
Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 926 Copyright @ 2021 Authors

MACHINE LEARNING FOR WEB VULNERABILITY

DETECTION

1.Prof.R.Yadagiri Rao,professor,Head,H&S,Sri Indu Institute of Engineering&TechnologySIIET,

Sheriguda,Ibrahimpatnam,Hydarabad,

2.A.Shiva shankar ,Assistant Professor,CSE,SIIET,Sheriguda,Ibrahimpatnam,Hydarabad

3.M.Rohith,Student,CSE,SIIET,Sheriguda,Ibrahimpatnam,Hydarabad

4.M.Sai Koushik,Student,CSE,SIIET,Sheriguda,Ibrahimpatnam,Hydarabad

5.N.Rakesh,Student,CSE,SIIET,Sheriguda,Ibrahimpatnam,Hydarabad

6.Mohd Ikram Hussain,Student,CSE,SIIET,Sheriguda,Ibrahimpatnam,Hydarabad

ABSTRACT:
Now Web applications have been gaining increased popularity around the globe, in such a way that a

growing number of users are attracted to make use of the functionality and information provided by

these applications. While providing solutions to complicated problems in a fast and reliable way, it

focusing on building a prediction model for detecting vulnerabilities of web applications. Based on

the static analysis Machine Learning methods used to predict the vulnerabilities. Making use of data

on any open-source web application to test the vulnerability filles. By applying machine learning

techniques of Support vector machines (SVM) and Naïve Bayes (NB) techniques are used to prevent

the vulnerability. Moreover, according to results of various classifiers, and methods offer possible

causes of vulnerabilities and reasonable suggestions for avoiding vulnerabilities in the future. To

conclude the main contributions are valuable feature engineers find the vulnerability localization,

and machine learning model to predicting vulnerabilities effectively.

INTRODUCTION:
Web applications play a crucial role in many of our daily activities like social networking, email,

banking, shopping, registrations, and so on. As web software is additionally highly accessible, web

application vulnerabilities arguably have greater impact. It’s is highly critical to detect and eliminate

potential vulnerabilities as early as possible. A vulnerability is defined as a weakness in a data

system, internal controls, system security procedures, or implementation which may be exploited by

a threat source [3], whereas a flaw or bug may be a defect during a system which will (or may not)

cause a vulnerability [4]. Thus, vulnerabilities are literally the subclass of software bugs which will

be exploited for malicious purposes [5], [6] Vulnerabilities require quite different identification

process than defects because they're often not realized by users or developers during the traditional

operation of the system while defects are more easily and naturally noticed [6]. These make the

fighting against vulnerabilities far more challenging than typical defects. The two traditional

approaches used for vulnerability detection: (1) static analysis (2) dynamic analysis. In static analysis,

the code is examined for weaknesses without executing it. Therefore, the potential impact of the

executable environment, such as the operating system and hardware, is not taken into consideration

during analysis [7]. On the other hand, in dynamic analysis, the code is executed to check how the

software will perform in a run-time environment, but this can only reason about the observed

execution paths and not all possible program paths [7]. Hence, both static and dynamic code analyses

have some problems on their own. Software defect prediction techniques have been proposed to

detect defects and reduce software development costs. Defect prediction techniques is used to build a

model from source codes, and use the models to predict whether new instances of code regions, e.g.,

files changes, possible attack files and methods contain defects. Vulnerability analysis is a process

that defines, detects and classifies security vulnerabilities in a system, network or communication

infrastructure. It also suggests the countermeasures and the effectiveness of the implementation

techniques. The vulnerability exists within a web application if it does not provide a proper

validation process for the data entered by the user as input. The Machine Learning (ML) for software

security analysis not only reduces the feature extraction, but also helps to simplify and automate

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 927 Copyright @ 2021 Authors

processes for the current security analysis techniques. Abstract Syntax Tree (AST) for performing

automated intelligent analysis directly on ASCII text file requires to unravel some challenges like

representing ASCII text file during a proper form to enable further analysis in ML algorithms and

localizing detected vulnerabilities on ASCII text file. Vulnerability prediction task as a binary

classification problem for each targeted vulnerability class such our ML model takes a ASCII

document fragment as input and decides whether it's vulnerable (i.e. containing the targeted

vulnerability) or non-vulnerable.

LITERATURE SURVEY:
The Literature Survey will have a review of papers about detecting software failure or vulnerabilities

and how machine learning techniques can be used in the security area. I will first introduce some

papers Quite a number of researchers have already made efforts on studying how to detect injection

attack risk hole in web applications from

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 928 Copyright @ 2021 Authors

different aspects. In this Literature survey many methods are discussed. These methods are used to

detect the software attacks. The table 1 shows the papers performance some limitation. To overcome

these limitations by using SVM andneural networking.

MACHINE LEARNING
 Machine learning technique is widely used for data analysis to build prediction models. Machine

learning techniques, which are widely used these days, can be divided into three categories:

supervised learning [10], unsupervised learning and reinforcement learning. To conclude, a

supervised learning method can only learn from labelled training data, and on the contrary,

unsupervised learning does not require the access to the label of data. Especially, reinforcement

learning does not have a restriction on using labelled and unlabelled data. This method is designed to

learn from feedback that is retrieved from its interaction with the environment. After considering the

advantages and disadvantages of different types of machine learning methods, decided to use

supervised learning for this research. Supervised learning algorithms can be used to train a model of

class labels distribution, and this model is able to predict class labels for testing instances. An

example of supervised learning algorithms process flowchart is shown in Figure 1, this whole

process is also called classification. This is the foundation of designed prediction model as well. It is

essential to select which classification method to use for a certain problem.

There is a review on several widely used supervised learning algorithms in [2]. To decide which

classifiers are more suitable for this research, first look into their pros and cons. In paper [2], the

author pointed out that comprehensibility of Decision Tree makes this classifier helpful for

understanding why an instance is assigned to a certain class, and Decision Tree is a suitable choice

when dealing with discrete features. Linear Discriminant Analysis (LDA) and Naive Bayes are both

statistical learning algorithms, which can provide a probability about labelling an instance. Moreover,

in order to meet the requirement of this research, accuracy, tolerance to noise, the risk of being

overfitting [20] and explanation ability are some vital aspects to consider when selecting classifiers.

These models are considered in this research.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 929 Copyright @ 2021 Authors

SYSTEM MODEL
In this paper, the study of vulnerability identification from web applications. By using different

machine learning algorithms to prevent the attacks. The system model process flow shown on figure

2 and the following sections are descripting the model processes.

DATA COLLECTION
The web application is facing with various types of vulnerabilities, but in general, they can be

categorized into two main kinds based on the causes of them, including design flaw and

implementation bug. Obviously, most design flaws are hard to detect by only analysing individual

source code files.

INPUT APPLICATION:

Any Open-Source Web Applications like, www.github.com and http://googlegruyere.appspot.com/

 IMBALANCED DATA LEARNING

 DATASET:

The Datasets downloaded from NIST SATE IV [21]. The Datasets distribution: Training (80%),

Validation (10%), Testing (10%). This dataset consists of 1.27 million of source code functions

mined from opensource software, labelled by static analysis for potential vulnerabilities. Because of

the class distribution skew problem, it is a crucial issue to deal with imbalanced data learning in this

research [14] [15] [16].

Sampling Techniques Overall, there are two methods suitable for sampling imbalanced data,

including random under-sampling and random oversampling. The idea of these two sampling

methods is randomly adding(removing) a randomly selected dataset from minority(majority) class to

make the whole set becoming balanced. However, these random sampling methods have some

http://googlegruyere.appspot.com/

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 930 Copyright @ 2021 Authors

shortages. The under-sampling method would cause information loss to majority class, and the

oversampling could bring about the over-fitting issue on minority class. Due to a limited number of

attack files, this research only uses random oversampling on the dataset.

 min-max method

It transforms all values to values in the interval [0, 1]. Given a feature f, denote the maximum and

minimum value for f as max(f) and min(f) respectively. For each value of the feature f, the

normalized value zi is given in equation .

DATA PRE-PROCESSING AND DATA REDUCTION
More specifically, as depicted in Figure 3, initially split source code into smaller parts to allow more

granular analysis. Then, we generate and extract AST for each departed code component, which also

includes a tokenization process via a laxer. Later on, convert the extracted AST into the complete

binary tree that has a deterministic shape where it is specified how many nodes are located at each

level of the tree

Afterward, each token is encoded in the complete binary AST to pre-defined numerical tuples and

finally represent a one-dimensional numerical array of the corresponding function-level source code.

This source code concatenating the assigned numerical tuples from the root node to leaves in order.

It justifies each step-in detail in the following parts, along with examples.

TOKENIZATION

The source code is cleaned by removing its unnecessary elements such as comments, whitespaces,

tabs, newlines, etc. Then, the remaining part is converted into a series of tokens, where a token is a

sequence of characters that can be treated as a unit in the grammar of the corresponding

programming language. This can be achieved by using a laxer developed explicitly for the language

of the source code.

VULNERABILITY PREDICTION
1. Support vector machines (SVM)

2. Neural networks

1. Support vector machines (SVM) SVM (support vector machine) is a typical algorithm in

machine learning. Its core idea is to seek out the foremost suitable separation hypersurface within the

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 931 Copyright @ 2021 Authors

sample space, which may distinguish the samples significantly. The SVM include linear separable,

linear support, and nonlinear support vector machines. Among them, the linear regression of SVM is

expressed as follows. Set the sample set as (y1,x1),….(yl, xl), x £ Rn, y £ R and use a linear equation

to represent the regression function. f(x)=wT ϕ(x) + b (5) The essence of formula (5) are often

considered a constrained optimization problem, and its expression is as follows In formula (6), Φ(w,

£, b) = |w|2 + C(∑ + ∑ *) (6) C refers to the penalty factor and £ and £* represent the upper and

lower limits of the relief variable, respectively. The Formssula (6) is used to solved the Lagrangian

constraint equation, which is shown as follows. ᾱ, ᾱ*= arg min { ∑ ∑ (αi – αi*) (αj – αj*) (ϕ() ()) ∑

(αi – αi*) + ∑ (αi – αi*)£} (7) sin formula (7), ϕ(x) is a kernel function. If ϕ(xi) ϕ(xj)= xi xj, then it

represents a linear support vector machine; otherwise, it is a nonlinear support vector machine. The

solution expressions of the sum of the coefficients to be determined, the regression coefficients, and

the constant terms are as follows. The Ŵ separate the vulnerable and non-vulnerable codes given in

equation (8). Ŵ = ∑ (αi – αi*) ƀ = - Ŵ [+] (8) These formulas are used to separate the vulnerable

and non-vulnerable codes.

2. Neural networks

Next, the training sample of the NVD data set is used to train the TFI-DNN vulnerability automatic

classification model, and then the vulnerability test set is used to evaluate the model performance.

The whole process includes the subsequent steps: sample code construction, feature extraction, word

vector generation, and neural network model training and classification. Among them, vulnerability

feature extraction mainly involves the way to select appropriate granularity to represent software

programs and vulnerability detection shown on figure 5. Since deep learning or neural networks take

vectors as input; it like to represent programs as vectors that are semantically meaningful for

vulnerability detection. Use “bridge” act as intermediate representation between a program and

vector representation, which is that the actual input to deep learning. Vulnerability feature extraction

is to rework programs into some intermediate representation which will preserve (some of) the

semantic relationships between the programs’ elements (e.g., data dependency and control

dependency). Word vector generation is predicated on feature extraction, applying the foremost

mainstream word vector generation technology in order that intermediate representation is often

transformed into a vector representation, that is, the actual input to neural networks. Neural network

training classification involves two stages of coaching and detection. The training phase takes the

source code extracted from the historical code base as input, whose output is neural network of fine-

tuned model parameters. In the detection phase, the code vector representation extracted from the

new software program is taken as input, and therefore the output is that the classification result.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 932 Copyright @ 2021 Authors

CONCLUSION
In this context, first proposed a source code representation method that is capable of characterizing

source code into a proper format for further processes in ML algorithms. The presented method

extracts and then converts AST of a given source code fragment into a numerical array

representation while preserving structural and semantic information contained in the source code.

Thus, it enables us to perform ML-based analysis on source code through resulting numeric array

representation. To examine the presented source code representation technique for different

objectives rather than vulnerability prediction, such as similarity analysis and code completion. and

improve localization and interpretation aspects of the vulnerability prediction by using Support

Vector Machine Learning (SVM) and Neural Networks.

 FUTURE ENHANCEMENTS
 Future investigation involves building a fully end-to-end prediction system from raw input data

(code tokens) to vulnerability outcomes. It would be interesting to examine the presented source

code representation technique for different objectives rather than vulnerability prediction, such as

similarity analysis and code completion. To improve localization and interpretation aspects of the

vulnerability prediction. The presented method to apply a model trained on a certain language to

other languages. REFERENCES

1. ZEKI BILGIN “Vulnerability Prediction From Source Code Using Machine Learning”, Received

July 28, 2020, accepted August 9, 2020, date of publication August 14, 2020, date of current version

August 26, 2020.

2. S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review of

classification techniques,” Emerging artificial intelligence applications in computer engineering, vol.

160, pp. 3–24, 2007.

3. R. S. Ross, ‘‘Information security,’’ Joint Task Force Transformation Initiative, Guide Conducting

Risk Assessments, NIST Special Publication, Gaithersburg, MD, USA, Tech. Rep. 800-30 Revision

1, 2012.

4. A. M. Delaitre, B. C. Stivalet, P. E. Black, V. Okun, T. S. Cohen, and A. Ribeiro, ‘‘Sate V report:

Ten years of static analysis tool expositions,’’ NIST, Gaithersburg, MD, USA, Tech. Rep. SP-500-

326, 2018.

5. M. Dowd, J. McDonald, and J. Schuh, The Art of Software Security Assessment: Identifying and

Preventing Software Vulnerabilities. Reading, MA, USA: Addison-Wesley, 2006.

6. M. Jimenez, ‘‘Evaluating vulnerability prediction models,’’ Ph.D. dissertation, Dept. Sci., Technol.

Commun., Univ. Luxembourg, Rue Mercier, Luxembourg, Oct. 2018.

