK is 

received for segment 1, then the size of the window is incremented by 1, means the value of cwnd is now 2 and 2 

more segments can be sent. When an ACK is received for those two segments, the size of the window is 

incremented by one MSS for each segment. When all seven segments are ACK the congestion window is equal 

to 8. When there is delayed acknowledgement then the size of the window is incremented less than power of 2. 

Slow start cannot continue infinitely and stop when it reach threshold. The size of the window in slow start 

phase is increased exponentially. To avoid congestion, TCP defines congestion avoidance algorithm, which 

uses additive increase? When cwnd size reaches threshold, slow start stop and additive increase starts. In 

Additive increase algorithm the size of cwnd is incremented by 1 additively until congestion is detected. If 

congestion occurs, the size of the cwnd must be decreased. When sender knows that congestion has occurred, it 

retransmits a segment. The segment can be retransmitted for two reasons. The first one is when timer times out 

and the second is by receiving three duplicate ACKs. The threshold’s size is halved due to these reasons. For 

these two reasons the size of the threshold is reduced to one half (multiplicative decrease). Thus, there are two 

choices for the TCP: 

 

1)  If a time-out happens, the possibility of congestion is very high. Here TCP has a strong reaction. 

• Set the value of threshold to cwnd/2. 

• Set cwnd to the size of one segment. 

• Start with slow-start step again. 

2) If three duplicate ACKs are received, the chances that congestion occurs are less. A network segment 

may have been dropped but not all the segments, because three duplicate ACKs are received for the 

segments after this one show that they are received safely. This is called fast transmission and fast 

recovery. For fast retransmission and fast recovery the size of the congestion window must be four 

packets or more. In this case TCP has not a stronger reaction: 

• Set the value of threshold to cwnd/2. 

• Set cwnd to the value of threshold. 

• Start the congestion avoidance phase. 
 

Congestion detection may occur in one of the followings two ways. 
 

(1) If detection is due to first case, a new slow start phase begins. 
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= − /2. 

(2) If detection is due to second case, a new congestion avoidance phase is begins. The increase and 

decrease formula for TCP is given below. 

1. Increase when all acknowledge has been received for the window means fully acknowledged: 

 

 =  + 1. 

2. Decrease when acknowledgment for message is not received means message is lost: 
 

 
Figure 1: This shows how throughput of CUBIC is affected with random packet drop probability of 0.001 

 
As TCP is not best suitable for high-speed networks, for this purpose different high speed network protocols 

are come into existence also called the variants of the TCP. These high speed protocol are BIC, CUBIC, FAST, 

Xcp, TCP VEGAS, SCALABLE and HSTCP etc. But the main problem with these High speed Protocols is that 

they consider every packet drop as an indication of network congestion. The performance of CUBIC protocol in 

term of throughput, congestion window and link utilization under normal network condition is fine. When 

packet drops randomly, then CUBIC Protocol performance in this case is degraded and does not achieve the 

desire bandwidth. With error rate of 0.001, the performance of CUBIC was drastically decreased as shown in 

Figure 4. So we incorporate k-NN technique in CUBIC protocol and the performance is much improved. 

 
The rest of the paper is organized as follows: the related work is presented in Section II. Section III contains the 

pro- posed work. Results are discussed in Section IV. We conclude the paper in Section V. 

 

2. RELATED WORKS 

As we know that Conventional TCP [1] is not a good candidate on high bandwidth delay product link. TCP’s 

congestion control algorithm takes long time to take benefit of large bandwidth and to recover from loss.TCP has 

the followings main drawbacks. The first main problem with TCP is that it considers the entire packet drop due 

to the network congestion. When a packet is lost in the network it cut the size of the window into half. If there is 

further packet drop in the network it again cut it into half. All packets drop may not be due network congestion 

only but it may be due some type of noisy errors. The second drawback with TCP is that when the RTT from 

source to 
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the destination and back increases it operates slower and slower. A number [1], [2] of high speed protocols are 

proposed to improve the traditional TCP performance on high speed network. The high speed protocols can be 

further classified into two types, loss-based and delay based. Protocols that depend on packet drops due 

congestion detection are referred to as Loss-based and delay based is those protocols that depend on queuing 

delay to collect information’s about congestion detection. FAST is the only delay based protocol. Loss-based 

are further classified into two types: first, those that take the previous congestion window in consideration for 

calculating the next congestion widow, secondly, those that are time-based, since last packet dropped for 

calculating the next congestion window. The driving force behind developing BIC TCP was to improve the 

TCP’s effectiveness on links with high bandwidth delay product. BIC TCP uses two schemes of window size 

control. Additive increase and binary search increase are two scheme used by BIC. In Binary search increase 

scheme the congestion control is consider to be a searching problem. In this, it provides ’Yes’ or ’No’ feedback 

for the packet loss. There are two starting points for this search. The first one is the current minimum window 

size Wmin (size of the window just after the reduction). At this point the cwnd is free of any losses. The second 

one is maximum window size Wmax (the size of window just before the reduction) where the available link 

bandwidth is utilized by the cwnd. Binary search increase repeatedly calculates the midpoint between Wmax and 

Wmin called target window size. This midpoint is the set as the current size. It also keeps watch on feedback as 

packet loss. The feedback being ’Yes’ means that the packet is lost. Then the midpoint is set to the new Wmax. 

But when feedback is ’No’ then it means that there is no packet loss. In this case the midpoint is set to the new 

Wmin. This process continues until the difference between the size of the window just after the reduction and the 

size of the window just before the reduction is below the preset threshold value called the minimum increment 

(Smin). This process is called binary search increase. Binary search increase is more aggressive at the start, at a 

time when the difference between the current window size and target window size is very large. Similarly, for 

this difference being small, the binary search increase is less aggressive. One of the important properties of the 

protocol is that its increase function is logarithmic. It can also reduce the chances of the packet loss. The main 

advantage of the binary search increase is that it provides a concave response function [3], [4]. Mixed with 

additive increase, the binary search increase gets faster convergence and RTT-fairness. With a large distance 

from the current minimum to the midpoint, the window size may be increased to that midpoint, resulting in 

more stress that the network observes. When the current window size’s distance to a target in the binary search 

increase is larger than the Smax, the window’s size is increase by Smax, Smax being maximum increment. This 

is done until the distance becomes less than Smax at time the window increases to the target after a large amount 

of window reduction. In the beginning this policy increases the window linearly and then logarithmically. The 

combination of binary search increase and additive increase is called binary increase. When the window is large 

and multiplicative decrease policy is mixed with the binary increase becomes an additive increase. When the 

size of the window is larger then there is a large reduction in the multiplicative decrease and hence long 

additive increase period. But for the size of the window being small then it is approximately equal to the binary 

search increase and hence shorter additive increase period. In Multiplicative decrease when packet lost is happen 

then there will be a reduction in the size of the cwnd by a multiplicative factor of β, which is commonly 0.875 

used by others protocols. Of the many advantages of the BIC TCP, the main advantage [6] is that due to the use 

of the binary increase policy it uses the bandwidth in the most optimum way. CUBIC can be regarded as the 

extension of BIC protocol as it the BIC variant with many new features that add to the usefulness of BIC. The 

window control of the BIC TCP can further simplified by the CUBIC TCP. Although BIC guarantees good 

stability, fairness and scalability during current high speed TCP variants, but its growth function is not that good 

for TCP under smaller RTT and low speed networks. The window control’s different phases make it too 

complex to understand the protocol easily. To discuss CUBIC protocol [5] in detailed the followings terms is 

used below. Where cwnd: value of the congestion window, C: scaling constant, T: time to denote the 
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last congestion event, Wmax: it denotes the size of the cwnd, β: multiplicative decrease factor, which is normally 

0.8. 

K = (Wmax β/C)¹/3 

When an acknowledgment is arrived: 

Cwnd =  C(T − K)3 + Wmax 

When packet is lost means no acknowledgement is received: 
 

cwnd = βWmax 

The window growth function of CUBIC protocol is cubic function and its shape is very much the same as the 

growth function of the BIC. The CUBIC growth function grows very fast at Wmax with the origin. It may grow 

slow when it nears to the Wmax. Around the Wmax the window increment becomes 0. Above Wmax, CUBIC 

starts checking more bandwidth available in which the window gradually increases at the start and makes its 

growth faster when it moves away from Wmax. This slow growth ensures modification in the stability of the 

protocol while the fast growth ensures the scalability of the protocol. It also ensures the intra protocol fairness 

among different flow of the same protocol due to the cubic function of CUBIC protocol. As the rate of  growth 

is dominated by the elapsed time t, thus cubic function also provides good RTT fairness property [3], [5]. This 

ensures linear RTT fairness of different competing flows. Limit is imposed on window increment so that it is less 

than or equal to Smax per second to add something more to the fairness and stability property. Due to this feature 

the window will grow linearly when it is not near to the Wmax. Under small RTT, the CUBIC is fairer than 

other high speed networks protocols. Of the many other advantages of CUBIC [6], [7], [8] is that it modifies the 

fairness characteristic of BIC while keeping its scalability and stability intact. The main disadvantage of the 

CUBIC is that it is so slower in increasing its congestion window to completely occupy the link. FAST 

continuously monitors the flow’s RTT so that it is able to check the congestion level in the network. The 

congestion window is updated by FAST and every other RTT based on the RTT observed and which contains 

the number of packets it tries to maintain in the router queues. FAST is not good a performer for the size of the 

router queue being less than? When the observed minimum value is not changed it aggressively increases the 

congestion window. In FAST the congestion control of TCP is composed of four important components. These 

four components are not dependent upon each other. All these components can be designed separately. The 

work of data control component is to examine which packet to transmit, the window control examines how 

many packets to transmit, and the burstiness control examines when to transmit these packets. The estimation 

component provides some meaningful information. The other three components can make decisions upon this 

provided information. The estimation component also gives two types of information for the packet being sent. 

The data control component chooses the next packet to send from three available options: new packet, 

negatively acknowledgement packet and packet for which an acknowledgement is not yet been received. 

Window control sends packets in order at RTT timescale. In FAST, the network consists of a set of resources 

with limited capacity. These resources are transmission link, processing unit and memory etc. Different unicast 

flow shares the network. These unicast flow is identified by their sources. The  main problem faced in this 

protocol is the unfairness and the instability in small buffer or in long delay networks [9]. HS-TCP was 

proposed by Sally Floyd [10] especially for large congestion window. It also solves the standard TCP’s 

shortcoming of getting a large congestion window in a situation where the packet loss rate in not too much high. 

HS-TCP also proposed a little change in the increment and decrement parameters of the standard TCP. It also 

makes an attempt to improve the lost recovery time of the traditional TCP by bringing some modifications in its 

AIMD algorithm. This enhanced  algorithm affects the higher congestion  window.  For the 
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congestion window being lower than the value of the threshold, called low window, then the standard AIMD 

algorithm is applied. Otherwise it applies high speed AIMD algorithm. The important and demanding task of 

HS-TCP is to makes its flows more aggressively having no response from receiver or link router. HS-TCP is 

specifically designed for low loss rate in a high bandwidth environment and tries its best to be more aggressive 

than standard TCP. Scalable TCP shortened as STCP was proposed by Tom Kelly [11], [12]. It is the enhanced 

version of High- Speed TCP or HS-TCP. The scalable TCP’s basic goal is the improvement of loss recovery 

time, not catered for in the standard TCP. As mentioned earlier the scalable TCP being the enhanced version of 

HS-TCP, takes its main idea from HS-TCP. To compare and contrast the scalable TCP and standard TCP and 

HS-TCP: In standard TCP and HS-TCP connections, the time for packet loss recovery depends directly on the 

RTT and the size of the connection window. On the other hand, in scalable TCP, the packet loss recovery time 

depends only upon the RTT and not on the size of the connection window. With all the other changes and 

modifications, the standard TCP’s slow start phase is not modified for the scalable TCP [8]. The scalable TCP 

increases the size of its congestion more speedily than the standard TCP while decreases it less speedily than 

the standard TCP. As in HS-TCP, the STCP has set a threshold for the window size and whenever the size of the 

cwnd is more than this threshold window size, STCP is used otherwise the standard TCP is used. The threshold 

window’s is set to 16 segments, as the default value. STCP is deployed incrementally. Its behaviour is exactly 

the same as the parent SCPT for congestion window size lower than the threshold. It has the ability to double 

its sending rate for any other rate in 70 RTTs and thus the name scalable TCP. TCP Vegas was proposed by 

Habibullah Jamal and Kiran Sultan that uses packet delay instead of packet loss to determine the size of 

congestion window [13], [14]. Unlike other congestion control algorithms which take proper measures only after 

a packet drop has occurred, the TCP Vegas is sensitive to increase in the RTT. The TCP Vegas extends its 

retransmission mechanism in the following ways: with the transmission of each segment, system clock is read 

and then recorded; at the arrival of ACK, clock is again read. RTT is calculated using this time. The timestamp 

is recorded for the relevant segment. This is a more accurate RTT, using which the retransmission can be 

calculated (a). When a duplicate acknowledgement is received, the algorithm confirms whether the new RTT is 

greater than RTO or not, where RTT is current time minus timestamp recorded. If greater, the Vegas retransmit 

the segment without waiting for the third duplicate acknowledgement (b). On the reception of a non- duplicate 

acknowledgement, whether the first or second one after a retransmission, Vegas checks again to see if RTT is 

greater than RTO; if it is, then the segment is retransmitted. Thus, there are some ACKs, that help Vegas 

determine whether the timeout should happen or not. Explicit Control Protocol is the feedback-based 

congestion control scheme. For congestion being there in the network, it applies direct and precise router 

feedback to avoid it. It is especially developed for the purpose of scalability and generality. Explicit Congestion 

Notification router is used in this protocol to immediately inform sender about the congestion in the network. It 

shows better performance in high delay bandwidth product network. XCP uses router-assistance to exactly 

notify the sender about the congestion. The resource allocation function is divided between a fairness controller 

and congestion controller by XPC. The duty of the congestion controller is to make sure that flows make use of 

all the accessible capacity on other hand the duty of the fairness controller is to fairly allocate the capacity to all 

the flows. The majority of congestion control schemes are not able to perform this division. In XCP, the 

implementation and explanation of these two resource allocation functions is made possible due to this division. 
 

3. PROPOSED SOLUTION 

Proposed solution is based on k-NN and we have developed a packet drop guesser module considering only two 

parameters i.e. time and congestion window. Of course, we can have several other parameters but that’s not taken 

into account for this work as the two chosen parameters are considered sufficient and the most relevant to the 

problem in hand. We get information about 
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Input: Event 

Output: Return TRUE/FALSE 

Procedure: 
1. If Event_Type= ACK 

a. Record Event and Exit. 

2. Else 

a. Record Event 

b. If MAX_SIZE/3 > CUR_SIZE 

i. Return FALSE // No congestion 

c. Else 

i. Result= KNN_Prediction_Algorithm() 

ii. Return Result 

Packet Drop Guesser Module 

network status in the form of two feedback events: a) when we receive an Ack packet, it shows non- congestion 

as the data is going through. b) When timer expires or Not-Ack packet is received, it shows that network may be 

congested. So we keep record of these two types of events in our module (i.e. Ack and drop events) and 

congestion window along with time instant of the event is recorded in the history which will help us in 

matching a pattern to distinguish a random packet drop caused by noisy channels from genuine packet drops 

due to network congestion. Obviously, packet drops caused by reasons other than congestion, will be randomly 

distributed and we will certainly have many ACK events in the neighborhood of such drop events. While 

packet drops due congestion will have consistent pattern and congestion window will almost be same for all of 

them. Thus using simple k-NN technique, we can distinguish packets drops caused by congestion from random 

packet drops. k-NN is a technique which maintains a history of previous instances on the basis of which it 

estimates whether the packet drop was due to congestion or not. This estimation is done the basis of majority of 

instances. The k-NN algorithm is presented below. 

 

 Packet Drop Guesser Module 
 

Our Packet drop guesser module work as follows: Input is event and output is true or false. In first step when the 

type of the event is Ack then it is simply recorded and exit. But when the type of the event is other than Ack, 

means Drop then it is recoded and if one-third of the maximum size of the history is greater than the current 

size then it means there is no congestion and return false otherwise it return true means congestion. 
 

 

 K-NN Prediction Algorithm 
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4. EMPRICAL EVALUATION 

 Simulation Parameters 

This section compares the performance of the proposed scheme with traditional CUBIC protocol. All the 

simulations will be performed using NS-2. Table I shows details of varying parameters used in simulation. All 

the simulations are performed in NS-2 using TCP/Linux code available at [15]. We have incorporated our 

module into CUBIC protocol as a test case. CUBIC was selected because its performance drastically degraded 

when random packet drops are introduced [6]. Secondly we used only two nodes called source node X and 

destination node Y. The link used between these two nodes is 100 Mbps. The simulation parameters are shown 

in the table below. 

TABLE 1. Simulation Parameters 

 

S.No Parameters Value 

01 No of flows 01 

02 Link Delay 64 msec 

03 Packet Size 1448 bytes 

04 Buffer size 220 Packets 

05 Simulation Time 50 sec 

06 Minimum Bandwidth 100 Mbps 

 

 Performance Metrics 

The followings performance metrics are used in the comparison of the protocols. 

 
• Throughput: Throughput is the main performance parameter of our undertaking. It tells how close to success 

our results are. It is the rate at which a device sends successfully and can be expressed in term of Mbps. 

• Link utilization: It is the percentage of the bandwidth of the link that is currently being used. 

Input: Drop_Event, Event_Record, Range 

Output: Return TRUE/FALSE 

Procedure: 
1. TRUE_Count=0 

2. FALSE_Count=0 

3. For each Event in Event_Record 

If Event is within Range of Drop_Event 

i. If Event.Flag = TRUE 

TRUE_Count++ 

ii. Else 

FALSE_Count++ 

4. End For 

5. If TRUE_Count < FALSE_Count 

Return FALSE 

6. Else 
Return TRUE 

KNN_Prediction_Algorithm 
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• Congestion Window: Shortened as cwnd, the congestion window determines the maximum number of 

packets that can be transmitted at a particular time. The congestion window is a value read at particular time 

from CUBIC protocol. The size of the congestion window is however a variable that is gets reduced when the 

network in noisy. 

 

But in this paper, only throughput is takes into account as a performance metrics for different error rates. 

5. RESULTS AND EXPERIMENTS 

The performance of CUBIC protocol in normal network condition, CUBIC without k-NN and CUBIC with k-

NN technique is compared in this section. For throughput the results are from three different environments with 

packet drops rate of 0.1, 0.01, and 0.001 randomly. The figure 

(2) shows the throughput when packet drops rate is 0.1 randomly. An error rate of 0.1 means that there is 1 

packet dropped out of every ten packets (needless to say this is an extremely high error rate). Whenever there is 

no error (normal CUBIC) in the network, then throughput is better as shown. Shown in the below graph are 

results of the CUBIC without k-NN which as expected and as it should be are almost zero at every point. Next is 

the results of CUBIC with k-NN technique, these are obviously better than the CUBIC without k-NN results and 

almost reaching an average throughput of 20 Mbps. These values are very sharp and to present a smoother 

graph moving average of 5 previous values is also shown. The figure (3) shows the throughput when error rate 

is 0.01. It means that there is 1 packet dropped out of every hundred packets, which is comparably stable 

environment than the one with an error rate of 0.1. Whenever there is no error (normal CUBIC) in the network, 

then throughput is better as shown. But when the error occurs at rate of 0.01, then the throughput is affected 

almost comes down to 0 Mbps. 

 

 
Figure 2. This shows how throughput of CUBIC is affected with random packet drop probability of 0.1 

 

So we incorporate k-NN module to achieve some acceptable level of throughput which is an average of 30 

Mbps. Similarly, the figure (4) below shows the throughput when error rate is 

0.001. It means that there is 1 packet dropped out of every one thousand packets. Whenever there is no error 

(normal CUBIC) in the network, then throughput is very fine as shown. But when the error occurs at rate of 

0.001, then the throughput is deteriorated badly and is slightly greater than 5 Mbps. So we incorporate k-NN 

module to achieve some acceptable level of throughput which is 
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almost 40 Mbps. So the throughput gets better and better when the random packet drop rate is decreased. 

 

 
Figure 3. This shows how throughput of CUBIC is affected with random packet drop probability of 0.01 

 

 
Figure 4. This shows how throughput of CUBIC is affected with random packet drop probability of 0.001 

 

6. CONCLUSIONS 

In this paper the performance of the CUBIC protocol was greatly improved by incorporating k- NN module. 

The performance of CUBIC algorithm in an environment with no errors and the results are seen for its 

throughput in different error rates. It is found that the performance of CUBIC in this environment was very well 

and comparable to any other high-speed network algorithm. The same procedure was done in a very noisy 

environment where the error rate was 0.1, 0.01 and 0.001 and its performance is degraded. So CUBIC’s 

performance was gradually becoming better and better as the environment became less and less noisy and the 

error rate went on decreasing. Still more modifications and extensions can be made so that we get a better and  

better protocol. 
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