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ABSTRACT 

There are several mining algorithms of association rules. One of the most popular algorithms is 

Apriori that is used to extract frequent itemsets from large database and getting the association rule 

for discovering the knowledge. Based on this algorithm, this paper indicates the limitation of the 

original Apriori algorithm of wasting time for scanning the whole database searching on the 

frequent itemsets, and presents an improvement on Apriori by reducing that wasted time depending 

on scanning only some transactions. The paper shows by experimental results with several groups 

of transactions, and with several values of minimum support that applied on the original Apriori 

and our implemented improved Apriori that our improved Apriori reduces the time consumed by 

67.38% in comparison with the original Apriori, and makes the Apriori algorithm more efficient 

and less time consuming. 
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1. INTRODUCTION 

With the progress of the technology of information and the need for extracting useful information of 

business people from dataset, data mining and its techniques is appeared to achieve the above goal. 

Data mining is the essential process of discovering hidden and interesting patterns from massive 

amount of data where data is stored in data warehouse, OLAP (on line analytical process), 

databases and other repositories of information. This data may reach to more than terabytes. Data 

mining is also called (KDD) knowledge discovery in databases , and it includes an integration of 

techniques from many disciplines such as statistics, neural networks, database technology, machine 

learning and information retrieval, etc . Interesting patterns are extracted at reasonable time by 

KDD’s techniques. KDD process has several steps, which are performed to extract patterns to user, 

such as data cleaning, data selection, data transformation, data pre- processing, data mining and 

pattern evaluation . 

 

The architecture of data mining system has the following main components: data warehouse, 

database or other repositories of information, a server that fetches the relevant data from 

repositories based on the user’s request, knowledge base is used as guide of search according to 

defined constraint, data mining engine include set of essential modules, such as characterization, 

classification, clustering, association, regression and analysis of evolution. Pattern evaluation 

module that interacts with the modules of data mining to strive towards interested patterns. Finally, 

graphical user interfaces from through it the user can communicate with the data mining system and 

allow the user to interact. 
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2. ASSOCIATION RULE MINING 

Association Mining is one of the most important data mining’s functionalities and it is the most 

popular technique has been studied by researchers. Extracting association rules is the core of data 

mining [8]. It is mining for association rules in database of sales transactions between items which 

is important field of the research in dataset [6]. The benefits of these rules are detecting unknown 

relationships, producing results which can perform basis for decision making and prediction [8]. 

The discovery of association rules is divided into two phases [10, 5]: detection the frequent itemsets 

and generation of association rules. In the first phase, every set of items is called itemset, if they 

occurred together greater than the minimum support threshold [9], this itemset is called frequent 

itemset. Finding frequent itemsets is easy but costly so this phase is more important than second 

phase. In the second phase, it can generate many rules from one itemset as in form, if itemset {I1, I2, 

I3}, its rules are {I1I2, I3}, {I2I1, I3}, {I3I1, I2}, {I1, I2I3}, {I1, I3I1}, {I2, 

I3I1}, number of those rules is n2-1 where n = number of items. To validate the rule (e.g. 

XY), where X and Y are items, based on confidence threshold which determine the ratio of 

the transactions which contain X and Y to the transactions A% which contain X, this means that 

A% of the transactions which contain X also contain Y. minimum support and confidence is defined 

by the user which represents constraint of the rules. So the support and confidence thresholds 

should be applied for all the rules to prune the rules which it values less than thresholds values. The 

problem that is addressed into association mining is finding the correlation among different items 

from large set of transactions efficiency. 

 

The research of association rules is motivated by more applications such as telecommunication, 

banking, health care and manufacturing, etc. 

 

3. RELATED WORK 

Mining of frequent itemsets is an important phase in association mining which discovers frequent 

itemsets in transactions database. It is the core in many tasks of data mining that try to find 

interesting patterns from datasets, such as association rules, episodes, classifier, clustering and 

correlation, etc [2]. Many algorithms are proposed to find frequent itemsets, but all of them can be 

catalogued into two classes: candidate generation or pattern growth. 

 

Apriori is a representative the candidate generation approach. It generates length (k+1) candidate 

itemsets based on length (k) frequent itemsets. The frequency of itemsets is defined by counting 

their occurrence in transactions. FP-growth, is proposed by Han in 2000, represents pattern growth 

approach, it used specific data structure (FP-tree), FP-growth discover the frequent itemsets by 

finding all frequent in 1-itemsets into condition pattern base , the condition pattern base is 

constructed efficiently based on the link of node structure that association with FP-tree. FP-growth 

does not generate candidate itemsets explicitly. 

 

4. APRIORI ALGORITHM 

Apriori algorithm is easy to execute and very simple, is used to mine all frequent itemsets in 

database. The algorithm [2] makes many searches in database to find frequent itemsets where k- 

itemsets are used to generate k+1-itemsets. Each k-itemset must be greater than or equal to 

minimum support threshold to be frequency. Otherwise, it is called candidate itemsets. In the first, the 
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Construct Ck by self-join 

Use L1 to identify the target transactions for Ck 

Scan the target transactions to generate Ck 

algorithm scan database to find frequency of 1-itemsets that contains only one item by counting 

each item in database. The frequency of 1-itemsets is used to find the itemsets in 2- itemsets which 

in turn is used to find 3-itemsets and so on until there are not any more k-itemsets. 

If an itemset is not frequent, any large subset from it is also non-frequent [1]; this condition prune 

from search space in database. 

 

5. LIMITATIONS OF APRIORI ALGORITHM 

Apriori algorithm suffers from some weakness in spite of being clear and simple. The main 

limitation is costly wasting of time to hold a vast number of candidate sets with much frequent 

itemsets, low minimum support or large itemsets. For example, if there are 104 from frequent 1- 

itemsets, it need to generate more than 107 candidates into 2-length which in turn they will be tested 

and accumulate [2]. Furthermore, to detect frequent pattern in size 100 (e.g.) v1, v2… v100, it have 

to generate 2100 candidate itemsets [1] that yield on costly and wasting of time of candidate 

generation. So, it will check for many sets from candidate itemsets, also it will scan database many 

times repeatedly for finding candidate itemsets. Apriori will be very low and inefficiency when 

memory capacity is limited with large number of transactions. 

 

In this paper, we propose approach to reduce the time spent for searching in database transactions for 

frequent itemsets. 

 

6. THE IMPROVED ALGORITHM OF APRIORI 

This section will address the improved Apriori ideas, the improved Apriori, an example of the 

improved Apriori, the analysis and evaluation of the improved Apriori and the experiments. 

 

6.1. The improved Apriori ideas 

In the process of Apriori, the following definitions are needed: 

Definition 1: Suppose T={T1, T2, … , Tm},(m≥1) is a set of transactions, Ti= {I1, I2, … , In},(n≥1) is 

the set of items, and k-itemset = {i1, i2, … , ik},(k≥1) is also the set of k items, and k-itemset ⊆ I. 

Definition 2: Suppose σ (itemset), is the support count of itemset or the frequency of occurrence of 

an itemset in transactions. 

Definition 3: Suppose Ck is the candidate itemset of size k, and Lk is the frequent itemset of size k. 

                                                         
 

 

 

Figure 1: Steps for Ck generation 

Scan all transactions to generate L1 table 

L1(items, their support, their transaction IDs) 
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In our proposed approach, we enhance the Apriori algorithm to reduce the time consuming for 

candidates itemset generation. We firstly scan all transactions to generate L1 which contains the 

items, their support count and Transaction ID where the items are found. And then we use L1 later as 

a helper to generate L2, L3 ... Lk. When we want to generate C2, we make a self-join L1 * L1 to 

construct 2-itemset C (x, y), where x and y are the items of C2. Before scanning all transaction 

records to count the support count of each candidate, use L1 to get the transaction IDs of the 

minimum support count between x and y, and thus scan for C2 only in these specific transactions. 

The same thing for C3, construct 3-itemset C (x, y, z), where x, y and z are the items of C3 and use L1 

to get the transaction IDs of the minimum support count between x, y and z, then scan for C3 only 

in these specific transactions and repeat these steps until no new frequent itemsets are identified. 

The whole process is shown in the Figure 1. 

 

6.2. The improved Apriori 

The improvement of algorithm can be described as follows: 

 

//Generate items, items support, their transaction ID 

(1) L1 = find_frequent_1_itemsets (T); (2) For (k = 2; Lk-1 ≠Φ; k++) { 

//Generate the Ck from the LK-1 

(3) Ck = candidates generated from Lk-1; 

//get the item Iw with minimum support in Ck using L1, (1≤w≤k). 

(4) x = Get _item_min_sup(Ck, L1); 

// get the target transaction IDs that contain item x. 

(5) Tgt = get_Transaction_ID(x); 

(6) For each transaction t in Tgt Do 

(7) Increment the count of all items in Ck that are found in Tgt; 

(8) Lk= items in Ck ≥ min_support; 

(9) End; 

(10) } 

 

6.3. An example of the improved Apriori 

Suppose we have transaction set D has 9 transactions, and the minimum support = 3. The 

transaction set is shown in Table.1. 

Table 1: The transactions 
T_ID Items 

T1 I1, I2, I5 

T2 I2, I4 

T3 I2, I4 

T4 I1, I2, I4 

T5 I1, I3 

T6 I2, I3 

T7 I1, I3 

T8 I1, I2, I3, I5 

T9 I1, I2, I3 
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Table 2: The candidate 1-itemset 
Items support  
I1 6 

I2 7 
I3 5 
I4 3 
I5 2 deleted 

firstly, scan all transactions to get frequent 1-itemset l1 which contains the items and their support 

count and the transactions ids that contain these items, and then eliminate the candidates that are 

infrequent or their support are less than the min_sup. The frequent 1-itemset is shown in table 3. 

Table 3: Frequent 1_itemset 

Items support T_IDs  

I1 6 T1, T4, T5, T7, T8, T9 
I2 7 T1, T2, T3, T4, T6, T8, T9 
I3 5 T5, T6, T7, T8, T9 
I4 3 T2, T3, T4 
I5 2 T1, T8 deleted 

The next step is to generate candidate 2-itemset from L1. To get support count for every itemset, 

split each itemset in 2-itemset into two elements then use l1 table to determine the transactions 

where you can find the itemset in, rather than searching for them in all transactions. for example, 

let’s take the first item in table.4 (I1, I2), in the original Apriori we scan all 9 transactions to find the 

item (I1, I2); but in our proposed improved algorithm we will split the item (I1, I2) into I1 and I2 

and get the minimum support between them using L1, here i1 has the smallest minimum support. 

After that we search for itemset (I1, I2) only in the transactions T1, T4, T5, T7, T8 and T9. 

Table 4: Frequent 2_itemset 

Items support Min Found in  

I1, I2 4 I1 T1, T4, T5, T7, T8, T9 

I1, I3 4 I3 T5, T6, T7, T8, T9 
I1, I4 1 I4 T2, T3, T4 deleted 
I2, I3 3 I3 T5, T6, T7, T8, T9  
I2, I4 3 I4 T2, T3, T4 
I3, I4 0 I4 T2, T3, T4 deleted 

The same thing to generate 3-itemset depending on L1 table, as it is shown in table 5. 

 

Table 5: Frequent 3-itemset 
Items support Min Found in  
I1, I2 , I3 2 I3 T5, T6, T7, T8, T9 deleted 
I1, I2 , I4 1 I4 T2, T3, T4 deleted 
I1, I3 , I4 0 I4 T2, T3, T4 deleted 
I2, I3 , I4 0 I4 T2, T3, T4 deleted 

For a given frequent itemset LK, find all non-empty subsets that satisfy the minimum confidence, 
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and then generate all candidate association rules. 

 

In the previous example, if we count the number of scanned transactions to get (1, 2, 3)-itemset 

using the original Apriori and our improved Apriori, we will observe the obvious difference 

between number of scanned transactions with our improved Apriori and the original Apriori. From 

the table 6, number of transactions in1-itemset is the same in both of sides, and whenever the k of 

k-itemset increase, the gap between our improved Apriori and the original Apriori increase from 

view of time consumed, and hence this will reduce the time consumed to generate candidate 

support count. 

Table 6: Number of transactions scanned Experiments 

 Original Apriori Our improved Apriori 

1-itemset 45 45 
2-itemset 54 25 
3-itemset 36 14 

sum 135 84 

 

We developed an implementation for original Apriori and our improved Apriori, and we collect 5 

different groups of transactions as the follow: 

 

 T1: 555 transactions. 

 T2: 900 transactions. 

 T3: 1230 transactions. 

 T4: 2360 transactions. 

 T5: 3000 transactions. 

 

The first experiment compares the time consumed of original Apriori, and our improved algorithm 

by applying the five groups of transactions in the implementation. The result is shown in Figure 2. 

Figure 2: Time consuming comparison for different groups of transactions 

 

The second experiment compares the time consumed of original Apriori, and our proposed 

algorithm by applying the one group of transactions through various values for minimum support in 
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the implementation. The result is shown in Figure 3. 

 

 

Figure 3: Time consuming comparison for different values of minimum support 

 

6.4. The analysis and evaluation of the improved Apriori 

As we observe in figure 2, that the time consuming in improved Apriori in each group of 

transactions is less than it in the original Apriori, and the difference increases more and more as the 

number of transactions increases. 

 

Table 7 shows that the improved Apriori reduce the time consuming by 61.88% from the original 

Apriori in the first group of transactions T1, and by 77.80% in T5. As the number of transactions 

increase the rate is increased also. The average of reducing time rate in the improved Apriori is 

67.38%. 

Table 7: THE time reducing rate of improved Apriori on the original Apriori according to the 

number of transactions 

T Original Apriori (S) Improved Apriori (S) Time reducing rate (%) 
T1 1.776 0.677 61.88% 
T2 8.221 4.002 51.32% 
T3 6.871 2.304 66.47% 
T4 11.940 2.458 79.41% 
T5 82.558 18.331 77.80% 

As we observe in figure 3, that the time consuming in improved Apriori in each value of minimum 

support is less than it in the original Apriori, and the difference increases more and more as the 

value of minimum support decreases. 

 

Table 8 shows that the improved Apriori reduce the time consuming by 84.09% from the original 

Apriori where the minimum support is 0.02, and by 56.02% in 0.10. As the value of minimum 

support increase the rate is decreased also. The average of reducing time rate in the improved 

Apriori is 68.39%. 

f minimum support 
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Min_Sup Original Apriori (S) Improved Apriori (S) Time reducing rate (%) 

0.02 6.638 1.056 84.09% 
0.04 1.855 0.422 77.25% 
0.06 1.158 0.330 71.50% 
0.08 0.424 0.199 53.07% 
0.10 0.382 0.168 56.02% 

 

7. CONCLUSION 

In this paper, an improved Apriori is proposed through reducing the time consumed in transactions 

scanning for candidate itemsets by reducing the number of transactions to be scanned. Whenever 

the k of k-itemset increases, the gap between our improved Apriori and the original Apriori 

increases from view of time consumed, and whenever the value of minimum support increases, the 

gap between our improved Apriori and the original Apriori decreases from view of time consumed. 

The time consumed to generate candidate support count in our improved Apriori is less than the time 

consumed in the original Apriori; our improved Apriori reduces the time consuming by 67.38%. As 

this is proved and validated by the experiments and obvious in figure 2, figure 3, table 7 and table 

8. 
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