
Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 819 Copyright @ 2021 Authors

<xsd:element name="Book">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Title" type="xsd:string"/>

<xsd: element name="Author" type="xsd:string"/>

<xsd: attribute "language" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</element>

Identification and Analysis of Coupling Factors

in Service Interface

Ananya Preeti Padma 1 Prakash Chandra Dash 2Edi Laxmi3

1Asst. Professor, Einstein Academy of Technology & Management, Bhubaneswar
 2Asst.Professor, Einstein Academy of Technology & Management, Bhubaneswar
 3Student, Einstein Academy of Technology & Management, Bhubaneswar

Abstract—Coupling is the utmost important design

characteristics of Service Oriented Architecture. In the

services, service interface is the only binding between service

consumer and service provider. The service interface has to be

designed first. During the design it has to hold the design

characteristics of service oriented architecture. Coupling is

directly related with the reusability and performance of the

service. Therefore the measurement of degree of coupling at

the design stage is extremely important. As our focus is to

propose metrics for evaluating coupling in service interface,

this paper identifies and analyses the structural factors that

causes coupling.

Keyword- Coupling, coupling factors in service interface,

SOA, coupling in XML schema

I. INTRODUCTION

Coupling is an elementary and important concept in

software and software development process. In the context

of object oriented programming Coupling is the degree to

which one class knows about another class. The continuous

change in technology and needs of user causes continuous

change in the software also. It will increase the

maintenance cost and effort. In order to reduce this effort

and cost, the software is divided in to number of modules

which are as independent as possible. When one module

know about the another module, then there is a dependency

between them. The existent of dependency between

modules, components or services is called as coupling. In

Service Oriented Architecture (SOA), the principle

characteristic is loose coupling. The dependency exists

between the services affects the flexibility of the system [1].

Loose coupling reduces the impact of change in the system

when new functions are inserted into the system [2].

Service Oriented Architecture always relies on the

fundamental design principles. To comply with the

coupling, the service and consumer should not interact

directly. They should communicate through service

messages. These messages are the realizations of the

service interface. In SOA, the web services are

communicated with each other through their interfaces. The

interface of a web service can be defined by the

combination of WSDL and XML schema [5][6].

The design techniques that can be applied to the service

interface highly determine the coupling of the service. In

order to measure the degree of coupling in service interface

designs the structural elements which causes coupling has

to be identified. The service interface is 819with xml

schema. In the service interface different types of schema

structures and elements are used to define the data[3].

When one element refers the other element directly or

indirectly causes dependency between them. As the number

of references increases, the degree of coupling will be

increased. This paper identifies and analyses the structural

elements of xml schema which are used to design service

and also causes coupling.

II. GLOBAL ELEMENTS AND GLOBAL ATTRIBUTES

Elements and attributes are defined in xml schema as

either global or local. A global element or attribute is the
one defined as an immediate child of the <schema>. If an

element or attribute is nested in another component, it is

said to be local. Global elements or global attribute will be

reused from the target schema as well as from other schema

documents. What will happen if all the elements or

attributes are declared as global? If all the elements or

attributes are declared as global, the number of attribute or

element references increased. It will also increase the

complexity and thereby increasing of coupling of the

schema [4]. Sometimes except one element, all elements

may be declared as local elements (Example-1). Here all

the elements are bundled together as a single element. No

element is depending on another element. The changes in

these elements have less impact. The complexity is also

less. Since there is no dependency we can say there is no

coupling.

Local Element and attribute Declaration (Example-1)

In other case, to break up the system into more number

of small components, all the elements may be declared as

global and they are assembled by means of references

(Example-2). Since the elements are referenced, if there is

change in one element the impact will be high. The

complexity is also high. There is a dependency between the

elements and hence coupling is also high.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 820 Copyright @ 2021 Authors

Global Element and Attribute declaration (Example-2)

III. TYPE REFERENCES

The element type declaration can be specified with the

“type” attribute. The XML schema types can be classified

into two types namely Simple Type and Complex Type[7].

The user can independently define these types. A simple

type is a type that only contains text data that can be used

with element and attribute declarations. The simple type is

used when a restriction is placed on an embedded simple

type to create a new user type which is explained in section

IV-B of this paper. The complex type is a type which

contains one or more elements or attributes (Example-3).

(Example-3)

In the above example NameType is a complex type

declaration which contains two children Name and

Department. Once a complex type is defined any number of

elements can be defined of that type. Here the types are

referred. In the example the elements student and teacher

are elements whose types are NameType. A change in the

type Nametype affects both the elements student and

teacher. This kind of dependency also causes coupling [7].

IV. INHERITANCE

In Object Oriented context the Inheritance

coupling means that the coupling of two classes when one

class is a subclass of another [8]. The coupling of this type

is through data members that are inherited from a parent

class. In Xml schema the coupling due to inheritance

occurs when a data type is derived from another data type.

The type derivation allows creating the base type from

which other types can be derived. The types can be derived

by means of Type extension, Type restriction, Groups and

Redefine [6].

A. Type Extension

In Type extension pattern, a complex type can be

extended to add some number of attribute or element

declarations. In the following example (Example-4) the

Extended Student type derives the student type which act as

a base type. The Extended student contains the attributes

grade, level and birth-date along with the elements Name

and Major which are derived from the Student type. There

is a coupling between student and Extended Student.

<xs:complexType name="Student">

<xs:sequence>

<xs:element Name="name" type=”xs:string”/>

<xs:element Major= “major" type = “xs:string”/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ExtendedStudent">

<xs:complexContent>

<xs:extension base="my:Student">

<xs:attribute name="grade" type="xs:string"/>

<xs:attribute name="level" type="xs:string"/>

<xs:attribute name="birth-date" type="xs:date"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

Complex Type Extension (Example – 4)

B. Type Restriction

The restriction type pattern also used to derive a new

type from the base type. But the occurrence of base

elements can be limited or restricted. Both simple and

complex type can be restricted. The following is the

example (Example – 5) for deriving data types by means of

type restriction from the base type Item.

<xsd: element name="Title" type="xsd: string"/>

<xsd:element name="Author" type="xsd:string"/>

<xsd: attribute name="language" type="xsd:string" />

<xsd:element name="Book">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Title"/>

<xsd: element ref="Author"/>
<xsd:attribute ref="language" />

</xsd:sequence>

</xsd:complexType>

</xsd: element>

<xs:element name="Name" type="xs:string" />

<xs: element name="Department" type="xs: string" />

<xs: complexType name="NameType">

<xs:sequence maxOccurs="unbounded">

<xs:element ref="Name" />

<xs:element ref="Department" />

</xs:sequence>

</xs:complexType>

<xs: element name= “student” type= “NameType”/>

<xs: element name= “teacher” type= “NameType”/>

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 821 Copyright @ 2021 Authors

Complex Type Restriction (Example – 5)

A simple type can also be used to create a new type

through restriction. The following is the example for

simple type restriction.

Simple Type Restriction (Example – 6)

C. Groups

The collections of elements are allowed to be referenced

and inherited using Groups in XML schema. Once a list of

elements have defined as a group, it can be referred

anywhere within the xml schema. In the given example

(Example-7), once address group is referenced, address

element gets four child elements namely StreetAddress,

City, state and PostalCode. In the same fashion a group of

attributes can also be inherited. Here we can say that

element Address depends on the AddressGroup.

(Example-7)

In the above mentioned ways, the types are inherited.

The advantage of inheritance is attaining of reuse. But at

the same time, due to the derivation of one type (sub Type)

from the other type (base type), the inheritance increases

coupling between the type definitions. For a good design of

service interface it should be loosely coupled. In order to

reduce the coupling effect, the usage of inheritance

derivation should be minimized.

V. MODULES

The important schema declarations are import, include

and redefine which supports modular service interface[9].

These definitions bring definitions and declarations of

external schema into the current schema. The “include”

brings all definitions and declarations of an external

schema whose target namespace is the namespace of

current schema. It is usually used to extend the existing

schema. The “redefine” does the same as “include” except

it is used to redefine the available data type definitions of

included schema document. The “import” also does the

same as “include” except that external target namespace is

different from the existing schema document. It brings all

definitions and declarations of different name space schema

documents to construct a new schema. In all these three

methods, one xml schema documents depends on the

structure of other schema documents and we can say that

there is coupling between the documents.

VI. COUPLING AND REUSABILITY

During the designing of schemas the developers have to

maintain a balance between reusability and coupling of

schemas. If the intention is to design reusable schema,

elements and types should be declared as global one. This

will maximize reusability of schemas. The namespaces are

exposed for reusability. But this causes the increment of

coupling. (Figure – 1)

Figure – 1. Coupling Vs. Reusability

In the highly coupled schemas, the elements and types

are highly interdependent. In this case it is difficult to do

modifications and additions in future. Coupling is low, the

reusability is also low. Coupling is high, the reusability is

also high. Therefore the designing of reusable schema

reduces future enhancement due to the presence of coupling.

Another issue is performance of the service. More number

of modules affects the performance of the system. There is

a tradeoff between couplings, reusability and performance.

Hence the selection of appropriate schema design pattern is

important. Depending on the scope of the schema, the

design pattern has to be selected.

<xs: element name="Address">

<xs:complexType>

<xs:sequence>

<xs:group ref="AddressGroup"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:group name="AddressGroup">

<xs:sequence>

<xs:element name="StreetAddress" type="xs:string"/>

<xs:element name="City" type="xs:string"/>

<xs:element name="State" type="xs:string"/>

<xs:element name="PostalCode" type="xs:string"/>
</xs:sequence>

</xs:group>

<xs:element name="bike" type="BikeType"/>

<xs:simpleType name="BikeType">

<xs:restriction base="xs:string">

<xs:enumeration value="Honda"/>

<xs:enumeration value="Activa"/>

<xs:enumeration value="Kinetic"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="Item">
<xs:sequence>

<xs:element name="number" type="xs:string"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="size" type="my:Size" minOccurs="0"/>

<xs:element name="color" type="my:Colors" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

We can restrict the Item as:
<xs:complexType name="LimitItem">

<xs:complexContent>

<xs:restriction base="my:Item">
<xs:sequence>

<xs:element name="number" type="xs:string"/>
<xs:element name="name" type="xs:string"/>

</xs:sequence>

</xs:restriction>
</xs:complexContent>

</xs:complexType>

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 822 Copyright @ 2021 Authors

VII. CONCLUSION

This paper identified the structural elements that causes

coupling in xml service interface. We cannot say a

particular design is the best one for service interface.

However evaluating the service interface is very much

important before going to develop the service. The service

interface is the only known and measurable document to

the consumer. Therefore service design characteristics in

service interface should be evaluated. Our future work is

proposing metrics for evaluation of service interface. The

identified factors in this paper will be taken to continue our

work.

REFERENCES

[1] Michael Rosen, Boris Lublinsky, Kevi T. Smith and Marc J. Balcer,

“Applied SOA”, Wiley India Edition, 2008

[2] Antony Reynolds, Matt Wright, “ORACLE SOA suite 11g R1
Developer’s Guide “, Pack Publishing Ltd., 2010

[3] http://www.ibm.com/developerworks/library/x-schemascope/.
[4] Dilek Basci and Sanjay Misra, “Measuring and Evaluating a Design

Complexity Metric for XML Schema documents”, Journal of

Information Science and Engineering, 25, 1405-1425 (2009).

[5] Thomas Erl, “SOA principles of Service Design”, Prentice Hall,
2009.

[6] Thomas Erl, Anish Karmarkar, Priscilla Walmsley, Hugo Haas,

Umit Yalcinalp, Canyang Kevin Liu, David Orchard, Andre Tost,
James Pasley “Web Service contract Design and Versioning for

SOA” Prentice Hall, 2009.

[7] Eric Van der Vlist, “XML Schema”, Oreilly Publisher, 2002.
[8] Lionel C.Briand, Jhon W. Daly and Jurgen K. Wust, “ A Unified

framework for coupling Measurement in Object Oriented Systems,

IEEE transactions on Software Engineering, Vol -25, January – 1999.

[9] James Bean, “SOA and Web Services Interface Design, Principles,

Techniques and Standards”, Morgan Kaufmann Publishers is an
imprint of Elsevier,2010.

http://www.ibm.com/developerworks/library/x-schemascope/

