
Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 867 Copyright @ 2021 Authors

ASSOCIATION RULES WITH OPTIMISED APRIORI ALGORITHM

Lavanya Baviri Associate Professor, RISE Krishna Sai Gandhi Group of Institutions, Ongole,

laavanyajayakrishna@gmail.com

Hari Krishna Chilakala Assistant Professor, RISE Krishna Sai Gandhi Group of Institutions, Ongole,

ch.harikrishna2003@gmail.com

ABSTRACT

There are several mining algorithms of association rules. One of the most popular algorithms is

Apriori that is used to extract frequent itemsets from large database and getting the association rule

for discovering the knowledge. Based on this algorithm, this paper indicates the limitation of the

original Apriori algorithm of wasting time for scanning the whole database searching on the

frequent itemsets, and presents an improvement on Apriori by reducing that wasted time depending

on scanning only some transactions. The paper shows by experimental results with several groups

of transactions, and with several values of minimum support that applied on the original Apriori

and our implemented improved Apriori that our improved Apriori reduces the time consumed by

67.38% in comparison with the original Apriori, and makes the Apriori algorithm more efficient

and less time consuming.

KEYWORDS

Apriori, Improved Apriori, Frequent itemset, Support, Candidate itemset, Time consuming.

1. INTRODUCTION

With the progress of the technology of information and the need for extracting useful information of

business people from dataset, data mining and its techniques is appeared to achieve the above goal.

Data mining is the essential process of discovering hidden and interesting patterns from massive

amount of data where data is stored in data warehouse, OLAP (on line analytical process),

databases and other repositories of information. This data may reach to more than terabytes. Data

mining is also called (KDD) knowledge discovery in databases , and it includes an integration of

techniques from many disciplines such as statistics, neural networks, database technology, machine

learning and information retrieval, etc . Interesting patterns are extracted at reasonable time by

KDD’s techniques. KDD process has several steps, which are performed to extract patterns to user,

such as data cleaning, data selection, data transformation, data pre- processing, data mining and

pattern evaluation .

The architecture of data mining system has the following main components: data warehouse,

database or other repositories of information, a server that fetches the relevant data from

repositories based on the user’s request, knowledge base is used as guide of search according to

defined constraint, data mining engine include set of essential modules, such as characterization,

classification, clustering, association, regression and analysis of evolution. Pattern evaluation

module that interacts with the modules of data mining to strive towards interested patterns. Finally,

graphical user interfaces from through it the user can communicate with the data mining system and

allow the user to interact.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 868 Copyright @ 2021 Authors

2. ASSOCIATION RULE MINING

Association Mining is one of the most important data mining’s functionalities and it is the most

popular technique has been studied by researchers. Extracting association rules is the core of data

mining [8]. It is mining for association rules in database of sales transactions between items which

is important field of the research in dataset [6]. The benefits of these rules are detecting unknown

relationships, producing results which can perform basis for decision making and prediction [8].

The discovery of association rules is divided into two phases [10, 5]: detection the frequent itemsets

and generation of association rules. In the first phase, every set of items is called itemset, if they

occurred together greater than the minimum support threshold [9], this itemset is called frequent

itemset. Finding frequent itemsets is easy but costly so this phase is more important than second

phase. In the second phase, it can generate many rules from one itemset as in form, if itemset {I1, I2,

I3}, its rules are {I1I2, I3}, {I2I1, I3}, {I3I1, I2}, {I1, I2I3}, {I1, I3I1}, {I2,

I3I1}, number of those rules is n2-1 where n = number of items. To validate the rule (e.g.

XY), where X and Y are items, based on confidence threshold which determine the ratio of

the transactions which contain X and Y to the transactions A% which contain X, this means that

A% of the transactions which contain X also contain Y. minimum support and confidence is defined

by the user which represents constraint of the rules. So the support and confidence thresholds

should be applied for all the rules to prune the rules which it values less than thresholds values. The

problem that is addressed into association mining is finding the correlation among different items

from large set of transactions efficiency.

The research of association rules is motivated by more applications such as telecommunication,

banking, health care and manufacturing, etc.

3. RELATED WORK

Mining of frequent itemsets is an important phase in association mining which discovers frequent

itemsets in transactions database. It is the core in many tasks of data mining that try to find

interesting patterns from datasets, such as association rules, episodes, classifier, clustering and

correlation, etc [2]. Many algorithms are proposed to find frequent itemsets, but all of them can be

catalogued into two classes: candidate generation or pattern growth.

Apriori is a representative the candidate generation approach. It generates length (k+1) candidate

itemsets based on length (k) frequent itemsets. The frequency of itemsets is defined by counting

their occurrence in transactions. FP-growth, is proposed by Han in 2000, represents pattern growth

approach, it used specific data structure (FP-tree), FP-growth discover the frequent itemsets by

finding all frequent in 1-itemsets into condition pattern base , the condition pattern base is

constructed efficiently based on the link of node structure that association with FP-tree. FP-growth

does not generate candidate itemsets explicitly.

4. APRIORI ALGORITHM

Apriori algorithm is easy to execute and very simple, is used to mine all frequent itemsets in

database. The algorithm [2] makes many searches in database to find frequent itemsets where k-

itemsets are used to generate k+1-itemsets. Each k-itemset must be greater than or equal to

minimum support threshold to be frequency. Otherwise, it is called candidate itemsets. In the first, the

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 869 Copyright @ 2021 Authors

Construct Ck by self-join

Use L1 to identify the target transactions for Ck

Scan the target transactions to generate Ck

algorithm scan database to find frequency of 1-itemsets that contains only one item by counting

each item in database. The frequency of 1-itemsets is used to find the itemsets in 2- itemsets which

in turn is used to find 3-itemsets and so on until there are not any more k-itemsets.

If an itemset is not frequent, any large subset from it is also non-frequent [1]; this condition prune

from search space in database.

5. LIMITATIONS OF APRIORI ALGORITHM

Apriori algorithm suffers from some weakness in spite of being clear and simple. The main

limitation is costly wasting of time to hold a vast number of candidate sets with much frequent

itemsets, low minimum support or large itemsets. For example, if there are 104 from frequent 1-

itemsets, it need to generate more than 107 candidates into 2-length which in turn they will be tested

and accumulate [2]. Furthermore, to detect frequent pattern in size 100 (e.g.) v1, v2… v100, it have

to generate 2100 candidate itemsets [1] that yield on costly and wasting of time of candidate

generation. So, it will check for many sets from candidate itemsets, also it will scan database many

times repeatedly for finding candidate itemsets. Apriori will be very low and inefficiency when

memory capacity is limited with large number of transactions.

In this paper, we propose approach to reduce the time spent for searching in database transactions for

frequent itemsets.

6. THE IMPROVED ALGORITHM OF APRIORI

This section will address the improved Apriori ideas, the improved Apriori, an example of the

improved Apriori, the analysis and evaluation of the improved Apriori and the experiments.

6.1. The improved Apriori ideas

In the process of Apriori, the following definitions are needed:

Definition 1: Suppose T={T1, T2, … , Tm},(m≥1) is a set of transactions, Ti= {I1, I2, … , In},(n≥1) is

the set of items, and k-itemset = {i1, i2, … , ik},(k≥1) is also the set of k items, and k-itemset ⊆ I.

Definition 2: Suppose σ (itemset), is the support count of itemset or the frequency of occurrence of

an itemset in transactions.

Definition 3: Suppose Ck is the candidate itemset of size k, and Lk is the frequent itemset of size k.

Figure 1: Steps for Ck generation

Scan all transactions to generate L1 table

L1(items, their support, their transaction IDs)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 870 Copyright @ 2021 Authors

In our proposed approach, we enhance the Apriori algorithm to reduce the time consuming for

candidates itemset generation. We firstly scan all transactions to generate L1 which contains the

items, their support count and Transaction ID where the items are found. And then we use L1 later as

a helper to generate L2, L3 ... Lk. When we want to generate C2, we make a self-join L1 * L1 to

construct 2-itemset C (x, y), where x and y are the items of C2. Before scanning all transaction

records to count the support count of each candidate, use L1 to get the transaction IDs of the

minimum support count between x and y, and thus scan for C2 only in these specific transactions.

The same thing for C3, construct 3-itemset C (x, y, z), where x, y and z are the items of C3 and use L1

to get the transaction IDs of the minimum support count between x, y and z, then scan for C3 only

in these specific transactions and repeat these steps until no new frequent itemsets are identified.

The whole process is shown in the Figure 1.

6.2. The improved Apriori

The improvement of algorithm can be described as follows:

//Generate items, items support, their transaction ID

(1) L1 = find_frequent_1_itemsets (T); (2) For (k = 2; Lk-1 ≠Φ; k++) {

//Generate the Ck from the LK-1

(3) Ck = candidates generated from Lk-1;

//get the item Iw with minimum support in Ck using L1, (1≤w≤k).

(4) x = Get _item_min_sup(Ck, L1);

// get the target transaction IDs that contain item x.

(5) Tgt = get_Transaction_ID(x);

(6) For each transaction t in Tgt Do

(7) Increment the count of all items in Ck that are found in Tgt;

(8) Lk= items in Ck ≥ min_support;

(9) End;

(10) }

6.3. An example of the improved Apriori

Suppose we have transaction set D has 9 transactions, and the minimum support = 3. The

transaction set is shown in Table.1.

Table 1: The transactions
T_ID Items

T1 I1, I2, I5

T2 I2, I4

T3 I2, I4

T4 I1, I2, I4

T5 I1, I3

T6 I2, I3

T7 I1, I3

T8 I1, I2, I3, I5

T9 I1, I2, I3

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 871 Copyright @ 2021 Authors

Table 2: The candidate 1-itemset
Items support
I1 6

I2 7
I3 5
I4 3
I5 2 deleted

firstly, scan all transactions to get frequent 1-itemset l1 which contains the items and their support

count and the transactions ids that contain these items, and then eliminate the candidates that are

infrequent or their support are less than the min_sup. The frequent 1-itemset is shown in table 3.

Table 3: Frequent 1_itemset

Items support T_IDs

I1 6 T1, T4, T5, T7, T8, T9
I2 7 T1, T2, T3, T4, T6, T8, T9
I3 5 T5, T6, T7, T8, T9
I4 3 T2, T3, T4
I5 2 T1, T8 deleted

The next step is to generate candidate 2-itemset from L1. To get support count for every itemset,

split each itemset in 2-itemset into two elements then use l1 table to determine the transactions

where you can find the itemset in, rather than searching for them in all transactions. for example,

let’s take the first item in table.4 (I1, I2), in the original Apriori we scan all 9 transactions to find the

item (I1, I2); but in our proposed improved algorithm we will split the item (I1, I2) into I1 and I2

and get the minimum support between them using L1, here i1 has the smallest minimum support.

After that we search for itemset (I1, I2) only in the transactions T1, T4, T5, T7, T8 and T9.

Table 4: Frequent 2_itemset

Items support Min Found in

I1, I2 4 I1 T1, T4, T5, T7, T8, T9

I1, I3 4 I3 T5, T6, T7, T8, T9
I1, I4 1 I4 T2, T3, T4 deleted
I2, I3 3 I3 T5, T6, T7, T8, T9
I2, I4 3 I4 T2, T3, T4
I3, I4 0 I4 T2, T3, T4 deleted

The same thing to generate 3-itemset depending on L1 table, as it is shown in table 5.

Table 5: Frequent 3-itemset
Items support Min Found in
I1, I2 , I3 2 I3 T5, T6, T7, T8, T9 deleted
I1, I2 , I4 1 I4 T2, T3, T4 deleted
I1, I3 , I4 0 I4 T2, T3, T4 deleted
I2, I3 , I4 0 I4 T2, T3, T4 deleted

For a given frequent itemset LK, find all non-empty subsets that satisfy the minimum confidence,

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 872 Copyright @ 2021 Authors

and then generate all candidate association rules.

In the previous example, if we count the number of scanned transactions to get (1, 2, 3)-itemset

using the original Apriori and our improved Apriori, we will observe the obvious difference

between number of scanned transactions with our improved Apriori and the original Apriori. From

the table 6, number of transactions in1-itemset is the same in both of sides, and whenever the k of

k-itemset increase, the gap between our improved Apriori and the original Apriori increase from

view of time consumed, and hence this will reduce the time consumed to generate candidate

support count.

Table 6: Number of transactions scanned Experiments

 Original Apriori Our improved Apriori

1-itemset 45 45
2-itemset 54 25
3-itemset 36 14

sum 135 84

We developed an implementation for original Apriori and our improved Apriori, and we collect 5

different groups of transactions as the follow:

 T1: 555 transactions.

 T2: 900 transactions.

 T3: 1230 transactions.

 T4: 2360 transactions.

 T5: 3000 transactions.

The first experiment compares the time consumed of original Apriori, and our improved algorithm

by applying the five groups of transactions in the implementation. The result is shown in Figure 2.

Figure 2: Time consuming comparison for different groups of transactions

The second experiment compares the time consumed of original Apriori, and our proposed

algorithm by applying the one group of transactions through various values for minimum support in

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 873 Copyright @ 2021 Authors

the implementation. The result is shown in Figure 3.

Figure 3: Time consuming comparison for different values of minimum support

6.4. The analysis and evaluation of the improved Apriori

As we observe in figure 2, that the time consuming in improved Apriori in each group of

transactions is less than it in the original Apriori, and the difference increases more and more as the

number of transactions increases.

Table 7 shows that the improved Apriori reduce the time consuming by 61.88% from the original

Apriori in the first group of transactions T1, and by 77.80% in T5. As the number of transactions

increase the rate is increased also. The average of reducing time rate in the improved Apriori is

67.38%.

Table 7: THE time reducing rate of improved Apriori on the original Apriori according to the

number of transactions

T Original Apriori (S) Improved Apriori (S) Time reducing rate (%)
T1 1.776 0.677 61.88%
T2 8.221 4.002 51.32%
T3 6.871 2.304 66.47%
T4 11.940 2.458 79.41%
T5 82.558 18.331 77.80%

As we observe in figure 3, that the time consuming in improved Apriori in each value of minimum

support is less than it in the original Apriori, and the difference increases more and more as the

value of minimum support decreases.

Table 8 shows that the improved Apriori reduce the time consuming by 84.09% from the original

Apriori where the minimum support is 0.02, and by 56.02% in 0.10. As the value of minimum

support increase the rate is decreased also. The average of reducing time rate in the improved

Apriori is 68.39%.

f minimum support

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 874 Copyright @ 2021 Authors

Min_Sup Original Apriori (S) Improved Apriori (S) Time reducing rate (%)

0.02 6.638 1.056 84.09%
0.04 1.855 0.422 77.25%
0.06 1.158 0.330 71.50%
0.08 0.424 0.199 53.07%
0.10 0.382 0.168 56.02%

7. CONCLUSION

In this paper, an improved Apriori is proposed through reducing the time consumed in transactions

scanning for candidate itemsets by reducing the number of transactions to be scanned. Whenever

the k of k-itemset increases, the gap between our improved Apriori and the original Apriori

increases from view of time consumed, and whenever the value of minimum support increases, the

gap between our improved Apriori and the original Apriori decreases from view of time consumed.

The time consumed to generate candidate support count in our improved Apriori is less than the time

consumed in the original Apriori; our improved Apriori reduces the time consuming by 67.38%. As

this is proved and validated by the experiments and obvious in figure 2, figure 3, table 7 and table

8.

ACKNOWLEDGEMENTS

We would like to thank all academic staff in our university for supporting us in each research

projects specially this one.

REFERENCES

[1] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A.

Ng, B. Liu,

P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in data

mining,” Knowledge and Information Systems, vol. 14, no. 1, pp. 1–37, Dec. 2007.

[2] S. Rao, R. Gupta, “Implementing Improved Algorithm Over APRIORI Data Mining

Association Rule Algorithm”, International Journal of Computer Science And Technology, pp. 489-

493, Mar. 2012

[3] H. H. O. Nasereddin, “Stream data mining,” International Journal of Web Applications, vol.

1, no. 4, pp. 183–190, 2009.

[4] F. Crespo and R. Weber, “A methodology for dynamic data mining based on fuzzy

clustering,” Fuzzy Sets and Systems, vol. 150, no. 2, pp. 267–284, Mar. 2005.

[5] R. Srikant, “Fast algorithms for mining association rules and sequential patterns,”

UNIVERSITY OF WISCONSIN, 1996.

[6] J. Han, M. Kamber,”Data Mining: Concepts and Techniques”, Morgan Kaufmann

Publishers, Book, 2000.

[7] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowledge discovery

in databases,” AI magazine, vol. 17, no. 3, p. 37, 1996.

[8] F. H. AL-Zawaidah, Y. H. Jbara, and A. L. Marwan, “An Improved Algorithm for Mining

Association Rules in Large Databases,” Vol. 1, No. 7, 311-316, 2011

[9] T. C. Corporation, “Introduction to Data Miningand Knowledge Discovery”, Two Crows

Corporation, Book, 1999.

