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ABSTRACT 
Researchers describe a software methodology to counteract access-driven side-channel attacks that use shared last-level caches 
(LLCs) among cores to leak data between security do- mains (e.g., tenants in a cloud). In order to eliminate sharing of LLC lines 
and "FLUSH-RELOAD" side channels via LLCs, our method dynamically manages physical memory pages that are shared 
between security domains. In order to prevent cross-tenant "PRIME-PROBE" attacks in LLCs, it additionally manages the 
cacheability of memory pages. Our strategy has been implemented as a memory management component known as CAcHEBAR. 
Although containers are a popular way to enforce tenant isolation in Platform-as-a-Service (PaaS) clouds, the Linux kernel can be 
used to intervene on such side channels across container boundaries. We demonstrate that CAcHEBAR achieves high security 
with little performance overheads for PaaS workloads through formal verification, principled analysis, and empirical evaluation 
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Cache-based side channel; prime-probe; flush-reloadINTRODUCTION 

An access-driven side channel is an attack by which an at- tacker computation learns secret information about a victim 
computation running on the same computer, not by violat- ing the logical access control implemented by the isolation software 
(typically an operating system (OS) or virtual ma- chine monitor (VMM)) but rather by observing the effects of the victim’s 
execution on microarchitectural components it shares with the attacker. Overwhelmingly, the components most often used in these 
attacks are CPU caches. Early cache-based side channels capable of leaking fine-grained in- formation (e.g., cryptographic keys) 
across security bound- aries used per-core caches (e.g., [28, 10, 34]), though the need for the attacker to frequently preempt the 
victim to observe its effects on per-core caches renders these attacks 
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relatively easy to mitigate in software (e.g., [37, 29]). Of more concern are side channels via last-level caches (LLCs) that 
are shared across cores and, in particular, do not require preemption of the victim to extract fine-grained information from it (e.g., 
[33, 35, 12, 20]). 

Two varieties of LLC-based side channels capable of ex- tracting fine-grained information from a victim have been 
demonstrated. The first such attacks were of the FLUSH- RELOAD variety [33, 35], which requires the attacker to share a physical 
memory page with the victim—a common situa- tion in a modern OS, due to shared libraries, copy-on-write memory 
management, and memory deduplication mecha- nisms that aim for smaller memory footprints. The attacker first FLUSHes a 
cache-line sized chunk of the shared page out of the cache using processor-specific instructions (e.g., clflush in x86 processors) 
and later measures  the  time to RELOAD (or re-FLUSH [9]) it to infer whether this chunk was touched (and thus loaded to the 
shared cache already) by the victim. More recently, so-called PRIME-PROBE at- tacks have been 

 
demonstrated via LLCs [12, 20]; these do not require page sharing between the attacker and victim. Rather, PRIME-PROBE 

attacks can be conducted when the two programs share the same CPU cache sets. The attacker PRIMEs the cache by loading its 
own memory into certain cache sets. Later it PROBEs the cache by measuring the time to load the same memory into the cache 
sets and inferring how many cache lines in each cache set are absent due to conflicts with the victim’s execution. 

In this paper we propose a software-only defense against these LLC-based side-channel attacks, based on two seem- ingly 
straightforward principles. First, to defeat FLUSH- RELOAD attacks, we propose a copy-on-access mechanism to manage 
physical pages shared across mutually distrust- ing security domains (i.e., processes, containers1, or VMs). Specifically, 
temporally proximate accesses to the same phys- ical page by multiple security domains results in the page being copied so that 
each domain  has its  own  copy.  In this way, a victim’s  access  to its  copy will  be invisible to an attacker’s RELOAD in a 
FLUSH-RELOAD attack. When accesses are sufficiently spaced in time, the copies can be deduplicated to return the overall 
memory footprint to its original size. Second, to defeat PRIME-PROBE attacks, we design a mechanism to manage the 
cacheability of memory pages so as to limit the number of lines per cache set that an attacker may  PROBE.  In doing so,  we 
limit the visibil- ity of the attacker into the victim’s demand for memory that maps to that cache set. Of course, the 
challenge in 

 

these defenses is in engineering them to be effective in both mitigating LLC-based side-channels and supporting efficient execution 
of computations. 

http://dx.doi.org/10.1145/2976749.2978324
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To demonstrate these defenses and the tradeoffs between security and efficiency that they offer, we detail their design and 
implementation in a memory management subsystem called CAcHEBAR (short for “Cache Barrier”) for the Linux kernel. 
CAcHEBAR supports these defenses for security do- mains represented as Linux containers. That is, copy-on- access to defend 
against FLUSH-RELOAD attacks makes page copies as needed to isolate temporally proximate accesses to the same page from different 
containers. Moreover, mem- ory cacheability is managed so that the processes in each container are collectively limited in the 
number of lines per cache set they can PROBE. CAcHEBAR would thus be well- suited for use in Platform-as-a-Service (PaaS) 
clouds that isolate cloud customers in distinct containers; indeed, cross- container LLC-based side channels have been demonstrated 
in such clouds in the wild [35]. Our security evaluations show that CAcHEBAR mitigates cache-based side-channel attacks, and our 
performance evaluation indicates that CAcHEBAR imposes very modest overheads on PaaS workloads. 

To summarize, we contribute: 

• A novel copy-on-access mechanism to manage physical memory pages shared by distrusting tenants to prevent 
FLUSH-RELOAD side-channel attacks, and its formal verification using model checking. 

• A novel mechanism to dynamically maintain queues of cacheable memory pages so as to limit the cache 
lines a malicious tenant may access in PRIME-PROBE attacks, and a principled derivation of its parameters to balance 
security and performance. 

• Implementation of both mechanisms in a mainstream 
Linux operating system kernel and an extensive secu- 
rity and performance evaluation for PaaS workloads. 

 

1. RELATED WORK 
Numerous proposals have sought to mitigate cache-based side channels with low overhead through redesign of the cache 

hardware, e.g., [31, 13, 19]. Unfortunately, there is little evidence that mainstream CPU manufacturers will de- ploy such defenses 
in the foreseeable future, and even if they did, it would be years before these defenses permeated the installed computing base. Other 
proposals modify appli- cations to better protect secrets from side-channel attacks. These solutions range from tools to limit 
branching on sen- sitive data (e.g., [4, 5]) to application-specific side-channel- free implementations (e.g., [15]). However, the 
overheads of these techniques tend to grow with the scope of programs to which they apply and can be very substantial (e.g., [25]). 

It is for this reason that we believe that systems-level (i.e., OS- or VMM-level) defenses are the most plausible for de- ployment 
in the foreseeable future, and many have been pro- posed. With attention to cache-based side-channels specifi- cally, several works 
provide to each security domain a limited number of designated pages that are never evicted from the LLC (e.g., [14, 18]), thereby 
rendering their contents im- mune to PRIME-PROBE and FLUSH-RELOAD attacks. These approaches, however, require the 
application developer to determine what data/instructions to protect and then to modify the application to organize the sensitive 
content into the protected pages; in contrast, CAcHEBAR seeks to protect applications holistically and requires no application modifi- 

cations. CAcHEBAR also differs  in  several  design  choices that free it from limitations of prior approaches (e.g., the limitation of 
only one protected page per core [14] or de- pendence on relatively recent, Intel-specific cache optimiza- tions [18]). Other systems-
level  solutions  manage  memory so as to partition the use of the LLC by different security domains (e.g., [24, 26]), though these 
approaches preclude memory-page and CPU-cache sharing entirely and hence can underutilize these resources considerably. Others 
have sug- gested disabling or selectively enabling memory sharing [22, 35, 3] for countering various side-channel attacks exploiting 
shared memory, while stopping short of exploring a complete design  for  doing  so.   Our  copy-on-access  design  provides an 
efficient realization of this idea for addressing FLUSH- RELOAD attacks, and extends this idea with cacheability management for 
PRIME-PROBE defense, as well. 

LLC-based side channels are a particular instance of tim- ing side channels, and so defenses that seek to eliminate timing 
side channels are also relevant to our problem. Ex- amples include fuzzing real-time sources (e.g., [30]), though this impinges 
on legitimate uses of real time. Since real-time counters are not the only way to time memory fetches [32], other efforts have 
sought to eliminate side-channel risks more holistically via altering the CPU scheduler (e.g., [27,  17]) and managing how 
tenants co-locate (e.g., [16, 36, 2, 17]). In contrast, here we focus specifically on LLC-based side channels (vs. a larger subset 
of timing side-channels), which again are arguably the most potent known side-channel vec- tors [33, 35, 12, 20], and restrict our 
modifications to the memory management subsystem. 

 

2. COPY-ON-ACCESS 
The FLUSH-RELOAD attack is a highly effective LLC-based side channel that was used, e.g., by Zhang et al. [35] to mount 

fine-grained side-channel attacks in commercial PaaS clouds. It leverages physical memory pages shared between an attacker 
and victim security domains, as well as the abil- ity to evict those pages  from LLCs,  using a capability such as provided by the 
clflush instruction on the x86 architec- ture. clflush is designed to maintain consistency between caches and memory for write-
combined memory [11]. The attacker uses clflush, providing a virtual address as an ar- gument, to invalidate the cache lines 
occupied by the backing physical memory. After a short time interval (the “FLUSH- RELOAD interval”) during which the victim 
executes, the at- tacker measures the time to access the same virtual address. Based on this duration, the attacker can infer 
whether the victim accessed that memory during the interval. 

 Design 
Modern operating systems, in particular Linux OS, often adopt on-demand paging and copy-on-write mechanisms [7] to 

reduce the memory footprints of userspace applications. In particular, copy-on-write enables multiple processes to share the 
same set of physical memory pages as long as none of them modify the content. If a process writes to a shared memory page, the 
write will trigger a page fault and a sub- sequent new page allocation so that a private copy of page will be provided to this 
process. In addition, memory merg- ing techniques like Kernel Same-Page Merging  (KSM) [1] are also used in Linux OS to 
deduplicate identical memory pages. Memory sharing, however, is one of the key factors that enable FLUSH-RELOAD side 
channel attacks. Disabling 

 



 

Juni Khyat                                                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                      Vol-10 Issue-3 No.01 March 2020 
 

Page | 460                                                                                      Copyright @ 2020 Authors  

 
 
 

 
Figure 1: State transition of a physical page 

 

 
memory page sharing entirely will eliminate FLUSH-RELOAD side channels but at the cost of much larger memory foot- prints and 
thus inefficient use of physical memory. 

CAcHEBAR adopts a design that we call copy-on-access, which dynamically controls the sharing of physical memory pages 
between security domains. We designate each phys- ical page as being in exactly one of the following states: UNMAPPED, 

ExcLUSIvE, SHARED, and AccESSED. An UN- MAPPED page is a physical page that is not currently in use. An ExcLUSIvE page 
is a physical page that is currently used by exactly one security domain, but may  be  shared by multiple processes in that 

domain. A SHARED page is a physical page that is shared by multiple security domains, i.e., mapped by at least one process of 
each of the sharing domains, but no process in any domain has accessed this physical page recently. In contrast, an AccESSED 
page is a previously SHARED page that was recently accessed by a security domain. The state transitions are shown in Fig. 1. An 

UNMAPPED page can transition to the ExcLUSIvE state either due to normal page mapping, or due to copy-on-access when a page is 
copied into it. Unmapping a physical page for any reason (e.g., process termination, page swapping) will move an ExcLUSIvE page 

back to the UNMAPPED state. How- ever, mapping the current ExcLUSIvE page by another secu- rity domain will transit it into the 
SHARED state. If all but one domain unmaps this page, it will transition back from the SHARED state to the ExcLUSIvE state, or 
AccESSED state to the ExcLUSIvE state. A page in the SHARED state may be shared by more domains and remain in the same state; 

when any one of the domains accesses the page, it will transition to the AccESSED state. An AccESSED page can stay that way as 
long only the same security domain accesses it. If this page is accessed by another domain, a new physical page will be allocated to 

make a copy of this one, and the current page will transition to either ExcLUSIvE or SHARED state, depending on the remaining 
number of domains mapping this page. The new page will be assigned state ExcLUSIvE. 

An AccESSED page will be reset to the SHARED state if it is not accessed for ∆accessed seconds. This timeout mechanism ensures 
that only recently used pages will remain in the Ac- cESSED state, limiting chances for unnecessary duplication. Page merging 
may also be triggered by deduplication ser- vices in a modern OS (e.g., KSM in Linux). This effect is reflected by a dashed 
line in Fig. 1 from state ExcLUSIvE to SHARED. A page at any of the mapped states (i.e., ExcLU- SIvE, SHARED, AccESSED) can 
transition to UNMAPPED state for the same reason when it is a copy of another page (not shown in the figure). 

Merging duplicated pages requires some extra bookkeep- ing. When a page transitions from UNMAPPED to ExcLU- SIvE due to 
copy-on-access, the original page is tracked by the new copy so that CAcHEBAR knows with which page to merge it when 
deduplicating. If the original page is un- mapped first, then one of its copies will be designated as the new “original” page, 
with which other copies will be merged in the future. The interaction between copy-on- access and existing copy-on-write 
mechanisms is also implic- itly depicted in Fig. 1: Upon copy-on-write, the triggering process will first unmap the physical 
page, possibly inducing a state transition  (from SHARED to ExcLUSIvE).  The state of the newly mapped physical page is 
maintained separately. 

 

 Implementation 
At the core of copy-on-access implementation is the state machine depicted in Fig. 1. 

unmapped ⇔ exclusive ⇔ shared. Conventional Linux kernels maintain the relationship between processes and the physical 

pages they use. However, CAcHEBAR also needs to 
keep track of the relationship between containers and the physical pages that each container’s processes use. There- fore, 
CAcHEBAR incorporates a new data structure, counter, which is conceptually a table used for recording, for each physical page, 
the number of processes in each container that have Page Table Entries (PTEs) mapped to this page. 

The counter data structure is updated and referenced in multiple places in the kernel. Specifically, in CAcHEBAR we 
instrumented every update of  _mapcount, a  data field in the page structure for counting PTE mappings, so that every time the 
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kernel tracks the PTE mappings of a physical page, counter is updated accordingly. The use of counter greatly simplifies 
maintaining and determining the state of a physical page: (1) Given a container, access to a single cell suffices to check whether 
a physical page is already mapped in the container. This operation is very commonly used to decide if a state transition is 
required when a page is mapped by a process. Without counter, such an operation requires  performing reverse mappings to check 
the domain of each mapping. (2) Given a physical page, it takes N accesses to counter, where N is the total number of 
containers, to tell which containers have mapped to this page. This operation is commonly used to determine the state of a 

physical page. shared  ⇒  accessed.    To  differentiate  SHARED  and  Ac- 
cESSED states, one additional data field, owner, is added 
(see  Fig. 2)  to  indicate  the  owner  of  the  page  (a  pointer to a PID_namespace structure). When the page is in the SHARED state, 
its owner is NULL; otherwise it points to the container that last accessed it. 

All PTEs  pointing to a SHARED physical page will  have a reserved Copy-On-Access (COA) bit set. Therefore, any 

 
 

Figure 2: Structure of copy-on-access page lists. 

 

 
access to these virtual pages will induce a page fault. When a page fault is triggered, CAcHEBAR checks if the page is present in 
physical memory; if so,  and if the physical page is in  the SHARED state,  the  COA bit of  the  current PTE for this page will be 
cleared so that additional accesses to this physical page from the current process will be allowed without page faults.  The 
physical page will also transition to the AccESSED state. 

accessed ⇒ exclusive/shared. If  the  page  is  already  in the AccESSED state when a domain other than the owner accesses it, the 
page fault handler will allocate a new physi- 

cal page, copy the content of the original page into the new page, and change the PTEs in the accessing container so that they point 
to the new page. Since multiple same-content copies in one domain burdens both performance and mem- ory but contributes 
nothing for security, the fault handler will reuse a copy belonging to that domain if it exists. After copy-on-access, the original 

page can either be ExcLUSIvE or SHARED. All copy pages are anonymous-mapped, since only a single file-mapped page for the same 
file section is allowed. A transition from the AccESSED state to SHARED or Ex- cLUSIvE state can also be triggered by a timeout 

mechanism. CAcHEBAR implements a periodic timer (every ∆accessed = 1s). Upon timer expiration, all physical pages in the Ac- 
cESSED state that were not accessed during this ∆accessed interval will be reset to the SHARED state by clearing its owner field, 

so that pages that are infrequently accessed are less likely to trigger copy-on-access. If an AccESSED page is found for which its 
counter shows the number of domains mapped to it is 1, then the daemon instead clears the COA bit of all PTEs for that page and 
marks the page ExcLUSIvE. Instead of keeping a list of AccESSED pages, CAcHEBAR maintains a list of pages that are in either 
SHARED or Ac- cESSED state, denoted original_list (shown in Fig. 2). Each node in the list also maintains a list of copies of the 

page it represents, dubbed copy_list. These lists are at- tached onto the struct page through track_ptr. When- ever a copy is made from 
the page upon copy-on-access, it is inserted into the copy_list of the original page. Whenever a physical page transitions to the 

UNMAPPED state, it is re- moved from whichever of original_list or copy_list it is contained in. In the former case, CAcHEBAR will 
des- ignate a copy page of the original page as the new original 

page and adjust the lists accordingly. 
For security reasons that will be explained in Sec. 3.3, we further require flushing the entire memory page out of the cache after 

transitioning a page  from  the AccESSED state to the SHARED state due to this timeout mechanism. This page-flushing procedure is 
implemented by issuing clflush 

on each of the memory blocks of any virtual page  that maps to this physical page. 

State transition upon clflush. The clflush instruc- tion is subject to the same permission checks as a memory load, will trigger 
the same  page faults,  and will  similarly set the ACCESSED  bit  in  the  PTE  of  its  argument  [11]. As such, each FLUSH 
via clflush triggers the same transi- tions (e.g., from SHARED to AccESSED, and from AccESSED to an ExcLUSIvE copy) as a 
RELOAD in our implementation, meaning that this defense is equally effective against both FLUSH-RELOAD and FLUSH-FLUSH 
[9] attacks. 

Page deduplication. To mitigate the impact of copy-on- access on the size of memory, CAcHEBAR implements a less frequent 
timer (every ∆copy = 10 × ∆accessed seconds) to pe- 
riodically merge the page copies with their original pages. 
Within the timer interrupt handler, original_list and each copy_list are traversed similarly to the “AccESSED 

⇒ SHARED” transition description above, though the AC- 
CESSED bit in the PTEs of only pages that are in the Ex- 
cLUSIvE state are checked. If a copy page has not been accessed since the last such check (i.e., the ACCESSED bit is 
unset in all PTEs pointing to it), it will be merged with its original page (the head of the copy_list). The AC- CESSED 
bit in the PTEs will be cleared afterwards. 

When merging two pages, if the original page is anonymous- mapped, then the copy page can be merged by simply up- dating 
all PTEs pointing to the copy page to instead point to the original page, and then updating the original page’s reverse 
mappings to include these PTEs. If the original page is file-mapped, then merging is more intricate, additionally involving the 
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creation of a new virtual memory area (vma structure) that maps to the original page’s file position and using this structure to 
replace the virtual memory area of the (anonymous) copy page in the relevant task structure. 

For security reasons, merging of two pages requires flush- ing the original physical page from the LLC. We will elabo- rate 
on this point in Sec. 3.3. 

Interacting with KSM. Page deduplication can also be triggered by existing memory deduplication mechanisms (e.g., KSM). 
To maintain the state of physical pages, CAcHEBAR instruments every reference to _mapcount within KSM and updates  counter 
accordingly.  KSM  is  capable  of  merg- ing more pages than our built-in page deduplication mecha- nisms. However, 
CAcHEBAR still relies on the built-in page deduplication mechanisms for several reasons. First, KSM can merge only 
anonymous-mapped pages, while CAcHEBAR needs to frequently merge an anonymous-mapped page (a copy) with a file-
mapped page (the original). Second, KSM may not be enabled in certain settings, which will lead to ever growing 
copy_lists. Third, KSM must compare page contents byte-by-byte before merging two pages, whereas CAcHEBAR deduplicates 
pages on the same copy_list, avoiding the expensive page content comparison. 

 Security 
Copy-on-access is intuitively secure by design, as no two security domains may access the same physical page at the same 

time, rendering FLUSH-RELOAD attacks seemingly im- possible. To show security formally, we subjected our design to model 
checking in order to prove that copy-on-access is secure against FLUSH-RELOAD attacks. Model checking is an approach to 
formally verify a specification of a finite-state 

concurrent system expressed as temporal logic formulas, by traversing the finite-state machine defined by the model. In our study, 
we used the Spin model checker, which offers effi- cient ways to model concurrent systems and verify temporal logic specifications. 

System modeling.  We model a physical page in Fig. 1 us- ing a byte variable in the PROMELA programming language, and two 
physical pages as an array of two such variables, named pages. We model two security domains (e.g., con- tainers), an attacker 
domain and a victim domain, as two processes in PROMELA. Each process maps a virtual page, virt, to one of the physical pages. 
The virtual page is mod- eled as an index to the pages[] array; initially virt for both the attacker and the victim point to the first 
physical page (i.e., virt is 0). The victim process repeatedly sets pages[virt] to 1, simulating a memory access that brings pages[virt] into 
cache. The attacker process FLUSHes the virtual page by assigning  0 to pages[virt] and RELOADs it by assigning 1 to pages[virt] after 
testing if it already equals to 1. Both the FLUSH and RELOAD operations are modeled as atomic to simplify the state exploration. 

We track the state and owner of the first physical page using another two variables, state and owner. The first page is initially in 
the SHARED state (state is SHARED), and state transitions in Fig. 1 are implemented by each process when they access the memory. 
For example, the RELOAD code snippet run by the attacker is shown in Fig. 3. If the attacker has access to the shared page (Line 
3), versus an exclusive copy (Line 16), then it simulates an access to the page, which either moves the state of the page to 
AccESSED (Line 10) if the state was SHARED (Line 9) or to ExcLUSIvE (Line 14) after making a copy (Line 13) if the state was al- 
ready AccESSED and not owned by the attacker (Line 12). Leakage is detected if pages[virt] is 1 prior to the at- tacker setting it as 
such (Line 19), which the attacker tests in Line 18. 
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Figure 3: Code snippet for Reload. 

 
To model the dashed lines in Fig. 1, we implemented an- other process, called timer, in PROMELA that periodically transitions 

the physical page back to SHARED state from Ac- cESSED state, and periodically with a longer interval, merges the two pages by 
changing the value of virt of each domain back to 0, owner to none, and state to SHARED. 

The security specification is stated as a non-interference property. Specifically, as the attacker domain always FLUSHes 

atomic { 

if 

::(virt == 0) -> 

if 

::(state == UNMAPPED) -> 

assert(0) 

::(state == EXCLUSIVE && owner != ATTACKER) -> 

assert(0) 

::(state == SHARED) -> 

state = ACCESSED 

owner = ATTACKER 

::(state == ACCESSED && owner != ATTACKER) -> 

virt = 1 /* copy-on-access */ 

state = EXCLUSIVE 
fi 

::else -> skip 

fi 

assert(pages[virt] == 0) 

pages[virt] = 1 

} 
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the memory block (sets pages[virt] to 0) before RELOADing it (setting pages[virt] to 1), if the non-interference prop- erty holds, then the 
attacker should always find pages[virt] to be 0 upon RELOADing the page.  The model checker checks for violation of this property. 

Automated verification. We checked the model using Spin. Interestingly, our first model-checking attempt sug- gested  that 
the state transitions may  leak  information  to a FLUSH-RELOAD attacker. The leaks were caused by the timer process that 
periodically transitions the model to a SHARED state. After inspecting the design and implemen- tation, we found that there 
were two situations that may cause information leaks. In the first case, when the timer transitions the state machine to the 
SHARED state from the AccESSED state, if the prior owner of the page was the vic- tim and the attacker reloaded the memory 
right after the transition, the attacker may learn one bit of information. In the second case, when the physical page was merged 
with its copy, if the owner of the page was the victim before the page became SHARED, the attacker may reload it and again 
learn one bit of information.  Since in our implementation of CAcHEBAR, these two state transitions are triggered if the page 
(or its copy) has not been accessed for a while (roughly ∆accessed and ∆copy seconds, respectively), the infor- mation leakage 
bandwidth due to each would be approxi- mately 1/∆accessed bits per page per second or 1/∆copy bits per page per second, 
respectively. 

We improved our CAcHEBAR implementation to prevent this leakage by enforcing LLC flushes (as described in Sec. 3.2) upon 
these two periodic state transitions. We adapted our model accordingly to reflect such changes by adding one more instruction 
to assign pages[0] to be 0 right after the two timer -induced state transitions. Model checking this refined model revealed no further 
information leakage. 

 

3. CACHEABILITY MANAGEMENT 
Another common method to launch side-channel attacks via caches is using PRIME-PROBE attacks, introduced by Os- vik et al.  

[21].  These  attacks have recently been adapted to use LLCs to great effect, e.g., [20, 12]. Unlike a FLUSH- RELOAD attack, 
PRIME-PROBE attacks do not require the at- tacker and victim security domains to share pages. Rather, the attacker simply needs 
to access memory so as to evict (PRIME) the contents of a cache set and later access (PROBE) this memory again to determine (by 
timing the accesses) how much the victim evicted from the cache set. A potentially effective countermeasure to these attacks, 
accordingly, is to remove the attacker’s ability to PRIME and PROBE the whole cache set and to predict how a victim’s demand for 
that set will be reflected in the number of evictions from that set. 

 Design 
Suppose a w-way set associative LLC, so that each cache set has w lines. Let x be the number of cache lines in one set that the 

attacker observes having been evicted in a PRIME- PROBE interval. The PRIME-PROBE attack is effective today because x is 
typically a good indicator of the demand d that the victim security domain had for memory that mapped to that cache set during 
the PRIME-PROBE interval. In partic- ular, if the attacker PRIMEs and PROBEs  all  w  lines,  then it can often observe the 
victim’s demand d exactly, unless 

d > w (in which case the attacker learns at least d ≥ w). 

Figure 4: A cacheable queue for one 
page color in a domain: (a) access to 
page 24 brings it into the queue and 
clears NC bit (“← 0”) in the PTE 
trig- gering the fault; periodically, 
(b) a 
daemon counts the ACCESSED 
bits (“+0”, “+1”) per page and (c) 
re- orders pages accordingly; to 
make room for a new page, (d) NC 
bits in PTEs pointing to the least 
recently used page are set, and the 
page is re- moved from the queue. 
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m 

Here we propose to periodically and probabilistically re- configure the budget ki of lines per cache set that the se- curity domain 
i can occupy. After such a reconfiguration, the attacker’s view of the victim’s demand d is clouded by the following three effects. 
First, if the attacker is allotted a 
budget ka < w, then the attacker will be unable to observe any evictions at all (i.e., x = 0) if d < w − ka.

2 Second, if the victim is 
given allotment kv, then any two victim demands d, d′ satisfying d > d′ ≥ kv will be indistinguishable to the attacker.  Third, the 
probabilistic assignment of kv results 
in extra ambiguity for the attacker, since x evictions might reflect the demand d or the budget kv, since x ≤ min{d, kv} (if all x 
evictions are caused by the victim). 

To enforce the budget ki of lines that security domain i can use in a given cache set, CAcHEBAR maintains for each cache set a 
queue per security domain that records which memory blocks are presently cacheable in this set by pro- cesses in this domain. 
Each element in the queue indicates a memory block that maps to this cache set; only blocks listed in the queue can be cached 
in that set. The queue is maintained with a least recently used (LRU) replacement al- gorithm.  That is, whenever a new memory 
block is accessed, it will replace the memory block in the corresponding queue that is the least recently used. 

 Implementation 
Implementation of cacheable queues is processor micro- architecture dependent. Here we focus  our  attention  on Intel x86 

processors,  which  appears  to  be  more  vulnera- ble to PRIME-PROBE  attacks  due  to  their  inclusive  last- level cache [20]. As  x86  
architectures  only  support  mem- ory management at the page granularity (e.g., by manip- ulating the PTEs to  cause  page  faults),  
CAcHEBAR  con- trols the cacheability of memory blocks at page granularity. CAcHEBAR uses reserved bits in each PTE to manage the 
cacheability  of,  and to track accesses  to,  the physical page to which it points, since a reserved  bit  set  in  a  PTE  in- duces a page 
fault upon access to the associated virtual page, for which the backing physical page cannot be retrieved or cached (if it is not already) 
before the bit is cleared [11, 23]. We hence use the term domain-cacheable to refer to a phys- ical page that is “cacheable” in the view 
of all processes in a particular security domain, which is implemented by modi- fying all relevant PTEs (to have no reserved bits 
set) in the 

processes of that  security  domain.  By  definition,  a  physi- cal page that is domain-cacheable to one container may not necessarily 
be domain-cacheable to another. 

To ensure that no more than ki memory blocks from all processes in container i can occupy lines in a given cache set, 

CAcHEBAR ensures that no more than ki of those pro- cesses’ physical memory pages, of which contents can be stored in that 
cache set, are domain-cacheable at any point in time. Physical memory pages of which contents can be stored in the same cache 
set are said to be of the same color, and so to implement this property, CAcHEBAR maintains, per container and per color (rather 
than per cache set), one cacheable queue, each element of which is a physical mem- ory page that is domain-cacheable in this 
container. Since the memory blocks in each physical page map to different cache sets, limiting the domain-cacheable pages of 

a color to ki also limits the number of cache lines that blocks from these pages can occupy in the same cache set to ki. 
To implement a non-domain-cacheable memory, CAcHEBAR uses one reserved bit, which we denote by NC, in all PTEs 

within the domain mapped to that physical page. As such, accesses to any of these virtual pages will be trapped into the kernel 
and handled by the page fault handler. Upon detect- ing page faults of this type, the page fault handler will move the accessed 
physical page into the corresponding cacheable queue, clear the NC bit in the current PTE3, and remove a least recently used 
physical page from the cacheable queue and set the NC bits in this domain’s PTEs mapped to that page. A physical page 
removed from the cacheable  queue will be flushed out of the cache using  clflush instructions on all of its memory blocks to ensure 
that no residue remains in the cache. CAcHEBAR will flush the translation lookaside buffers (TLB) of all processors to ensure 
the correctness of page cacheabilities every time PTEs are altered. In this way, 

CAcHEBAR limits the number of  domain-cacheable  pages  of a single color at any time to ki. 
To maintain the LRU property of the cacheable queue, a daemon periodically  re-sorts the queue in descending order of recent 

access count. Specifically, the daemon traverses the domain’s PTEs mapped to the physical frame within that domain’s 
queue and counts the number having their ACCESSED bit set, after which it clears these ACCESSED bits. It then orders the 
physical pages in the cacheable queue by this count (see Fig. 4). In our present implementation, this daemon is the same 
daemon that resets pages from the 

 

2This statement assumes a  LRU replacement  policy  and    
that the victim is the only security domain that runs in the PRIME-PROBE interval. If it was not the only security do- main to run, 
then the ambiguity of the observable evictions will additionally cause difficulties for the attacker. 
3We avoid the overhead of traversing all PTEs in the con- tainer that map to this physical page. Access to those virtual pages 
will trigger page faults to make these updates without altering the cacheable queue. 

security domain i. This drawing is memoryless and inde- 
pendent of the draws for other security domains. Let Ki 

denote the random variable distributed according to how ki is 
determined. The random variables that we presume can 
be  observed  by  tΣhe  attac}ker  domains  include  K1, . . . , Km; 

let Ka =min  w, 

i=1 
Ki 

denote the number of cache lines 
 

 
 
 

Figure 5: Page fault handler for CacheBar. 

 
AccESSED state to SHARED state (see Sec. 3), which already checks and resets the ACCESSED bits in copies’ PTEs. Again, 
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this daemon runs every ∆accessed = 1s seconds in our 
allocated to the attacker domains. We also presume the at- 
tacker can accurately measure the number X of its cache lines that are evicted during the victim’s execution. 

Let Pd (E) denote the probability of event E in an exe- cution period during which the victim’s cache usage would populate 

d lines (of this color) if it were allowed to use all w lines, i.e., if k0 = w. We (the defender) would like to dis- tribute K0 , . . . , 

Km so as to minimize the statistical distance between eviction distributions observable by the attacker for  different victim 
demands d, d′, i.e., to minimize 

implementation. This daemon also performs the task of re- setting ki for each security domain i, each time it runs. 

Interacting with copy-on-access. The cacheable queues 
Σ 

 
0≤d<d′ ≤w 

Σ 

|Pd (X = x) − Pd′ (X = x) | (1) 
x 

work closely with the copy-on-access mechanisms. In partic- ular, as both the COA and NC bits may trigger a page fault upon 
page accesses, the page handler logic must incorporate both (see Fig. 5). First, a page fault is handled as normal unless it is due 
to one of the reserved bits set in the PTE. 
As CAcHEBAR is the only source of reserved bits, it takes 

We begin by deriving an expression for Pd (X = x). Below we make the conservative assumption that all evictions are caused 
by the victim’s behavior; in reality, caches are far noisier. We first consider the case x = 0, i.e., that the attacker domains 
observe no evictions. . 

K  = k 
P  X = 0 

. 0
 

0 =   
1  if w ≥ ka + min{k0 , d} 

over page fault handling from this point. CAcHEBAR first checks the COA bit in the PTE. If it is set, the correspond- 

d 
. ∧ Ka 

= ka 

0 otherwise 
ing physical page is either SHARED, in which case it will be transitioned to AccESSED, or AccESSED, in which case it will be copied 
and transitioned to either SHARED or ExcLUSIvE. CAcHEBAR then clears the COA bit and, if no other re- served bits are set, the 
fault handler returns. Otherwise, if the NC bit is set, the associated physical page is not in the 
“min{k0 , d}” is used above because any victim demand for memory blocks that map to this cache set beyond k0 will 
back-fill the cache lines invalidated when CAcHEBAR flushes other blocks from the victim’s cacheability queue, rather than 

evicting others. Since K0 and Ka are independent, 
cacheable queue for its domain, and so CAcHEBAR enqueues the page and, if the queue is full, removes the least-recently- 

Σd 

Pd (X = 0) = 
wΣ−k0 

P (K0 = k0 ) · P (Ka = ka) 
used page from the queue. If the NC bit is clear, this page 
k0=0  ka=0 

fault is caused by unknown reasons and CAcHEBAR turns control over to the generic handler for reserved bits. 

Σw wΣ−d 

+ 

P (K0 = k0) · P (Ka = ka) (2) 

 Security 
Recall that ki is the number of cache lines in a certain cache set that is available to domain i for a period. While 

k0=d+1 ka=0 

Note that we have dropped the “d” subscripts from the prob- abilities on the right, since K0 and Ka are distributed inde- pendently 

of d. And, since K1, . . . , Km are independent, 
the budget ki  is in effect, each access to a memory block 
that maps to this cache set, beyond the in-queue ki memory blocks, will incur a page fault (because they are all in dif- 
ferent pages).  Because the page-fault processing time will 

 
 

P (K = k ) = 
 

Σ Ym 
 
 
k1+...+km=ka i=1 

 
P (Ki = ki)   if ka <w 
 
 

(3) 
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m 

overwhelm the timing granularity of modern PRIME-PROBE attacks by an order of magnitude, the attacker i realistically needs to 

restrict himself to accessing ki pages in his PROBE phase and hence to occupying ki lines in that cache set. 
a a 

 
Σ k1+...+km 

Similarly, for x ≥ 1,Ym 

P (Ki = ki) if ka = w≥w i=1 
The security of this design hinges critically on how each . 
K  = k 

P  X = x 
. 0

0 =    
1  if x+w = ka +min{k0 , d} 

ki  is set by the daemon. When ki  is reset, it is drawn from d 

a distribution. In the remainder of this section we present 
. ∧ Ka = ka 

0  otherwise 

how this distribution is determined. 
Suppose there are (at most) m domains on a host that are owned by the attacker—which might be all domains on the host except 

the victim—and let w be the number of cache lines per LLC set. Below we consider domain 0 to be the “victim” domain being 
subjected to PRIME-PROBE attacks 

and so for x ≥ 1, 

Σd 

Pd (X = x) = 
k0 =0 

Σw 

+ 

P (K0  = k0) · P (Ka  = x+w−k0 ) 

 
P (K0  = k0 ) · P (Ka  = x+w−d) (4) 
by the “attacker” domains Σ1, . . . , m.  Of course,  the attacker 

 
k  =d+1 

domains make  use  of  all 

i=1 
ki 

cache lines available to 

them for conducting their PRIME-PROBE attacks. Periodically, CAcHEBAR draws a new value ki for eachFrom here, we proceed 

to solve for the best distribution for K0 , . . . , Km to minimize Eqn. 1 subject to constraints 

Eqns. 2–4. That is, we specify those constraints, along with 

∀i, i′ , k :   P (Ki = k) = P (Ki′  = k) (5) 

Σw 

0 
200 
150 
100 

250 
200 
150 
100 

∀i : P (Ki  = ki) = 1 (6) 
ki =0 

∀i, ki  :   P (Ki  = ki) ≥ 0 (7) 

(a) CAcHEBAR disabled 

(b) CAcHEBAR enabled 

and then solve for each P (Ki = ki) to minimize Eqn. 1. 

Unfortunately, solving to minimize Eqn. 1 alone simply results in a distribution that results in no use of the cache at all (e.g., P 

(Ki = 0) = 1 for each i). As such, we need to rule out such degenerate and “unfair” cases: 

∀i :   P (Ki  < w/(m + 1)) = 0 (8) 

Also, to encourage cache usage, we counterbalance Eqn. 1 with a second goal that values greater use of the cache. We express this 

goal as minimizing the earth mover’s distance [6] from the distribution that assigns P (Ki = w) = 1, i.e., 

Σw 

(w − k) · P (K0 = k) (9) 
k=0 

 

As such, our final optimization problem seeks to balance Eqn. 1 and Eqn. 9. Let constant γ denote the maximum (i.e., worst) 

possible value of Eqn. 1 (i.e.,  when P (Ki = w) = 1 for each i) and δ denote the maximum (i.e., worst) possible value of Eqn. 9 

(i.e., when P (Ki = 0) = 1 for each i). Then, given a parameter ǫ, 0 < ǫ < 1, our optimization computes distributions for K0 , . . . , 
Km so as to minimize u subject to 

0 
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Figure 6: Reload timings in Flush-Reload attacks on 
a shared address vs. on an unshared address 

 

 Security Evaluation 
We evaluated the effectiveness of CAcHEBAR in defending against both FLUSH-RELOAD and PRIME-PROBE attacks. 

 Flush-Reload Attacks 
Although we used Spin model checker to validate the security of our copy-on-access design (Sec. 3),  we  empiri- cally tested our 

implementation to validate its effectiveness. To do so, we constructed a FLUSH-RELOAD covert channel between sender and receiver 
processes, which were isolated in different containers. Both the sender and receiver were linked to a shared library, 
libcrypto.so.1.0.0, and were pinned to run on different cores of the same socket, thus sharing the same last-level cache. The sender 
ran in a loop, repeatedly accessing one memory location (the beginning address of function AES_decrypt()). The receiver exe- cuted 
FLUSH-RELOAD attacks on the same memory address, by first FLUSHing the memory block out of the shared LLC with an clflush 
instruction and then RELOADing the block 

 

u = 
1  

Σ
 

 
Σ 

|Pd (X = x) − Pd′ (X = x) |  
by accessing it directly while measuring the access latency. 

The interval between FLUSH and RELOAD was set to 2500 cycles. The experiment was run for 500,000 FLUSH-RELOAD γ 
0≤d<d′ ≤w  x 

  ! 
Σw 

trials. We then repeated this experiment with the sender accessing an unshared address, to form a baseline. 

u ≥ 
1

 
δ(1 + ǫ) 

(w − k) · P (K0 = k) 
k=0 

Fig. 6(a) shows the results of this experiment, when run over unmodified Linux. The three horizontal lines forming the 
“box” in each boxplot represents the first, second (me- 

and constraints Eqns. 2–8. 
Our evaluation in Sec. 5.2.2 and Sec. 5.3.1 empirically char- acterizes the security and performance that result from set- ting ǫ = 

0.01 the default setting in CAcHEBAR. Of course, other balances could be chosen between these concerns, though as we will see 
below, this setting achieves convincing secu- rity while inducing only a modest performance overhead for most PaaS workloads. 

 

4. EVALUATION 
In this section, we evaluate the security and performance of CAcHEBAR to validate its design and implementation. 

 Setup 
Our testbed is a rack mounted DELL server equipped with two 2.67GHz Intel Xeon 5550 processors. Each processor contains 

4 physical cores (hyperthreading disabled) sharing an 8MB last-level cache (L3). Each core has a 32KB L1 data and instruction 
cache and a 256KB L2 unified cache. The rack server is equipped with 128GB DRAM and 1000Mbps NIC connected to a 
1000Mbps ethernet. 

We implemented CAcHEBAR as a kernel  extension  for Linux kernel 3.13.11.6 that runs Ubuntu 14.04 server edi- 
dian), and third quartiles of the FLUSH-RELOAD measure- ments; whiskers extend to cover all points that lie within 1.5× the 
interquartile range. As can be seen in this figure, 
the times observed by the receiver to RELOAD the shared ad- 
dress were clearly separable from the times to RELOAD the unshared address, over unmodified Linux. With CAcHEBAR enabled, 
however, these measurements are no longer separa- ble (Fig. 6(b)). Certain corner cases are not represented in Fig. 6. For 
example, we found it extremely difficult to con- duct experiments to capture the corner cases where FLUSH and RELOAD takes 
place right before and after physical page mergers, as described in Sec. 3.3. As such, we rely on our manual inspection of the 
implementation in these cases to check correctness and argue these corner cases are very dif- ficult to exploit in practice. 

 Prime-Probe Attacks 

We evaluated the effectiveness of CAcHEBAR against PRIME- 
PROBE attacks by measuring its ability to interfere with a simulated attack. Because the machine architecture on which we 
performed these tests had a w-way LLC with w = 16, we limited our experiments to only a single at- tacker container 
(i.e., m = 1), but an architecture with a 
larger w could accommodate more.4 
tion. Our implementation adds ∼7000 lines of code to this    
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Linux kernel. We set up containers using Docker 1.7.1. 
4For example, on an Itanium 2 processor with a 64-way LLC, 

In our simulation, a process in the attacker container repeatedly performed PRIME-PROBE attacks on a specific cache set, while 
a process in a victim container accessed data that were retrieved into the same cache set at  the rate of d accesses per attacker 

PRIME-PROBE interval. The cache lines available to the victim container and attacker container, i.e., kv and ka respectively, were 

fixed in each ex- 
 
 

NONE ONE FEW SOME LOTS MOST 

 
NONE 

Classification by attacker 
ONE FEW SOME LOTS MOST 

 

 

 

periment. The calculations in Sec. 4.3 implied that kv and ka could take on values from {4, 5, 6, . . . , 14}. In each test with fixed kv 

and ka, we allowed the victim to place a demand of (i.e., retrieve memory blocks to fill) d ∈ {0, 1, 2, ..., 16} cache lines of the 
cache set undergoing the PRIME-PROBE 
attack by the attacker. The attacker’s goal was to classify the victim’s demand into one of six classes: NONE = {0}, ONE = 
{1}, FEW = {2, 3, 4}, SOME = {5, 6, 7, 8}, LOTS = 
{9, 10, 11, 12}, and MOST = {13, 14, 15, 16}. 

To make the attack easier, we permitted the attacker to 
know ka; i.e., the attacker trained a different classifier per value of ka,  with knowledge of the demand d per PRIME- 

 
 
 

 
NONE ONE FEW SOME LOTS MOST 

(a) ithout CAcHEBAR 

Classification by attacker 
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(b) With CAcHEBAR 

PROBE trial, and then tested against additional trial  re- sults to classify unknown victim demands. Specifically, after training a 

na¨ıve Bayes classifier on 500,000 PRIME-PROBE trials per (d, ka, kv) triple, we tested it on another 500,000 trials. To filter out 
PROBE readings due to page faults, ex- cessively large readings were discarded from our evaluation. The tests without CAcHEBAR 
yielded the confusion matrix in Table 7(a), with overall accuracy of 67.5%. In this table, cells with higher numbers have lighter 
backgrounds, and so the best attacker would be one who achieves white cells along the diagonal and dark-gray cells elsewhere. As 
can be seen there, classification by the attacker was very accurate for d falling into NONE, ONE, or LOTS; e.g., d = 1 resulted 
in a classification of ONE with probability of 0.80. Other de- mands had lower accuracy, but were almost always classified into 
adjacent classes; i.e., every class of victim demand was 

classified correctly or as an adjacent class (e.g., d ∈ FEW was 
classified as ONE, FEW, or SOME) at least 96% of the time. 

In contrast, Fig. 7(b) shows the confusion matrix for a na¨ıve Bayes classifier trained and tested using PRIME-PROBE trials 
conducted with CAcHEBAR enabled. Specifically, these values were calculated using 

. 
′  

Figure  7:  Confusion  matrix  of  näıve  Bayes  classifier 
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Figure 8: Accuracy per values of kv  and ka 

4 5 

.18 .17 

.19 .17 

.17 .31 

.17 .33 

.33 .35 

6 

.17 

.30 

.24 

.22 

.32 

7 8 9 10 11 12 13 14 

.17 .17 .17 .17 .17 .36 .22 .33 

.32      .27 .27      .20 .26 .33 .46 .39 

.20       .26      .31 

.18 

.22 

.23 

.28 

.21 .17 .20 .27      .43      .39      .41 

.19      .31 .33 .33   .46 .48   .54 

.43 

.44 
.41 
.45 
.55 
.55 

.31 .27      .35      .50 

.37 .43 .42 .32 

.38      .34 .34      .46  

.55 .53      .31      .53 
.45 .40       .45 .47      .54 .54 .57      .67  
.50      .59   .63      .49 .48   .54   .49      .56 
.53 .68 .68 .54  .65   .52 .56 .57      .66 .66  

    .53      .56   .45   .65   .46      .62      .48   .68   .55 .57 .53  

k
a
 

V
ic

ti
m

 
V

ic
ti

m
 

d
e

m
an

d
 

d
 

d
e

m
an

d
 

d
 

.96 .04 .00 .00 .00 .00 

.01 .80 .19 .01 .00 .00 

.00    .16      .50       .30  .04 .00 

.00 .00 .07      .54      .34  .04 

.00 .00 .00 .03 .84 .13 

.00 .00 .00 .03     .56       .41  
 

.38     .49  

.39 .56 

.50 .62 

.50     .50  

.58 .57 

 



 

Juni Khyat                                                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                      Vol-10 Issue-3 No.01 March 2020 
 

Page | 469                                                                                      Copyright @ 2020 Authors  

Heroku 
Jetty, Tomcat, Tornado, Nginx, Apache, Mongrel, Thin, Puma, Unicorn, Hypnotoad, Starman, Mongoose, 
Yaws, Mochiweb (Java, Python, PHP, Node.js, Ruby, Go, Perl, C, Erlang, Scala, Clojure) 

OpenShift 
JBoss, Wildfly, Tomcat, Apache, Spring, Tornado, Zend, Vert.x (Java, Python, PHP, Node.js, Ruby, Perl, 
Ceylon) 

Google Cloud 
JBoss, Wildfly,  Tomcat,  Apache,  Nginx,  Zend,  Passenger,  Mongrel,  Thin,  IIS (Java,  Python,  PHP, 
Node.js, Ruby, ASP.NET, Go) 

HP Stackato Apache, Apache TomEE, Nginx (Java, Python, PHP, Node.js, Ruby, Perl, Erlang, Scala, Clojure, ASP.NET) 

 
 

limited to fewer lines in the cache set (i.e., small values of ka and kv, in the upper left-hand corner of Fig. 8) the accuracy of the 
attacker will suffer, whereas when the attacker and victim are permitted to use more lines of the cache (i.e., in the lower right-
hand corner) the attacker’s accuracy would improve. Fig. 8 supports these general trends. 

Returning to Fig. 7(b), we see that CAcHEBAR substan- 
tially degrades the adversary’s classification accuracy, which 
 class = c . d ∈ c 

. Σ P class= c 
. 
d ∈ c′ ∧ K 

 ! = k ∧ K = k 
overall is only 33%.  Moreover, the adversary is not only wrong more often, but is also often “more wrong” in those 

 
. v v a a 

 
4≤k ,k ≤14 

· P (Ka = ka) · P (Kv = kv) 
cases. That is, whereas in Fig. 7(a) shows that each class of 

a  v victim demand was classified as that demand or an adjacent 

where class denotes the classification obtained by the adver- sary using the na ı̈ve Bayes classifier; c, c′ ∈ {NONE,  ONE, FEW, SOME, 
LOTS, MOST}; and P (Ka = ka) and P (Kv = kv) ar e  calculate.d  as  described in Sec.  4.3.  T  he  factor 
P class = c . d ∈ c′ ∧ Kv = kv ∧ Ka = ka   was measured em- 
pirically.   Though space limits preclude reporting the full 
class confusion matrix for each kv, ka pair, the accuracy of the na¨ıve Bayes classifier per kv, ka pair, averaged over all classes 
c, is shown in Fig. 8.  As in  Fig. 7,  cells  with larger values in Fig. 8 are more lightly colored, though in this case, the diagonal has 
no particular significance. Rather, we would expect that when the attacker and victim are each 

 
 

CAcHEBAR could accommodate m = 3 or larger. That said, we are unaware of prior works that have successfully con- ducted 
PRIME-PROBE attacks from multiple colluding at- tackers, which would itself face numerous challenges (e.g., coordinating 
PROBEs by multiple processes). 
demand at least 96% of the time, this property no longer holds true in Fig. 7(b). Indeed, the attacker’s best case in this regard 
is classifying victim demand LOTS, which it clas- sifies as SOME, LOTS, or MOST 75% of the time. In the case of a victim 
demand of MOST, this number is only 47%. 

 Performance Evaluation 
In this section we describe tests we have run to evalu- ate the performance impact of CAcHEBAR relative to an unmodified 

Linux kernel. As mentioned previously, we are motivated by side-channel prevention in PaaS clouds, and so we focused our 
evaluation on typical PaaS applications. 

In order to increase server utilization and reduce cost, most public PaaS clouds isolate tenants within the same operating 
system using Linux containers. While a web ap- plication may contain web servers, programming language runtimes, 
databases, and a set of middleware tha enrich its 

Table 1: Server+language support in selected PaaS clouds 
 

 

 
 
 

 

PaaS cloud 

AppFog 

Supported  server engines (+  application  languages) 

Tomcat, Apache, Nginx, IIS (Java, Python, PHP, Node.js, Ruby, Go) 

Elastic Beanstalk Tomcat, Apache, Nginx, Passenger, Puma, IIS (Java, Python, PHP, Node.js, Ruby, Go, .NET) 
Engine Yard Nginx, Rack, Passenger, Puma, Unicorn, Trinidad (Java, PHP, Node.js, and Ruby) 

Azure Tomcat, Jetty, Apache, Nginx, GlassFish, Wildfly, IIS (Java, Python, PHP, Node.js, Ruby, .NET) 
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Figure 9: Average throughput and response time per Apache+PHP-FPM server, each in a separate container 
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functionality, in all PaaS clouds we have studied, language runtimes and web servers are located on different servers from 
databases and middleware; web/app servers controlled by different tenants may share the same OS, however. Be- cause users of 
PaaS clouds do not have the permission to ex- ecute arbitrary code on databases and middleware that are typically shared by 
multiple tenants, the targets of the side- channel attacks we consider in this paper are primarily web servers that supports various 
language runtimes, which may be co-located with the adversary-controlled malicious web servers on which arbitrary code can be 
executed. We con- ducted a survey to understand the popular web/app servers that are used in major PaaS clouds, and the 
programming languages they support; see Table 1. 

 

 Runtime and Throughput Overhead 

Our experiments explored CAcHEBAR’s performance (1) per the number of container (and webserver) instances; (2) for different 
combinations of webserver and application lan- guage; (3) for complex workloads characteristic of a social networking website; 
and (4) for media-streaming workloads. 

Webserver performance. In the first experiments, each container ran an Apache 2.4.7 web server with PHP-FPM and SSL 
enabled. We set up one client per server using autobench; clients were spread across four computers, each with the same 
networking capabilities as the (one) server computer (not to mention more cores and memory than the 

server computer), to ensure that any bottlenecks were on the server machine. Each client repeatedly requested a web page and 
recorded its achievable throughputs and response times at those throughput rates. The content returned to each client request 
was the 86KB output of phpinfo(). 

Fig. 9 shows the throughputs and response times when clients sent requests using SSL without reusing connections. In 
particular, Fig. 9(a) shows the achieved response rates (left axis) and response times (right axis), averaged over all containers, 
as a function of offered load when there were four containers (and so four web servers). Bars depict av- erage response rates 
running over unmodified Linux (“rate w/o CAcHEBAR”) or CAcHEBAR (“rate w CAcHEBAR”), and lines depict average 
response times running over unmodi- fied Linux (“time w/o CAcHEBAR”) or CAcHEBAR (“time w CAcHEBAR”). Fig. 9(b) 
shows the same information for 16 containers. As can be seen in these figures, the throughput impact of CAcHEBAR was 
minimal, while the response time increased by around 20%. Fig. 9(c) shows this information in another way, with the number 
of containers (and hence servers) increasing along the horizontal-axis. In Fig. 9(c), each bar represents the largest request rate 
at which the responses could keep up. 

Webserver+language combinations. Next,  we  selected other common webserver+app-language combinations, namely Java over a 
Tomcat we server, Python over Apache+cgi, Python over Tornado, and Ruby over Puma. For each con- 

figuration,  we instantiated 16 containers and set each up to dynamically generate 80KB random strings for clients. We also did 
tests using another four web servers running the same Ruby application, namely Passenger, Unicorn, Thin, and Mongrel. Fig. 10 
shows the throughput that resulted in each case, over Linux and over CAcHEBAR. As shown there, the throughput overheads were 
modest for most of the server+language combinations that we considered. The worst case was Python over Apache+cgi, which 
suf- 
fered a throughput degradation with CAcHEBAR of 25%; 
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other degradations were much more modest. 

Impact on a more complex workload. To test effects on more complex workloads, we used the webserver instance in CloudSuite [8] 
that implements a social community website written in PHP over Nginx on our CAcHEBAR-protected machine. This implementation 
queries a MySQL database and caches results using Memcached; in keeping with PaaS architectures, the database and Memcached 
server were im- plemented on another machine without protection, since ten- ants cannot typically execute directly on these machines.  
We used the Faban tool to generate a mix of requests to the webserver, including browse (7.9%), login (7.5%), post (24.9%), addFriend 
(7.3%), sendMsg (44.0%), register (0.8%), and logout (7.5%). In addition, a background ac- tivity happened on the webserver every 
10s, which was ei- ther receiveMsg or update with equal likelihood. Fig. 11 shows that the responsiveness of the various common 
op- erations suffered little with CAcHEBAR, between 2% and 15% overhead. Three operations (register, update, and logout) suffered 
over 25% overhead, but these operations were rare in the Faban workload (and presumably in prac- tice). 

Media streaming in CloudSuite. In addition to the webserver benchmark setup used above, CloudSuite offers a media streaming 
server running over Nginx that serves 3.1GB static video files at different levels of quality. We set up a client process per server 
to issue a mix of requests for videos at different quality levels and, through a binary search, to find the peak request rate the 
server can sustain while keeping the failure rate below a threshold. Fig. 12 shows that CAcHEBAR affected this application least 
of all, in both throughput and response time. 

SPEC CPU 2006 benchmarks. For completeness, we measured the impact of CAcHEBAR on nine SPEC CPU 2006 
benchmarks. Six resulted in reasonable overheads: hmmer (13.3% overhead), gamess (3.5%), gromacs (13.1%), 
namd (14.3%), povray  (0.4%),  and  tonto  (16.8%).  How- ever, three exhibited substantially higher overheads: perl- bench (225%), 
bzip2 (76%), and  h264ref  (143%).  (Over- heads  caused  by copy-on-access alone  were  below  5%.)  It is not surprising that limiting 
cache usage using cacheable queue can interfere with  some  workloads.  CAcHEBAR is not a panacea and is best suited for the PaaS 
workloads that formed the core of our evaluation. 

 

 CAcHEBAR’s Memory Savings 

To measure the memory savings that copy-on-access offers over disabling memory sharing between containers, we mea- sured the 
total unique physical memory pages used across various numbers of webservers, each in its own container, when running over (i) 
unmodified Linux,  (ii)  Linux  with- out cross-container memory sharing, and (iii) CAcHEBAR- 

Figure 13: Memory overhead comparison 
 

enabled Linux. We used the system diagnosis tool smem for memory accounting, specifically by accumulating the PSS 
(proportional set size) field output by smem for each pro- cess, which reports the process’ shared memory pages di- vided by the 
number of processes sharing these pages, plus the process’ unshared memory pages and all kernel pages. 

Fig. 13 shows the memory overhead of Linux without cross- container sharing and with CAcHEBAR, computed by sub- tracting 
the memory measured for unmodified Linux from the memory measured for each of these systems. We grew the number of 
containers to 16 in each case, and then extrap- olated to larger numbers of containers using best-fit lines. As can be seen in Fig. 13, 
the overhead of CAcHEBAR is vir- tually zero (“CAcHEBAR-idle”) with negligible query load. “Non-cross-shared-busy” and 
“CAcHEBAR-busy” shows the same measures in an experiment where every fourth server was subjected to a slightly more 
active load of four requests per second. This was enough to induce CAcHEBAR’s copy- on-access mechanism to copy some 
memory pages. Again, however, the memory overhead of CAcHEBAR was much less than of disabling cross-container sharing 
altogether. 

 

5. CONCLUSION 
We have presented two techniques to defend against side- channel attacks via LLCs, namely (i) copy-on-access for phys- ical 

pages shared among multiple security domains, to in- terfere with FLUSH-RELOAD attacks, and (ii) cacheability management 
for pages to limit the number of cache lines per cache set that an adversary can occupy simultaneously, to mitigate PRIME-
PROBE attacks. We described the im- plementation of these techniques in a memory-management subsystem called CAcHEBAR 
for Linux, to interfere with LLC-based side-channel attacks across containers. Using formal analysis (model checking for copy-
on-access, and prob- abilistic modeling for cacheability management), we devel- oped designs that mitigate side-channel 
attacks in our em- pirical evaluations. Our experiments also confirmed that the overheads of our approach are modest for PaaS 
workloads. 
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