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Abstract 

 

When structures are exposed to a harsh thermal environment, which causes significant 

thermal stresses to form in them, isotropic plates are used very successfully. The correct 

thermal response of plates as well as the consequences of shear deformation call for 

sophisticated theories. The displacement field in use has three variables. The 

trigonometric sine function is utilised in the displacement field in terms of thickness 

coordinate to describe the impact of shear deformation. One benefit of theory is that the 

constitutive laws can be used to directly calculate the transverse shear stresses, negating 

the need for a shear correction factor. Transverse shear stresses are distributed 

parabolically along the thickness of the plate as well as at its top and bottom surfaces, 

providing the requirements for a stress-free boundary. The theory's boundary conditions 

and governing differential equations are obtained using the principle of virtual work. 

The findings of the bending analysis of isotropic plates that are subjected to heat load are 

compared with other theories to verify the accuracy of the current theory. 

Keywords:Displacement field; isotropic beam; simply supported plate; thermal load 

1. Introduction 

 

This study develops a variationally consistent trigonometric shear deformation theory 

for generated heat loads. To accurately derive the governing differential equations and 

boundary conditions, the principle of virtual work is applied. With the aid of governing 

differential equations, the stiffness matrix is used to build the solution for the outfield 

variables w,, and. The theory is used to analyse the thermal behaviour of a solid 

rectangular plate that is uniformly supported and isotropic. We obtain both general and 

closed-form answers. The generic solutions for the variables w,, and are derived for the 

plate under consideration using appropriate boundary conditions. Obtained results are 

compared with those of higher order shear deformation theory and classical plate theory. 
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The eminence of the present theory is acclaimed by precise evaluation of thermal 

stresses and displacements. The theoretical formulation of a uniform plate is obtained 

by taking in to account the certain kinematical and physical assumptions. The dynamic 

version of the principle of virtual work is referred to obtain the variationally correct 

forms of differential equations and boundary conditions, based on assumed 

displacement field. In order to overcome the limitations of FSDT, higher- order shear 

deformation theories (HSDTs) involving higher-order terms in Taylor’s expansions of 

the displacements in the thickness coordinate were developed by Reddy [1], Ren [2] and 

Kant and Pandya [3]. Ghugal and Kulkarni [4] have used trigonometric shear 

deformation theory (TSDT) for thermal analysis of composite plates. Shinde and 

Kawade [5] have presented thermal response of isotropic plates using hyperbolic shear 

deformation theory. Shimpi [6] created the refined plate theory (RPT) for isotropic 

plates, which has two variables and just two unknown functions. Ghugal and Shimpi [7] 

gave a thorough analysis of plate theories for isotropic and laminated plates, whereas 

Thai and Kim [8] reported on functionally graded plates. Reddy [9] provides the 

philosophy needed to comprehend shell theory and the physics of laminated composite 

plates. Isotropic plate thermoelastic stress analysis was presented by Boley and Weiner 

[10]. 

 

 The plate under consideration 

The principle of virtual work is used to obtain the variationally correct forms of 

differential equations and boundary conditions, based on the assumed displacement 

field. The occupied region of the plate is: Consider a thick isotropic simply supported 

plate of length a in x direction, Width b in y direction and depth h in z direction. Where 

x, y and z are Cartesian coordinates. The whole length of plate is subjected to thermal 

load of intensity T(x). The axial displacement, transverse displacement, axial bending 

stress and transverse shear stress are required to be found out under this condition. The 

plate material obeys the generalized Hook's law. The plate is made up of homogeneous 

linearly elastic isotropic material with the principal material axes parallel to the x and y 

axes in the plane of plate. 

 

 The displacement field of TSDT 

The following is the expression for the displacement field. The trigonometric 

function is assigned according to the shearing stress distribution through the thickness of 

plate
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 

 

 

 

w x, y   h 
u x, y, z      z  z   

 z  sin  x, y , (1) 
  

x   
  
 h  

w x, y   h 
v x, y, z      z  z  

x   

w x, y, z   w x, y, z  
  z  

sin    x,y  , (2) 
 h  

Where u and v are the in-plane displacement components in the x and y 

directions respectively, and the transverse displacement in the z direction is w. The 

trigonometric function in terms of the thickness coordinate in both the in-plane 

displacements u and v is associated with the transverse shear stress distribution through 

the thickness of plate. The functions ϕ (x, y) and ψ (x, y) are the unknown functions 

associated with the shear slopes. 

 

 Governing equations and boundary conditions 

 

Principle of virtual work is used to obtain the governing differential equations 

and boundary conditions. Variationally consistent differential equations for plate under 

consideration are obtained by using and solving the equations for stresses, strains and 

principle of virtual work. The principle of virtual work when applied to plate leads to: 

 

z h 2  y b 

 
 

x a 
 

 

 

y b 

 

x a z h 2 y  x  x    x y    y yz    yz zx    zx xy    xy y  

dx dy dz -  

q x, y   w dx dy= 0 (3) 
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 

                    

x  

Where δ = variational operator, 

Substituting expressions for the strains and stresses in Equation (3) and employing 

Green’s theorem successively, we obtain the coupled Euler-Lagrange equations which 

are the governing differential equations and associated boundary conditions of the plate. 

The obtained governing differential equations are as follows: 

 
 w : D11 
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  2
 

T1 
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2   SS11 

2  SS66 

2   C55   SS12  SS66  

 TS11  TTS12  

 0, (5) 
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x y  
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w  
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y     
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 2
 

x 

 T1 
 : S22 

3  S12  2S66  2   SS66 

2    SS22 

2   C44   SS12  SS66  

 TS12  TTS22  

 0, (6) 
y y x  x 

y   

y x y 

The obtained associate consistent boundary conditions are as below: 

Along the edge x  0 and x  a, 
3 

w 
3 

w  
 
2

  
2

  

 D22 

3  D12  4D66  
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Along the edge y  0 and x  b, 
3 
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w 
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w   

2   S11 
 

 
 S12 

 TD12  TTD22 T1  0 oris prescribed (12) 

 x y     x y x 

   S11 

 
2 

w 

  2 
 

 S12 

 
2 

w   
2   SS11 

 
 

 SS12 

 TS11  TTS12 T1  0 or  is prescribed (13) 

 x 

  
y     x y 

   2 w 
SS66  

 x 
   2S66 

y  
 0 

x y   
or  is prescribed (14) 

The flexural behaviour of the plate is described by the solution satisfying these equations 

and the associated boundary conditions at each edge of the plate. 

 

 The general solution of governing equilibrium equations of the plate: 

 

The following is the solution form for w(x, y), ϕ (x, y) and ψ (x, y) satisfying the 

boundary conditions given by the equations through perfectly for the plate with all the 

edges simply supported.   m  x y 

 w  x, y      wmn sin 
a
 sin   b   x, y       mn sin 
a
 cos   b 
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m  n  
  

 m  x 
  
 n  y 
 

 
m  n  

  
 m  x 
 

n  y 

   x, y     mn cos sin 
T1  x, y      Tmn sin 

a
 

sin   b 
m n  a b m  n  

Where wmn, ϕmn, and ψmn are the unknown coefficients which can be easily determined 

by substituting above Equations and T(x, y) = zT1(x, y) in the set of three governing 

differential equation and solving the resulting simultaneous equation as 

 

K11wmn  K12 mn  K13 mn  F1 K21wmn  K22 mn  K23  mn  F2 

K31wmn  K32 mn  K33  mn  F3 

n2  2 
 

 

 

 
m2  2 

 

(15) 

F1    D12  x    D22  y  

2     T1mn   D11  x    D12  y  

2 
T1mn , 

b a 
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 Illustrative Example 

In order to prove the efficiency of the present theory, the simply supported isotropic 

rectangular plate (a = 1.5b) considered, having material properties as, 

Modulus of Elasticity E = 210 GPa 

Poisson’s Ratio µ = 0.30 

Coefficient of Thermal Expansion �� = �� = 12X10
−6

/℃ 

 

2. Results and Discussion 

 

 Numerical Calculation 

 

The results for maximum transverse displacement �, in-plane displacements� 

and �, in-plane normal stress components �� and ��, the in-plane shear stress 

components ��� transverse shear stress components ��� and ���are presented in 

the following non dimensional form for the purpose of presenting the results in this 
work. 

1  b h   u  2    u  0, ,     ,    1  h  
  

1T0 E2 b      2 2  
 xy  

1T0 E2 b
2  

 xy   0,  0, 
 

  , 2  
1  a h   v  2    v  , 0,     , 

    10  b  
  1T0 E2 b      2 2  xz  

x 

y 1mn 
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

2   xz   0, , 0  , 
  

10  a b h   

1T0 E2 b     2  w  2    w  , ,     , 
     

10  a  
   

1T0 E2 b    
1 

    2 2 2  
 a b h  yz 2 

1T0 E2 b  yz   
 2 , 0, 0  .   x ,  y  2     x ,  y   , ,     , 

    

1T0 E2 b    

 2 2 2  

All the parameters are obtained by solving the force matrix and equilibrium equations. 

Table 2.1: Maximum transverse displacement � at (x = a/2 and y = b/2), in-plane 

displacement components � and � at (x = 0, y = b/2 and z 

= h/2) and (x = a/2, y = 0 and z = h/2) respectively, normal stress components �� and 

�� at (x = a/2, y = b/2 and z = h/2), in-plane shear stress components ��� at (x = 0, y 

= 0 and z = h/2), transverse shear stress components ��� at (x = a/2, y = 0 and z = 0), 

transverse shear stress components 
��� at (x = 0, y = b/2 and z = 0) of simply supported rectangular plate (a =1.5 b) 
subjected to thermal load for aspect ratio 5. 

 

Model � � � �� �� ��

� 

��

� 

��

� 
Present TSDT
 0.7391 

0.03
09 

0.04
64 

0.11
22 

0.04
98 

0.07
48 

-
0.01
56 

-
0.02
35 

HSDT 0.7391 0.03

09 

0.04

64 

0.11

22 

0.04

98 

0.07

48 

-

0.01

56 

-

0.02

35 

CPT 0.8686 0.03
63 

0.05
45 

0.09
13 

0.01
80 

0.08
79 

--- --- 

Table 2.2: Maximum transverse displacement � at (x = a/2 and y = b/2), in-plane 

displacement components � and � at (x = 0, y = b/2 and z 

= h/2) and (x = a/2, y = 0 and z = h/2) respectively, normal stress components �� and 

�� at (x = a/2, y = b/2 and z = h/2), in-plane shear stress components ��� at (x = 0, y 

= 0 and z = h/2), transverse shear stress components ��� at (x = a/2, y = 0 and z = 0), 

transverse shear stress components 
��� at (x = 0, y = b/2 and z = 0) of simply supported rectangular plate (a = 1.5 b) 


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subjected to thermal load for aspect ratio 10. 
 

Model � � � �� �� ��

� 

��

� 

��

� 
Present TSDT
 1.4783 

0.01
54 

0.02
32 

0.05
61 

0.02
49 

0.03
74 

-
0.00
39 

-
0.00
58 

HSDT 1.4783 0.01

54 

0.02

32 

0.05

61 

0.02

49 

0.03

74 

-

0.00

39 

-

0.00

58 

CPT 1.7373 0.01

81 

0.02

72 

0.04

56 

0.00

90 

0.04

39 

--- --- 

 

3. Conclusions: 

 

The results are compared to those of other theories using an improved shear deformation 

theory for the thermal stress analysis of thick isotropic plates. A sample problem is taken 

into consideration to verify the effectiveness of the current Trigonometric shear 

deformation. The results for displacements and stresses are compared to the corresponding 

results of the higher order shear deformation theory (HOSDT) and the classical plate 

theory (CPT) (HSDT). Maximum non-dimensional axial and transverse displacements, as 

well as axial and shear stresses, are compared for 

1. The results obtained by the present theory are accurate as seen from the 

comparison with exact results and are in general, superior to those of other 

refined shear deformation theories. 

2. Transverse shear stresses obtained by integrating equilibrium equations 

(with respect to the thickness coordinate) satisfy shear stress free conditions on 

the top and bottom surfaces of the plate. 

3. For simply supported plate subjected to thermal load, the transverse deflection 

given by present theory is in excellent agreement with that of other higher order 

shear deformation theories. 

4. The present theory gives realistic results of this displacement component in 

commensurate with the other shear deformation theories. 

In general, the use of present theory gives accurate results as seen from the numerical 

example studied and it is capable of predicting the local effects in the simply supported 

plate. This validates the efficiency and credibility of trigonometric shear deformation 

theory. 
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