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Abstract— The inclusion property, bypassing, and replacement cache hierarchy designs all 

have a major performance impact. Cache bypassing is an efficient method to improve the 

performance of the last level cache (LLC), according to recent research on high 

performance caches. The inclusion property is essentially broken by bypassing, hence this 

technique cannot be used to improve the widely used inclusive cache hierarchy. The 

problem of permitting cache bypassing for inclusive caches is addressed in this study. To an 

LLC, we add a bypass buffer. The tags of bypassed cache lines are kept in this bypass 

buffer while they skip the LLC. In order to maintain the inclusion property, when a tag is 

removed from the bypass buffer, the matching cache lines in upper level caches are 

invalidated. Our main finding is that a bypassed line should have a brief lifetime in upper 

level caches and is most likely dead when its tag is removed from the bypass buffer, 

assuming a well-designed bypassing mechanism. In order to keep the inclusion property 

and benefit from the majority of the performance advantages of bypassing, a minimal 

bypass buffer is sufficient. The bypass buffer also makes bypassing algorithms easier by 

giving the use data for lines that were bypassed. We demonstrate that the performance of a 

top-performing cache bypassing approach, which was first developed for non-inclusive 

caches, is comparable for inclusive caches that have our bypass buffer. When compared to 

the original design, the bypass buffer's utilisation data dramatically lowers hardware 

implementation costs. . 

Keywords: Last level cache; cache bypassing; cache replacement policy; inclusion property 

I. INTRODUCTION 

With increasing working sets of applications, the performance of last level caches (LLCs) is critical 

to the overall computer system performance. Cache management contains two key components: (1) a 

replacement policy, which decides the victim block if a block needs to be replaced, and (2) an 

allocation policy which decides whether an incoming block should be allocated in the cache. A good 

cache replacement policy improves cache performance by selecting the least likely to be reused block 

as the victim and has been studied extensively [1][3][5][9][16][17][20][23]. A good cache allocation 

policy chooses to bypass a block to upper levels if it is predicted to be less useful than the blocks 

currently in the cache [7]. 

Another key design decision in cache hierarchies is the inclusion property between an LLC and 

upper level caches. Inclusion simplifies the hardware to support cachecoherence. It enables the LLC 

to act like a snoop filter because a data block is guaranteed to be absent in upper levels if not found in 

the LLC. As a result, inclusive caches have been widely used. With inclusive caches, the allocation 

policy is reduced to allocate all incoming requests by default in an LLC. This is the reason why 

previous bypassing algorithms [4][5][6][7][12][15][21][22][25] only work with non-

inclusive/exclusive LLCs. 

Figure 1 shows various flavors of memory hierarchy organization possible with strict/flexible 

allocation policies combined with inclusive/non-inclusive LLCs. Figure 1a shows a non-inclusive 
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cache where all the incoming cache blocks from memory are allocated in all three levels of caches. 

The LLC is non-inclusive and therefore the evictions from LLC are silent i.e. they do not try to 

invalidate the evicted data blocks from upper levels. On the other hand, an inclusive LLC (shown in 

Figure 1b) will force an eviction of the corresponding data block(s) from L1 and L2 cache when a 

cache block is evicted from LLC. This event is also referred as back invalidation. Applying a 

selective allocation policy/bypassing is straight forward on a non-inclusive LLC because the selected 

incoming blocks from memory can be filled into L1 cache and L2 cache only (as shown in Figure 

1c) and it does not violate the non- inclusion property. The inclusive LLC is strict about filling each 

incoming block from memory. This causes the inclusive cache hierarchy to be incapable of using 

cache bypassing or any selective allocation policy. 

In this work, we propose a solution to enabling cache bypassing for inclusive LLCs. We introduce 

a new structure in an LLC, called a bypass buffer (BB), which keeps bypassed blocks to support the 

inclusion property (as shown in Figure 1d). Therefore, the last level cache hierarchy consists of an 

LLC and a bypass buffer. The bypass buffer keeps tags of the data blocks which are predicted to be 

less important than data present in the LLC. In this manner, the working set present in the LLC is not 

evicted to make room for less useful data. When a block is evicted from the LLC or BB, it 

invalidates the data copies present in upper level caches to maintain inclusion property.   Our insight 

is that with a good bypassing algorithm, bypassed blocks should have a short lifetime in upper level 

caches. Therefore, a small BB is sufficient to ascertain that when a block is evicted from the BB, it 

is highly likely that its data copies in L1/L2 caches are either dead or already evicted. Furthermore, 

we show that our proposed BB provides an 

efficient way to collect the usage information of bypassed blocks, which can be used to simplify and 

facilitate the design of bypassing algorithms. 

 

(a) Non-inclusive LLC (b) Inclusive LLC 
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Fourth, we evaluate the performance of inclusive LLC with bypass-buffer in various cache 

configurations and different scenarios to conclude that bypass buffer can provide robust and 

effective solution to employing cache bypassing algorithms to inclusive LLCs. 

The remainder of the paper is organized as follows. Section II motivates our approach and 

dissects the lifetime of bypassed blocks to motivate our low cost solution to enabling cache 

bypassing for inclusive LLCs. Section III details our design of adaptive bypassing for inclusive 

LLCs. Section IV presents the experimental methodology and Section V discusses the experimental 

results. We discuss related work in Section VI. Section VII concludes the paper. 

II. MOTIVATION 

Bypassing has been shown to be high performing by previous research. In particular, two of the 

three top performers in the 1
st
 JILP Cache Replacement Competition 

[11] use cache bypassing. On the other hand, many industrial designs, including Intel Core i7 [26], 

use inclusive last level caches which makes employing the cache bypassing on these designs a non-

trivial task. As suggested in a recent work on cache bypassing algorithm [18], a bypassing algorithm 

can be modified to work with inclusive caches by inserting the bypassed block at the LRU (least 

recently used) position. In this manner, the bypassing candidates chosen by the bypassing algorithm 

are victimized on the next miss to the cache set. There are two main drawbacks to this approach. 

First, the cache blocks still need to be placed in the cache set thereby replacing one potentially more 

useful block. This problem is more likely to manifest itself in a cache where the set associativity 

is 

 

 (c) Non-inclusive LLC (d) Inclusive LLC with bypass- with bypass

 buffer for selective bypassing 

relatively low. Second, this approach is vulnerable to a pathological scenario where many 

consecutive accesses are 

Figure 1: Memory hierarchy organization for (a) a non- inclusive LLC (b) an inclusive LLC 

(c) a non-inclusive LLC with bypass (selective fill of L3 cache) (d) an inclusive LLC with a 

bypass buffer to support cache bypassing 

 

The key contributions of this paper include: 

First, we make an important observation on the lifetime of bypassed blocks to motivate our low 

overhead BB idea. 

Second, we show that our proposed BB facilitates the design of bypassing algorithms and it 

significantly reduces the hardware cost of the DSB algorithm [6], a top performing cache-bypassing 
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algorithm. 

Third, we evaluate our proposed solution and show that our bypass-enabled LLC achieves up to 

42.0% and an average of 9.4% performance improvement over an inclusive 2MB LLC with the 

least-recently-used (LRU) replacement policy. Compared to a recently proposed high performing 

replacement policy, DRRIP [9], our proposed approach outperforms it for both single-core systems, 

by up to 11.3% and 2.5% on average, and 4-core systems, by up to 14.0% and 1.3% on average. 
mapped to a cache set. Due to the prediction of no future 
reuse, they will compete for the LRU position. As a result, the lifetime of these blocks is short, 

which causes the victimization of the same data blocks from upper levels. This will degrade 

performance of inclusive LLCs. These potential performance hazards are inherently present in any 

cache replacement algorithm and we show in Section V-D that a benchmark (sphinx) in our 

experiments indeed severely suffers from this problem. Therefore, we propose to combine the 

bypassing algorithm with inclusive caches without converting it to a replacement algorithm. The key 

reason is that a bypassing algorithm is higher performing than a replacement algorithm since it does 

not have to insert the data in a cache level if there is no future reuse at that level of cache. Now 

we present our motivation behind our bypass buffer idea. 

We first make an important observation on cache bypassing algorithms. The goal of cache 

bypassing is to bypass blocks that have fewer reuses than those currently in the cache. Therefore, for 

a well-designed bypassing algorithm, a block, which is bypassed from the LLC and allocated in the 

upper levels of caches (i.e., L1/L2 caches), 

should not be re-accessed after it is replaced from the L1/L2 caches. Otherwise, such re-accesses 

would become reuses of the block in the LLC, conflicting with the choice of bypassing. To quantify 

our observation, we collect the lifetime information of the bypassed blocks, which are chosen with the 

DSB bypassing algorithm [6], and report the lifetime histogram of selected benchmarks in Figure 2. 

Here, the lifetime is measured as the number of LLC misses while a cache block was live in the L1 

cache (i.e., the number of LLC misses between the time when the bypassed block is allocated in the 

L1 cache and the time of its last touch before being evicted). From Figure 2, we can see that bypassed 

blocks quickly become dead in the L1 cache. For example, for benchmark art, 75% of its bypassed 

cache blocks have a short lifetime of between 3 to 4 LLC misses in the L1 cache and 96.4% of its 

bypassed blocks are dead after 8 LLC misses. On average of all the benchmarks in our study (see 

Section IV for methodology), 94.3% of the bypassed blocks are dead after 8 LLC misses. We also 

collected the lifetime information of the bypassed blocks in the L2 cache and it exhibits very similar 

trends. 

 

 

 

 

 

 

 

 

 

Figure 2: The lifetime histogram of the blocks, which are bypassed from the LLC, in the L1 

data cache. 
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have been bypassed otherwise, are essentially useless and are allocated in LLCs only for the inclusion 

purpose. Note that even marking those blocks as early victims to evict in LLCs may still replace more 

useful data, thereby not as effective as bypassing. In the next section, we leverage the short lifetime 

of bypassed blocks to design our low cost solution to enable cache bypassing for inclusive LLCs. 

III. ADAPTIVE CACHE BYPASSING FOR INCLUSIVE LLCS To enable cache bypassing for 

inclusive LLCs, we 

propose a bypass buffer (BB). The bypassed blocks are kept in the BB rather than replacing victims in 

an LLC. When a block is evicted from the BB, it invalidates the copies of the same data in upper level 

caches to ensure the inclusion property. The lifetime information presented in Section II shows that 

the bypassed blocks become dead quickly in L1/L2 caches. Therefore, a small BB is sufficient to reap 

the performance benefit of bypassing while maintaining the inclusion property. 

Next, we present our design to incorporate a bypassing algorithm within an inclusive cache 

hierarchy. We use the winning algorithm from CRC [11], Dueling Segmented LRU Replacement 

Algorithm with Adaptive Bypassing (DSB) [6]. A key feature of DSB is bypassing the LLC 

adaptively, which is shown as the highest contributing factor to the performance gains. Then, we 

show how the proposed BB can be leveraged to reduce the hardware cost of the DSB algorithm. Our 

design is based on an inclusive LLC (L3 cache) and a non-inclusive L2 and L1 caches shown in 

Figure 1d, as used in Intel Core architectures [26]. 

A. Dueling Segmented LRU Replacement Algorithm with Adaptive Bypassing (DSB) 

In this section we briefly present the DSB algorithm and summarize the key ideas [6]. 

1. A Segmented LRU (SLRU) replacement algorithm [14], which was originally proposed for 

cache management for disk systems. Random promotion and aging policies are proposed to enhance 

performance. 

2. An adaptive bypassing policy, which randomly bypasses cache blocks based on a probability. 

This probability is increased or decreased based on whether bypassing is effective or not. The 

effectiveness of bypassing is determined by tracking whether a bypassed block is reused before the 

replacement victim. To do so, each cache set is augmented with an additional tag and a competitor 

pointer. In the case of a bypass, the additional tag field keeps the tag of a bypassed block and the 

competitor pointer points to the replacement victim, which would have been evicted without 

bypassing. If the competitor is accessed before the bypassed one, bypassing is determined as 

effective. If the bypassed tag is accessed before the competitor, bypassing is determined to be 

ineffective. DSB algorithm invalidates a bypass block – competitor pointer pair when there is a fill at 

the location pointed by competitor pointer. To assess the impact of bypassing when a no- bypassing 

decision is made, some newly allocated blocks are randomly selected for ‘virtual bypassing’. In 

this case, the additional tag keeps the tag of the replacement victim and the competitor pointer keeps 

the position of the newly incoming block. If the replacement victim is re-accessed earlier than the 

incoming block, it means that bypass is effective. 

3. Set sampling, in which a few sample sets maintain auxiliary tag directory (ATD) [20] to 

exercise two dueling policies and a saturating counter decides which policy is applied to the cache. 

B. Bypass-Buffer Enabled Inclusive DSB 

With a BB, we only need to make the following small changes to support inclusion. 

If the bypassing algorithm decides to bypass a requested cache block, it is allocated in the BB 

instead of the LLC and forwarded to upper level caches. If the BB is 
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full, a victim is selected and the data copies of the victim are invalidated in upper level caches. 

L2 cache misses are serviced with both the BB and the LLC. A hit in the BB provides the data to 

the L2 cache and the cache block is de-allocated from the BB and filled in the LLC. 

C. Data-less Bypass Buffers 

To reduce the hardware overhead of a BB, we propose to not include payload data in BB entries. A 

data-less BB is feasible as the tags are sufficient to maintain the inclusion property. Since the 

bypassed cache blocks become dead in upper level caches very soon, a hit in the BB should be very 

rare. Therefore, a data-less BB does not incur performance penalties. In a case when there is a miss in 

the LLC and hit in BB, it is treated like a miss and the data is brought in from memory. Considering 

multi-processor design, the BB entries also keep coherence information along with tags similar to the 

LLC tag store. Assuming a MESI-like coherence protocol, a data-less BB works without any 

significant modifications. For snoop requests that do not need to respond with data, the data-less BB 

acts exactly the same as the LLC. In the case for a snoop request asking for data which hits in the BB 

with the M state, the upper cache levels are searched to find the most recent copy of the data. 

D. Efficient Tracking Using Bypass Buffers 

As discussed in Section III-A, the DSB algorithm needs to track the effectiveness of bypassing 

and does so by adding additional tags and pointers in each cache set. This incurs relatively high 

hardware overhead. We propose to leverage the BB to reduce such bookkeeping cost by adding a 

competitor pointer in each BB entry. Since the number of BB entries is much smaller than the number 

of sets in the LLC, the overall storage requirement for the DSB algorithm can be significantly reduced. 

As the tracking information is no longer stored in each cache set, we make the following 

modifications to the original DSB algorithm: 

1. For each bypassed block, its competitor pointer points to the replacement victim, which would 

have been replaced without bypassing. 

2. When a block is chosen to be virtually bypassed (i.e., it is still allocated in the LLC but selected to 

assess the impact of bypassing), a BB-entry is allocated for the replaced block and its competitor 

pointer points to the newly allocated block. Since the probability of virtual bypass is low in the 

DSB algorithm, we do not expect the BB to be flooded with virtual bypasses/victims. 

3. When L2 cache misses are serviced with both LLC and BB, depending on whether (virtual) 

bypassed blocks are accessed earlier than the corresponding replacement victims, the bypassing 

probability is adjusted accordingly, same as the original DSB algorithm. 

To summarize, we present three adaptive bypassing designs for inclusive LLCs: (1) DSB with a 

BB containing 

data (I-DSB-BB-data) (2) DSB with a data-less BB (I-DSB- BB) (3) DSB with a data-less BB, which 

is augumented for tracking bypass effectiveness (I-DSB-BBtracking). Since the data stored in the 

BB are very rarely accessed, we mainly focus on I-DSB-BB and I-DSB-BBtracking in the rest of 

the paper. 

The design of the bypass buffer used for I-DSB- BBtracking is shown in Figure 3. It is organized 

as a set associative strucutre of multiple BB-entries. In each entry, the BB-tag is the block address 

of the bypassed block. It is different from the tag stored in the cache because the index bits are 

removed from the cache tags in any cache. To track the effectiveness of bypassing, a virutual bypass 

bit and a competitor pointer are maintained in each BB-entry. 
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Figure 3: Various fields present in a BB-entry 

E. Hardware Overhead of Bypass Buffer 

Here, we discuss the hardware storage of bypass buffer for I-DSB-BBtracking. In most of our 

experiments (if otherwise not mentioned), we use a 64-entry BB which is organized as a 4-way set 

associative structure. Each entry contains a 54-bit (= 64-bit address – 6-bit block offset – 4- bit 

index) tag field, a competitor pointer and two status bits as shown in Figure 3. Since the tag field 

shares the same index bits for the LLC as the competitor (i.e., the bypassed block and the competitor 

are in the same cache set), the competitor pointer is reduced to a way pointer. For a 16-way LLC, a 

competitor pointer requires 4 bits. So, the overall hardware storage cost of the BB is 64× (54+4+2) = 

3,840 bits. 

In comparison, the original DSB algorithm keeps a 16- bit partial tag for bypassed block, a 

competing way pointer (4 bits for 16-way set associative cache) and 2 status bits. As a 2MB cache 

with 64-B blocks has 2048 sets, the overall cost is 22x2048 = 44K bits. Therefore, I-DSB-

BBtracking incurs 91% less hardware overhead compared to DSB cache bypassing algorithm. 

For a 4MB shared LLC in a 4-core system, we use 256 entry bypass buffer. The storage cost of 

our BB-based design is 256*(52+4+2) = 14.5K bits whereas the original DSB implementation costs 

88K bits of storage. 

The auxiliary tag directory and randomization hardware as proposed in DSB remain the same in I-

DSB-BB and I- DSB-BBtracking and they cost 46.8K bits for a 2MB LLC (93.5K bits for a 4MB 

LLC) and 51 bits, respectively [6]. 

IV. EXPERIMENTAL METHODOLOGY 

To model the performance impact of our proposed approach, we use an in-house execution-driven 

simulator. This simulator uses the SimpleScalar [2] frontend while the timing simulator is completely 

revamped to model a 4-way issue superscalar processor with a 64-entry active list. The memory 

hierarchy contains a 32kB 4-way set associative L1 data cache with a block size of 64 bytes (1-cycle 

hit latency), a 32kB 2-way set associative L1 instruction cache (1-cycle hit latency) and an 8-way set 

associative 256kB L2 cache with a block size of 64 bytes (10-cycle hit latency). We use 16-way set 

associative 2MB LLC with a block size of 64 bytes (30-cycle hit latency) for our single-core 

systems. For multi-core systems, we increase the capacity of shared LLC to 4MB. The LLC in our 

baseline system is inclusive and enforces inclusion on L1 and L2 caches by sending back invalidations 

for LLC evictions. L1 and L2 caches are kept non-inclusive as mentioned before. The main memory 

latency is 200 cycles. 

We include all the SPEC 2000 and SPEC 2006 benchmarks that we were able to compile and run 

using the SimpleScalar ISA (PISA), 16 from SPEC 2000 and 7 from SPEC 2006. We use reference 

input for all the benchmarks and use Simpoint [8] tool to find simulation phases. For each 

benchmark, we use a representative 100M Simpoint for simulations. We also include 4 additional 

memory intensive phases and label them as gap-2, gcc-2, mcf-2 and sphinx-2. Among the 27 

benchmark Simpoints, listed in Appendix-1, we only report results for 14 selected programs phases. 

The selection criterion is that either these phases show performance gains, measured with instructions 

per cycle (IPC), of more than 3% when the LLC size is increased to 16MB from the baseline size of 
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2MB or they have more than 5 LLC misses per 1K instructions (MPKI). 

To evaluate our proposed design in a 4-core system, we generate four multi-programmed workload 

categories: (a) 4H: all 4 benchmarks with high MPKI; (b) 3H1L: 3 benchmarks with high MPKI and 

1 benchmark with low MPKI; (c) 2H2L: 2 benchmarks with high MPKI and 2 benchmarks with low 

MPKI; and (d) 1H3L: 1 benchmark with high MPKI and 3 benchmarks with low MPKI. We do not 

include category 4L in this study because of its low memory intensiveness. In each category, eight 

multi- programmed workloads are generated randomly. The detailed list of all the combinations is in 

Appendix-2. The performance of multi-programmed workloads is measured using the weighted 

speedup as proposed in [24]. 

V. EXPERIMENTAL RESULTS 

A. Effect of bypassing on LLC performance 

We start our experimental analysis with evaluating the LLC miss rates obtained by the baseline 

system, DSB with a non-inclusive LLC, I-DSB-BB with an inclusive LLC and I- DSB-BBtracking 

with an inclusive LLC and the results are shown in in Figure 4. I-DSB-BB and I-DSB-

BBtrackingboth use a 64 entry bypass buffer which is organized as a 4- way set associative structure. 

DSB is able to reduce LLC misses for many benchmarks. For some benchmarks such as equake, mcf, 

parser and sphinx, I-DSB-BB has slightly more misses than DSB. It is caused by inclusion victims, 

i.e. few live L1 and L2 blocks being invalidated due to back invalidations. Between I-DSB-BB and I-

DSB-BBtracking, some entries in a 64-entry BB are evicted early, which affects the accuracy of 

tracking the bypassing effectiveness for I-DSB-BBtracking. Therefore, I-DSB-BBtracking has a 

slightly higher number of misses than I-DSB-BB. This difference gets smaller as we increase the 

number of BB entries (see Section V-C on the impact of the BB size). Also, the benchmark mcf from 

SPEC2000 (mcf-2k) have a very low number of LLC misses for a 2MB LLC therefore there is no 

impact of using bypassing for this LLC configuration. But we include this benchmark because it shows 

high MPKI due to thrashing behavior when the LLC capacity is 1MB. (More results in Section V-F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: LLC miss rate comparison for different designs 

Next, we analyze the fraction of bypassed LLC allocations and fraction of bypass buffer hits (BB-

hits) for I- DSB-BBtracking. Figure 5 shows the fraction of LLC allocations which are decided to be 

bypassed and Figure 6 shows the fraction of bypassed blocks which are recalled by L2 cache and 

experience a hit in BB. As shown in Figure 5, many benchmarks heavily prefer bypassing of cache 

blocks. For most of the benchmarks with high fraction of cache bypassing (e.g. art, gcc-2, mcf and 
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sphinx), the bypassing is effective and we observe significant reductions in LLC misses as shown in 

Figure 4. The exception is the benchmark equake, which shows a high fraction of bypasses and yet 

does not achieve significant reduction in LLC miss rate, meaning that both the bypassed blocks and 

their competitor LRU blocks have no reuses. The benchmarks bzip2-2k, gromacs, lbm, mcf-2k, 

parser and vortex show low amount of bypassing and therefore their LLC miss rates are largely 

unaffected. The benchmark ammp has a repetitive access pattern with very long reuse distances and 

causes the 

tracking information (i.e. bypass block –competitor pointer pair) to be cancelled before it can be 

detected to be effective (as mentioned in III-A). Therefore, the bypassing probability stays low, and 

this minimal amount of bypassing leads to a small reduction in the LLC miss rate. 

A key aspect of our motivation of proposing the Bypass Buffer is that the bypassed blocks are not 

likely to be reaccessed by upper levels. We also mentioned in the Section III-C that hits in bypass 

buffer should be very rare and therefore it does not incur any performance penalty if BB-entries are 

data-less. In Figure 6, we present the fraction of hits in the bypass buffer (called BB-hits) normalized 

to the number of cache bypasses. There are two key observations that can be made from comparing 

Figure 5 and Figure 6. First, for most benchmarks with high amount of bypassing, the fraction number 

of BB-hits is very low. Second, benchmarks such as bzip2 (SPEC2000) and vortex have relatively 

higher fraction of BB-hits. A BB-hit indicates an incorrect bypassing decision and results in lower 

probability of bypass. Therefore the fraction of bypassed blocks is relatively low for these two 

benchmarks. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Fraction of bypassed LLC allocations for I-DSB- BBtracking 

 

 

 

 

 

 

 

 

 

Figure 6: Fraction of bypassed blocks incurring a hit in the bypass buffer for I-DSB-

BBtracking 

B. Performance improvement of Bypass Buffers 

In this experiment, we evaluate the effectiveness of our proposed I-DSB-BB and I-DSB-BBtracking 

designs. We present the performance improvements, measured in the instruction per cycle (IPC) 
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speedups, as shown in Figure 7. For reference, we also show the IPC improvement of the non-

inclusive DSB design. From Figure 7, we can see thatDSB achieves an 11.6% IPC improvement for 

non-inclusive cache hierarchies on average, using the geometric mean (Gmean), across the high MPKI 

benchmarks. Both I-DSB- BB and I-DSB-BBtracking enable bypassing for inclusive LLCs. I-DSB-

BB achieves an 9.8% performance gain on average while I-DSB-BBtracking has an overall speedup 

of 9.4%. As discussed in Section III-D, I-DSB-BBtracking uses the BB to keep usage information 

for both bypassed blocks and the replacement victims chosen to participate in virtual bypass. 

Compared to I-DSB-BB, some entries in a 64-entry BB are evicted early, which affects the accuracy 

of tracking the bypassing effectiveness. Therefore, I-DSB- BBtracking has slightly lower performance 

than I-DSB-BB. When increasing the BB size to 128 entries, the performance gains of I-DSB-

BBtracking is improved to 10.0%. Considering its significant savings in hardware cost and relatively 

minor performance difference to I-DSB-BB, we consider I-DSB-BBtracking as our design of choice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Performance improvements of DSB, I-DSB-BB and I-DSB-BBtracking (w.r.t. the 

baseline inclusive LLC with the LRU replacement policy) 

C. Effect of the Bypass Buffer size 

In this section, we analyze the performance of I-DSB- BB and I-DSB-BBtracking for different 

bypass buffer sizes. As mentioned in Section II the number of bypass buffer entries required should 

be small because of the lifetime of most bypassed cache blocks in upper cache levels is small. 

Therefore, we chose to experiment with a design with 64 BB-entries. Figure 8 shows the geometric 

mean of IPC speedup of benchmarks for different sizes of bypass buffer. It can be observed from the 

results clearly that increasing the size of bypass buffer increases the performance of I- DSB-BB 

gradually. On the other hand, I-DSB-BBtracking gains performance with increasing size of bypass 

buffer more rapidly in the beginning but it saturates after 128- entries. 

To elaborate, increasing the bypass buffer size for I- DSB-BB allows the tags of bypassed blocks 

to be stored in BB longer. Therefore, with the increase of size of bypass 

buffer the performance increases. I-DSB-BBtracking has two benefits from increasing the size of 

BB. The first is the same as I-DSB-BB and the second is that the bypass tracking mechanism has 

more entries and the detection of effectiveness and ineffectiveness of bypassing is done more 

accurately. This is the reason why I-DSB-BBtracking recovers more performance compared to I-

DSB-BB when number of BB-entries is increased. 
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performance compared to non-inclusive case. Multiple consecutive accesses to the same cache set 

are inserted at the LRU position in the set and evict each other in the case of this benchmark. This 

phenomenon does not hurt performance in a non-inclusive LLC but it degrades performance when 

inclusion is enforced via back invalidation. As a result, DRRIP (inclusive LLC) shows 17% and 

7% lesser performance for sphinx and sphinx-2 respectively compared to DRRIP (non-inclusive 

LLC). On the other hand, I-DSB-BBtracking recovers all the performance in the case of sphinx-2 and 

ensures no slowdown in the case of sphinx. This recovery of performance is enabled by the bypass 

buffer which lets the bypassed cache blocks stay in the LLC for longer duration as opposed to using 

DRRIP which evicts the LRU inserted cache blocks on the next miss to the cache set. 

 

Figure 8: Performance of I-DSB-BB and I-DSB-BBtracking for different bypass buffer sizes 

D. Comparison to a high performing replacement algorithm, DRRIP 

DRRIP [9] is one of the high performing cache replacement algorithms for LLCs. It provides scan- 

resistance and thrash-resistance via the use of bimodal insertion policies and set dueling [20]. We 

adopt the source code (distributed by the authors) to incorporate DRRIP in our simulator framework. 

We compare the performance gains of the DRRIP replacement policy with our proposed I- DSB-

BBtracking design and the results are shown in Figure 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Performance improvements of DRRIP and I-DSB-  
9. In this experiment, both DRRIP and our I-DSB- BBtracking are used for an inclusive LLC and 

the baseline is an inclusive LLC with the LRU replacement policy. For reference, we also include a 

bar for each benchmark in the figure showing the IPC speedup of DRRIP on a non- inclusive LLC 

and it is normalized to same baseline system as other two bars (inclusive LLC with the LRU 

replacement policy). 

From Figure 9, we can see that both DRRIP and our proposed I-DSB-BBtracking can support the 

inclusion property while achieving performance gains over the baseline LLC, an average of 9.4% 

and 6.7%, respectively. For benchmarks such as art, gcc-2, mcf and sphinx, I-DSB- BBtracking 

outperforms DRRIP significantly although DRRIP already shows good performance. The reason is 

that DRRIP still needs to allocate a block even if it knows the thrashing behavior. Therefore, in our 

16-way set associative LLC, out of 16 ways in a cache set, one way is being thrashed while other 

ways enjoy hits when being reused. Bypassing eliminates such inefficiency and can fully utilize the 16 

ways for data reuse. The other limitation of any replacement algorithm, as discussed in Section II, 

causes both program phases of the  benchmark sphinx to degrade 
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E. Performance gains of Bypass Buffers in the presence of a stream-buffer 

High performance microprocessors employ hardware prefetching mechanisms to hide memory 

latency. For our high MPKI benchmarks, when we employ a stream buffer 

[13] with the following configuration: 8 four-entry stream buffers with a PC-based two-way 512-

entry stride prediction table, the streaming buffer prefetcher results in a 39% IPC improvement on 

average. Here, it is interesting to see whether the intelligent LLC management can still benefit in the 

presence of the stream buffer. As shown in Figure 10, when we use I-DSB-BBtracking algorithm for 

inclusive cache hierarchy with such a stream buffer, a 9.2% IPC improvement (on average) is 

observed over the baseline inclusive cache hierarchy with the LRU replacement policy and the same 

streaming buffer. 

In comparison, inclusive DRRIP provides an IPC speedup of 7.3% in such a case. Therefore, we 

conclude that bypassing for inclusive cache using I-DSB-BBtracking can 

outperform intelligent replacement policy like DRRIP in presence of stream prefetching as well. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Performance improvements of DRRIP and I-DSB- BBtracking in presence of a 

stream buffer. The baseline is an inclusive LLC with the LRU replacement and a stream 

buffer prefetcher. 

F. Sensitivity to LLC configurations 

We also evaluate DSB, I-DSB-BB, I-DSB-BBtracking and DRRIP for different LLC sizes and set-

associativity. Their average performance gains across the high MPKI benchmarks are shown in Figure 

11. The baseline LLC for each set of bars is of specified size and uses LRU replacement policy. The 

same BB size, 64, is used for all these cache configurations. The rationale behind the same size of 

bypass-buffer being effective for various cache sizes is that the bypass-buffer is sized for the lifetime 

of bypassed cache blocks in upper cache levels and which does not change significantly with the 

configuration of LLC. Moreover, the number of cache sets (which increases with increasing cache size 

and decreasing set associativity) increases the overhead of bypassing for DSB and I-DSB-BB while I-

DSB-BBtracking has a fixed overhead. 

From Figure 11, we can see that the adaptive bypassing schemes achieve high performance for all 

the cache configurations that we studied. As we move towards a smaller capacity of LLC, the 

performance gains of bypassing (DSB) as well as replacement (here DRRIP) are 

reduced. This is due to the thrashing behavior of some of the benchmarks which causes the baselines 

of 1MB and 2MB to be similar performing. On the other hand, DSB and DRRIP both provide thrash 

resistance and 2MB LLC can fit bigger portion of the working set compared to 1MB LLC and 

enjoys significantly more hits. It should also be noted that, with bigger LLC capacity of 4MB the 
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difference in performance between DSB (non-inclusive LLC) and DRRIP (inclusive LLC) grows 

comparatively small. This is due to two reasons. Firstly, the negative effect of enforcing inclusion 

decreases when LLC capacity is bigger. Secondly, DSB does not evict data from LLC while DRRIP 

has to insert data in LLC which hurts more performance for smaller cache associativity/capacity 

and vice-versa. Overall, we can see that I-DSB-BBtracking consistently outperforms DRRIP across a 

variety of LLC configurations we studied. 

 

 

 

 

 

 

 

 

 

 

Figure 11: Performance improvements of DSB, I-DSB-BB and I-DSB-BBtracking for 

different cache configurations. (the baselines are inclusive LLCs with the corresponding 

configurations) 

G. Bypass Buffers for Shared Last Level Caches 

In the next experiment, we focus on the effectiveness of the BB for the shared LLCs in multi-

core systems. For a 4MB LLC shared among 4 cores, we employ a 256-entry BB and measure the 

performance of 32 multi-programmed workloads as described in Section IV. Although the original 

DSB bypassing algorithm is inherently thread unaware, it outperforms thread-aware DRRIP (TA-

DRRIP) [9] in our 

 

 

 

 
 

 

 
 

 

 

 
 
 

Figure 12: Performance improvements of I-DSB-BBtracking and TA-DRRIP for a 4MB inclusive LLC for multi-programmed 

workloads (w.r.t. the baseline with the LRU replacement policy) 
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experiments. We did not observe any significant improvement from making DSB algorithm thread 

aware therefore we conclude that a simpler (thread unaware) design is a more cost effective 

approach. We also compared the performance of a shared BB and a private BB in our design. A thread 

private bypass buffer limits the amount of bypassed blocks a thread can store in the bypass buffer. 

Moreover, if there are a few threads in a multi-programmed workload that do not prefer bypassing, 

many BB-entries may be underutilized. In our experiments, the shared bypass buffer design performs 

superior to a private bypass buffer design and therefore it is the choice in our design of bypass buffer 

for shared LLC. 

Our simulations results comparing the performance of TA-DRRIP and I-DSB-BBtracking are 

reported in Figure 12, which shows that our proposed I-DSB-BBtracking algorithm provides an 

average speedup of 6.6%, 11.6%, 8.4%, 4.3% for the category 4H, 3H1L, 2H2L and 1H3L 

respectively. The workloads in these categories have one or more programs, which have high MPKI 

and they compete heavily for the shared LLC. The bypassing algorithm selectively bypasses the cache 

blocks and therefore provides the cache capacity to data blocks with smaller reuse distances. 

As shown in Figure 12, TA-DRRIP also improves the performance with an average of 4.8%, 9.4%, 

7.2% and 2.9% for categories 4H, 3H1L 2H2L and 1H3L respectively. Due to strict allocation policy, 

it always has to allocate a data block in cache. Moreover, multiple insertions from different threads at 

lower LRU stack positions in a cache set result in victimizing the blocks prematurely and a loss of 

performance due to inclusion. This is responsible for relatively lower average performance of TA-

DRRIP compared to I-DSB-BBtracking algorithm in all the categories. Therefore we conclude that 

bypass buffer can make cache bypassing effective for inclusive shared LLCs as well. 

H. Energy Consumption 

In this section, we compare the energy consumption of I- DSB-BBtracking scheme with the 

baseline. We use McPAT tool [19] to obtain the static and dynamic power consumption results. The 

power model is based on the 45nm technology and 3.4 GHz frequency. Figure 13 shows the energy 

consumption for each benchmark when the 100M simulation phase is executed on the baseline system 

as well as when the I-DSB-BBtracking mechanism is deployed. From Figure 13, we can see that for 

most benchmarks DSB- BBtracking reduces overall energy consumption by up to 25.6% and 6.2% on 

average. Most of the energy savings are a result of reduced execution time which translates into 

significant savings in static energy consumption. For the remaining benchmarks, on which DSB-

BBtracking has little performance impact, the energy consumption impact is nearly negligible. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Comparing energy consumption of I-DSB- BBtracking with the baseline 
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I. Memory Bandwidth Reduction 

As shown in Section V-A, I-DSB-BBtracking reduces LLC misses. This in turn reduces the off-

chip memory traffic and the execution time. As the reduction in LLC miss-rate is typically higher in 

proportion than the reduction in execution time, average memory bandwidth is reduced. As shown 

in Figure 14, we observe average memory bandwidth of 3.3 GB/s in the baseline for benchmark art 

while I-DSB-BBtracking reduces it to 1.9 GB/s. For benchmarks such as bzip2, equake, gromacs and 

mcf, we observe slight increase in the bandwidth. Bzip2 and gromacs have slightly more misses 

compared to the baseline and therefore the bandwidth is increased. On the other hand, equake and 

mcf have reduced number of LLC misses and yet the bandwidth increases due to faster execution 

of the program. Overall, the aggregate memory bandwidth is reduced by 13% on average across the 

benchmarks. 

 

 

 

 

 

 

 

 

 

 

Figure 14: Comparing memory bandwidth of I-DSB- BBtracking with the baseline system 

J. Additional Benefits of Cache Bypassing Algorithms 

Many proposals for high performance cache management focus on replacement algorithms. A 

common theme is to alter the insertion policy whereas the allocation policy is strict and each 

incoming block is allocated space in an LLC. The key contribution of a bypassing algorithm is 

tocombine a placement / allocation policy with the replacement policy. Bypassing has some 

interesting benefits for upcoming memory technologies. For example, phase- change memory (PCM) 

provides high integration density while suffers from limited write endurance. In a design using 

PCM technology for LLCs, we can utilize cache management algorithms like DSB to reduce the 

number of fill operations to the LLC. This would not only increase the life of such PCM based LLC 

structure but also increase the overall performance (as shown in previous sections). In Section V-A, 

Figure 5 shows the fraction (in percentage) of bypassed LLC allocations when the I-DSB-BBtracking 

algorithm is used. From this figure, we can see that for certain benchmarks, up to 80% of the LLC 

allocations can be bypassed while enjoying good performance gains. 

VI. RELATED WORK 

There is a plethora of research work on designing high performing cache replacement algorithms. 

Recently proposed replacement algorithms [3][9][16][20][23] for LLCs focus on providing thrash-

resistance and scan- resistance. There is also a significant amount of work on cache bypassing 

algorithms [4][5][6][7][12][15][18][21] [22][25]. The results of 1
st
 JILP Cache Replacement 

Competition indicated that bypassing algorithm like DSB[6] can be an effective method to improve 

the LLC performance for a wide variety of workloads. Recent work by Li et al. 
[18] uses a similar mechanism to decide the effectiveness of bypassing. The key difference is they do 
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not use probabilistic bypassing and instead maintain a signature based history per program counter to 
make bypassing decisions. A major disadvantage of using signature based 

VII. CONCLUSIONS 

In this work, we focus on the inherent limitation of inclusive caches in utilizing cache bypassing. 

We propose and evaluate a novel solution, called a bypass buffer (BB), to overcome this 

limitation. The bypassed data blocks skip the LLC and their tags are stored in the BB. When a tag is 

replaced from the BB, it invalidates the upper cache levels to maintain the inclusion property. We 

show that for a well design bypassing algorithm a relatively small BB is sufficient to reap most of 

the performance gains of bypassing. Our proposed BB also enables us to significantly reduce the 

storage hardware cost of bypassing algorithms as it readily provides the usage information of 

bypassed cache blocks. Our experimental results show that our proposed design achieves high 

performance and outperforms a recently proposed high performing replacement algorithm, DRRIP, 

in both single core and 4-core systems. Our evaluation of our proposed design on different cache 

configurations and in presence of a stream prefetcher shows that it provides a cost-effective design 

for inclusive LLCs. 
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Appendix-1: Simulation points (starting instruction number) used for benchmarks from 

SPEC2000 and SPEC2006 
Benchm
ark 

Starting 
Point 

Benchm
ark 

Starting 
Point 

ammp 1,400,000,0
00 

mcf-2k 16,900,000
,000 

art 2,800,000,0
00 

mesa 117,600,00
0,000 

bzip2 44,800,000,
000 

milc 20,700,000
,000 

bzip2-2k 18,800,000,
000 

parser 42300,000,
000 

equake 36,700,000,
000 

perl 1,800,000,
000 

gap-2 4,200,000,0
00 

sjeng 91,400,000
,000 

gap 6,900,000,0
00 

sphinx-2 3,200,000,
000 

gcc-2 3,800,000,0
00 

sphinx 83,900,000
,000 

gcc 6,100,000,0
00 

swim 50,000,000
,000 

gromacs 62,900,000,
000 

twolf 800,000,00
0 

gzip 13,800,000,
000 

vortex 70,000,000
,000 

lbm 66,100,000,
000 

vpr 15,200,000
,000 

mcf-2 2,000,000,0
00 

wupwise 10,900,000
,000 

mcf 46,300,000,
000 

  

 

Appendix-2: The list of multiprogrammed workloads 

 4H 3H1L 

1 sphinx, gcc-2, milc, 
mcf-2k 

ammp, art, mcf-2k, 
twolf 

2 equake, lbm, gap-2, 
sphinx2 

ammp, art, lbm, 
bzip2-2k 

3 ammp, equake, gcc-
2, lbm 

equake, mcf-2k, 
sphinx, gap 

4 lbm, art, gap-2, swim lbm, milc, gap-2, 
gcc 

5 sphinx, gap-2, 
sphinx2, swim 

sphinx, gap-2, gcc-
2, gzip 
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6 sphinx2, gcc-2, 
swim, milc 

gcc-2, sphinx-2, 
swim, mesa 

7 lbm, sphinx, milc, 
swim 

swim, mcf-2k, 
equake, parser 

8 gap-2, gcc-2, 
sphinx2, milc 

art, mcf-2k, milc, 
gromacs 

 2H2L 1H3L 

1 art, ammp, bzip2-2k, 
gap 

art, wupwise, gcc, 
bzip2-2k 

2 equake, mcf-2k, gzip, 
perl 

equake, wupwise, 
vpr, twolf 

3 mcf-2k, equake, vpr, 
vortex 

art, bzip2-2k, gcc, 
gap 

4 ammp, swim, twolf, 
wupwise 

equake, gromacs, 
sjeng, perl 

5 lbm, milc, bzip2-2k, 
sjeng 

mcf-2k, mesa, 
parser, gap 

6 sphinx, gap-2, 
gromacs, parser 

sphinx-2, twolf, 
gzip, gcc 

7 gcc-2, sphinx-2, gcc, 
vpr 

gap-2, parser, sjeng, 
gzip 

8 swim, art, vortex, 
gzip 

lbm, bzip2-2k, 
gromacs, perl 

 


