

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 458 Copyright @ 2020 Authors

Employing Software to Protect Communication Systems

during The last Caches

Mr.Hemanta Paikray

1
*, Mr.Sakti Charan Panda

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

 hemantapaikray@thenalanda.com*, sakticharan@thenalanda.com

ABSTRACT
Researchers describe a software methodology to counteract access-driven side-channel attacks that use shared last-level caches
(LLCs) among cores to leak data between security do- mains (e.g., tenants in a cloud). In order to eliminate sharing of LLC lines
and "FLUSH-RELOAD" side channels via LLCs, our method dynamically manages physical memory pages that are shared
between security domains. In order to prevent cross-tenant "PRIME-PROBE" attacks in LLCs, it additionally manages the
cacheability of memory pages. Our strategy has been implemented as a memory management component known as CAcHEBAR.
Although containers are a popular way to enforce tenant isolation in Platform-as-a-Service (PaaS) clouds, the Linux kernel can be
used to intervene on such side channels across container boundaries. We demonstrate that CAcHEBAR achieves high security
with little performance overheads for PaaS workloads through formal verification, principled analysis, and empirical evaluation

Keywords

Cache-based side channel; prime-probe; flush-reloadINTRODUCTION

An access-driven side channel is an attack by which an at- tacker computation learns secret information about a victim
computation running on the same computer, not by violat- ing the logical access control implemented by the isolation software
(typically an operating system (OS) or virtual ma- chine monitor (VMM)) but rather by observing the effects of the victim’s
execution on microarchitectural components it shares with the attacker. Overwhelmingly, the components most often used in these
attacks are CPU caches. Early cache-based side channels capable of leaking fine-grained in- formation (e.g., cryptographic keys)
across security bound- aries used per-core caches (e.g., [28, 10, 34]), though the need for the attacker to frequently preempt the
victim to observe its effects on per-core caches renders these attacks

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored.

CCS’16 October 24-28, 2016, Vienna, Austria

Ⓧc 2016 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-4139-4/16/10.

DOI: http://dx.doi.org/10.1145/2976749.2978324

relatively easy to mitigate in software (e.g., [37, 29]). Of more concern are side channels via last-level caches (LLCs) that
are shared across cores and, in particular, do not require preemption of the victim to extract fine-grained information from it (e.g.,
[33, 35, 12, 20]).

Two varieties of LLC-based side channels capable of ex- tracting fine-grained information from a victim have been
demonstrated. The first such attacks were of the FLUSH- RELOAD variety [33, 35], which requires the attacker to share a physical
memory page with the victim—a common situa- tion in a modern OS, due to shared libraries, copy-on-write memory
management, and memory deduplication mecha- nisms that aim for smaller memory footprints. The attacker first FLUSHes a
cache-line sized chunk of the shared page out of the cache using processor-specific instructions (e.g., clflush in x86 processors)
and later measures the time to RELOAD (or re-FLUSH [9]) it to infer whether this chunk was touched (and thus loaded to the
shared cache already) by the victim. More recently, so-called PRIME-PROBE at- tacks have been

demonstrated via LLCs [12, 20]; these do not require page sharing between the attacker and victim. Rather, PRIME-PROBE

attacks can be conducted when the two programs share the same CPU cache sets. The attacker PRIMEs the cache by loading its
own memory into certain cache sets. Later it PROBEs the cache by measuring the time to load the same memory into the cache
sets and inferring how many cache lines in each cache set are absent due to conflicts with the victim’s execution.

In this paper we propose a software-only defense against these LLC-based side-channel attacks, based on two seem- ingly
straightforward principles. First, to defeat FLUSH- RELOAD attacks, we propose a copy-on-access mechanism to manage
physical pages shared across mutually distrust- ing security domains (i.e., processes, containers1, or VMs). Specifically,
temporally proximate accesses to the same phys- ical page by multiple security domains results in the page being copied so that
each domain has its own copy. In this way, a victim’s access to its copy will be invisible to an attacker’s RELOAD in a
FLUSH-RELOAD attack. When accesses are sufficiently spaced in time, the copies can be deduplicated to return the overall
memory footprint to its original size. Second, to defeat PRIME-PROBE attacks, we design a mechanism to manage the
cacheability of memory pages so as to limit the number of lines per cache set that an attacker may PROBE. In doing so, we
limit the visibil- ity of the attacker into the victim’s demand for memory that maps to that cache set. Of course, the
challenge in

these defenses is in engineering them to be effective in both mitigating LLC-based side-channels and supporting efficient execution
of computations.

http://dx.doi.org/10.1145/2976749.2978324

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 459 Copyright @ 2020 Authors

To demonstrate these defenses and the tradeoffs between security and efficiency that they offer, we detail their design and
implementation in a memory management subsystem called CAcHEBAR (short for “Cache Barrier”) for the Linux kernel.
CAcHEBAR supports these defenses for security do- mains represented as Linux containers. That is, copy-on- access to defend
against FLUSH-RELOAD attacks makes page copies as needed to isolate temporally proximate accesses to the same page from different
containers. Moreover, mem- ory cacheability is managed so that the processes in each container are collectively limited in the
number of lines per cache set they can PROBE. CAcHEBAR would thus be well- suited for use in Platform-as-a-Service (PaaS)
clouds that isolate cloud customers in distinct containers; indeed, cross- container LLC-based side channels have been demonstrated
in such clouds in the wild [35]. Our security evaluations show that CAcHEBAR mitigates cache-based side-channel attacks, and our
performance evaluation indicates that CAcHEBAR imposes very modest overheads on PaaS workloads.

To summarize, we contribute:

• A novel copy-on-access mechanism to manage physical memory pages shared by distrusting tenants to prevent
FLUSH-RELOAD side-channel attacks, and its formal verification using model checking.

• A novel mechanism to dynamically maintain queues of cacheable memory pages so as to limit the cache
lines a malicious tenant may access in PRIME-PROBE attacks, and a principled derivation of its parameters to balance
security and performance.

• Implementation of both mechanisms in a mainstream
Linux operating system kernel and an extensive secu-
rity and performance evaluation for PaaS workloads.

1. RELATED WORK
Numerous proposals have sought to mitigate cache-based side channels with low overhead through redesign of the cache

hardware, e.g., [31, 13, 19]. Unfortunately, there is little evidence that mainstream CPU manufacturers will de- ploy such defenses
in the foreseeable future, and even if they did, it would be years before these defenses permeated the installed computing base. Other
proposals modify appli- cations to better protect secrets from side-channel attacks. These solutions range from tools to limit
branching on sen- sitive data (e.g., [4, 5]) to application-specific side-channel- free implementations (e.g., [15]). However, the
overheads of these techniques tend to grow with the scope of programs to which they apply and can be very substantial (e.g., [25]).

It is for this reason that we believe that systems-level (i.e., OS- or VMM-level) defenses are the most plausible for de- ployment
in the foreseeable future, and many have been pro- posed. With attention to cache-based side-channels specifi- cally, several works
provide to each security domain a limited number of designated pages that are never evicted from the LLC (e.g., [14, 18]), thereby
rendering their contents im- mune to PRIME-PROBE and FLUSH-RELOAD attacks. These approaches, however, require the
application developer to determine what data/instructions to protect and then to modify the application to organize the sensitive
content into the protected pages; in contrast, CAcHEBAR seeks to protect applications holistically and requires no application modifi-

cations. CAcHEBAR also differs in several design choices that free it from limitations of prior approaches (e.g., the limitation of
only one protected page per core [14] or de- pendence on relatively recent, Intel-specific cache optimiza- tions [18]). Other systems-
level solutions manage memory so as to partition the use of the LLC by different security domains (e.g., [24, 26]), though these
approaches preclude memory-page and CPU-cache sharing entirely and hence can underutilize these resources considerably. Others
have sug- gested disabling or selectively enabling memory sharing [22, 35, 3] for countering various side-channel attacks exploiting
shared memory, while stopping short of exploring a complete design for doing so. Our copy-on-access design provides an
efficient realization of this idea for addressing FLUSH- RELOAD attacks, and extends this idea with cacheability management for
PRIME-PROBE defense, as well.

LLC-based side channels are a particular instance of tim- ing side channels, and so defenses that seek to eliminate timing
side channels are also relevant to our problem. Ex- amples include fuzzing real-time sources (e.g., [30]), though this impinges
on legitimate uses of real time. Since real-time counters are not the only way to time memory fetches [32], other efforts have
sought to eliminate side-channel risks more holistically via altering the CPU scheduler (e.g., [27, 17]) and managing how
tenants co-locate (e.g., [16, 36, 2, 17]). In contrast, here we focus specifically on LLC-based side channels (vs. a larger subset
of timing side-channels), which again are arguably the most potent known side-channel vec- tors [33, 35, 12, 20], and restrict our
modifications to the memory management subsystem.

2. COPY-ON-ACCESS
The FLUSH-RELOAD attack is a highly effective LLC-based side channel that was used, e.g., by Zhang et al. [35] to mount

fine-grained side-channel attacks in commercial PaaS clouds. It leverages physical memory pages shared between an attacker
and victim security domains, as well as the abil- ity to evict those pages from LLCs, using a capability such as provided by the
clflush instruction on the x86 architec- ture. clflush is designed to maintain consistency between caches and memory for write-
combined memory [11]. The attacker uses clflush, providing a virtual address as an ar- gument, to invalidate the cache lines
occupied by the backing physical memory. After a short time interval (the “FLUSH- RELOAD interval”) during which the victim
executes, the at- tacker measures the time to access the same virtual address. Based on this duration, the attacker can infer
whether the victim accessed that memory during the interval.

 Design
Modern operating systems, in particular Linux OS, often adopt on-demand paging and copy-on-write mechanisms [7] to

reduce the memory footprints of userspace applications. In particular, copy-on-write enables multiple processes to share the
same set of physical memory pages as long as none of them modify the content. If a process writes to a shared memory page, the
write will trigger a page fault and a sub- sequent new page allocation so that a private copy of page will be provided to this
process. In addition, memory merg- ing techniques like Kernel Same-Page Merging (KSM) [1] are also used in Linux OS to
deduplicate identical memory pages. Memory sharing, however, is one of the key factors that enable FLUSH-RELOAD side
channel attacks. Disabling

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 460 Copyright @ 2020 Authors

Figure 1: State transition of a physical page

memory page sharing entirely will eliminate FLUSH-RELOAD side channels but at the cost of much larger memory foot- prints and
thus inefficient use of physical memory.

CAcHEBAR adopts a design that we call copy-on-access, which dynamically controls the sharing of physical memory pages
between security domains. We designate each phys- ical page as being in exactly one of the following states: UNMAPPED,

ExcLUSIvE, SHARED, and AccESSED. An UN- MAPPED page is a physical page that is not currently in use. An ExcLUSIvE page
is a physical page that is currently used by exactly one security domain, but may be shared by multiple processes in that

domain. A SHARED page is a physical page that is shared by multiple security domains, i.e., mapped by at least one process of
each of the sharing domains, but no process in any domain has accessed this physical page recently. In contrast, an AccESSED
page is a previously SHARED page that was recently accessed by a security domain. The state transitions are shown in Fig. 1. An

UNMAPPED page can transition to the ExcLUSIvE state either due to normal page mapping, or due to copy-on-access when a page is
copied into it. Unmapping a physical page for any reason (e.g., process termination, page swapping) will move an ExcLUSIvE page

back to the UNMAPPED state. How- ever, mapping the current ExcLUSIvE page by another secu- rity domain will transit it into the
SHARED state. If all but one domain unmaps this page, it will transition back from the SHARED state to the ExcLUSIvE state, or
AccESSED state to the ExcLUSIvE state. A page in the SHARED state may be shared by more domains and remain in the same state;

when any one of the domains accesses the page, it will transition to the AccESSED state. An AccESSED page can stay that way as
long only the same security domain accesses it. If this page is accessed by another domain, a new physical page will be allocated to

make a copy of this one, and the current page will transition to either ExcLUSIvE or SHARED state, depending on the remaining
number of domains mapping this page. The new page will be assigned state ExcLUSIvE.

An AccESSED page will be reset to the SHARED state if it is not accessed for ∆accessed seconds. This timeout mechanism ensures
that only recently used pages will remain in the Ac- cESSED state, limiting chances for unnecessary duplication. Page merging
may also be triggered by deduplication ser- vices in a modern OS (e.g., KSM in Linux). This effect is reflected by a dashed
line in Fig. 1 from state ExcLUSIvE to SHARED. A page at any of the mapped states (i.e., ExcLU- SIvE, SHARED, AccESSED) can
transition to UNMAPPED state for the same reason when it is a copy of another page (not shown in the figure).

Merging duplicated pages requires some extra bookkeep- ing. When a page transitions from UNMAPPED to ExcLU- SIvE due to
copy-on-access, the original page is tracked by the new copy so that CAcHEBAR knows with which page to merge it when
deduplicating. If the original page is un- mapped first, then one of its copies will be designated as the new “original” page,
with which other copies will be merged in the future. The interaction between copy-on- access and existing copy-on-write
mechanisms is also implic- itly depicted in Fig. 1: Upon copy-on-write, the triggering process will first unmap the physical
page, possibly inducing a state transition (from SHARED to ExcLUSIvE). The state of the newly mapped physical page is
maintained separately.

 Implementation
At the core of copy-on-access implementation is the state machine depicted in Fig. 1.

unmapped ⇔ exclusive ⇔ shared. Conventional Linux kernels maintain the relationship between processes and the physical

pages they use. However, CAcHEBAR also needs to
keep track of the relationship between containers and the physical pages that each container’s processes use. There- fore,
CAcHEBAR incorporates a new data structure, counter, which is conceptually a table used for recording, for each physical page,
the number of processes in each container that have Page Table Entries (PTEs) mapped to this page.

The counter data structure is updated and referenced in multiple places in the kernel. Specifically, in CAcHEBAR we
instrumented every update of _mapcount, a data field in the page structure for counting PTE mappings, so that every time the

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 461 Copyright @ 2020 Authors

kernel tracks the PTE mappings of a physical page, counter is updated accordingly. The use of counter greatly simplifies
maintaining and determining the state of a physical page: (1) Given a container, access to a single cell suffices to check whether
a physical page is already mapped in the container. This operation is very commonly used to decide if a state transition is
required when a page is mapped by a process. Without counter, such an operation requires performing reverse mappings to check
the domain of each mapping. (2) Given a physical page, it takes N accesses to counter, where N is the total number of
containers, to tell which containers have mapped to this page. This operation is commonly used to determine the state of a

physical page. shared ⇒ accessed. To differentiate SHARED and Ac-
cESSED states, one additional data field, owner, is added
(see Fig. 2) to indicate the owner of the page (a pointer to a PID_namespace structure). When the page is in the SHARED state,
its owner is NULL; otherwise it points to the container that last accessed it.

All PTEs pointing to a SHARED physical page will have a reserved Copy-On-Access (COA) bit set. Therefore, any

Figure 2: Structure of copy-on-access page lists.

access to these virtual pages will induce a page fault. When a page fault is triggered, CAcHEBAR checks if the page is present in
physical memory; if so, and if the physical page is in the SHARED state, the COA bit of the current PTE for this page will be
cleared so that additional accesses to this physical page from the current process will be allowed without page faults. The
physical page will also transition to the AccESSED state.

accessed ⇒ exclusive/shared. If the page is already in the AccESSED state when a domain other than the owner accesses it, the
page fault handler will allocate a new physi-

cal page, copy the content of the original page into the new page, and change the PTEs in the accessing container so that they point
to the new page. Since multiple same-content copies in one domain burdens both performance and mem- ory but contributes
nothing for security, the fault handler will reuse a copy belonging to that domain if it exists. After copy-on-access, the original

page can either be ExcLUSIvE or SHARED. All copy pages are anonymous-mapped, since only a single file-mapped page for the same
file section is allowed. A transition from the AccESSED state to SHARED or Ex- cLUSIvE state can also be triggered by a timeout

mechanism. CAcHEBAR implements a periodic timer (every ∆accessed = 1s). Upon timer expiration, all physical pages in the Ac-
cESSED state that were not accessed during this ∆accessed interval will be reset to the SHARED state by clearing its owner field,

so that pages that are infrequently accessed are less likely to trigger copy-on-access. If an AccESSED page is found for which its
counter shows the number of domains mapped to it is 1, then the daemon instead clears the COA bit of all PTEs for that page and
marks the page ExcLUSIvE. Instead of keeping a list of AccESSED pages, CAcHEBAR maintains a list of pages that are in either
SHARED or Ac- cESSED state, denoted original_list (shown in Fig. 2). Each node in the list also maintains a list of copies of the

page it represents, dubbed copy_list. These lists are at- tached onto the struct page through track_ptr. When- ever a copy is made from
the page upon copy-on-access, it is inserted into the copy_list of the original page. Whenever a physical page transitions to the

UNMAPPED state, it is re- moved from whichever of original_list or copy_list it is contained in. In the former case, CAcHEBAR will
des- ignate a copy page of the original page as the new original

page and adjust the lists accordingly.
For security reasons that will be explained in Sec. 3.3, we further require flushing the entire memory page out of the cache after

transitioning a page from the AccESSED state to the SHARED state due to this timeout mechanism. This page-flushing procedure is
implemented by issuing clflush

on each of the memory blocks of any virtual page that maps to this physical page.

State transition upon clflush. The clflush instruc- tion is subject to the same permission checks as a memory load, will trigger
the same page faults, and will similarly set the ACCESSED bit in the PTE of its argument [11]. As such, each FLUSH
via clflush triggers the same transi- tions (e.g., from SHARED to AccESSED, and from AccESSED to an ExcLUSIvE copy) as a
RELOAD in our implementation, meaning that this defense is equally effective against both FLUSH-RELOAD and FLUSH-FLUSH
[9] attacks.

Page deduplication. To mitigate the impact of copy-on- access on the size of memory, CAcHEBAR implements a less frequent
timer (every ∆copy = 10 × ∆accessed seconds) to pe-
riodically merge the page copies with their original pages.
Within the timer interrupt handler, original_list and each copy_list are traversed similarly to the “AccESSED

⇒ SHARED” transition description above, though the AC-
CESSED bit in the PTEs of only pages that are in the Ex-
cLUSIvE state are checked. If a copy page has not been accessed since the last such check (i.e., the ACCESSED bit is
unset in all PTEs pointing to it), it will be merged with its original page (the head of the copy_list). The AC- CESSED
bit in the PTEs will be cleared afterwards.

When merging two pages, if the original page is anonymous- mapped, then the copy page can be merged by simply up- dating
all PTEs pointing to the copy page to instead point to the original page, and then updating the original page’s reverse
mappings to include these PTEs. If the original page is file-mapped, then merging is more intricate, additionally involving the

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 462 Copyright @ 2020 Authors

creation of a new virtual memory area (vma structure) that maps to the original page’s file position and using this structure to
replace the virtual memory area of the (anonymous) copy page in the relevant task structure.

For security reasons, merging of two pages requires flush- ing the original physical page from the LLC. We will elabo- rate
on this point in Sec. 3.3.

Interacting with KSM. Page deduplication can also be triggered by existing memory deduplication mechanisms (e.g., KSM).
To maintain the state of physical pages, CAcHEBAR instruments every reference to _mapcount within KSM and updates counter
accordingly. KSM is capable of merg- ing more pages than our built-in page deduplication mecha- nisms. However,
CAcHEBAR still relies on the built-in page deduplication mechanisms for several reasons. First, KSM can merge only
anonymous-mapped pages, while CAcHEBAR needs to frequently merge an anonymous-mapped page (a copy) with a file-
mapped page (the original). Second, KSM may not be enabled in certain settings, which will lead to ever growing
copy_lists. Third, KSM must compare page contents byte-by-byte before merging two pages, whereas CAcHEBAR deduplicates
pages on the same copy_list, avoiding the expensive page content comparison.

 Security
Copy-on-access is intuitively secure by design, as no two security domains may access the same physical page at the same

time, rendering FLUSH-RELOAD attacks seemingly im- possible. To show security formally, we subjected our design to model
checking in order to prove that copy-on-access is secure against FLUSH-RELOAD attacks. Model checking is an approach to
formally verify a specification of a finite-state

concurrent system expressed as temporal logic formulas, by traversing the finite-state machine defined by the model. In our study,
we used the Spin model checker, which offers effi- cient ways to model concurrent systems and verify temporal logic specifications.

System modeling. We model a physical page in Fig. 1 us- ing a byte variable in the PROMELA programming language, and two
physical pages as an array of two such variables, named pages. We model two security domains (e.g., con- tainers), an attacker
domain and a victim domain, as two processes in PROMELA. Each process maps a virtual page, virt, to one of the physical pages.
The virtual page is mod- eled as an index to the pages[] array; initially virt for both the attacker and the victim point to the first
physical page (i.e., virt is 0). The victim process repeatedly sets pages[virt] to 1, simulating a memory access that brings pages[virt] into
cache. The attacker process FLUSHes the virtual page by assigning 0 to pages[virt] and RELOADs it by assigning 1 to pages[virt] after
testing if it already equals to 1. Both the FLUSH and RELOAD operations are modeled as atomic to simplify the state exploration.

We track the state and owner of the first physical page using another two variables, state and owner. The first page is initially in
the SHARED state (state is SHARED), and state transitions in Fig. 1 are implemented by each process when they access the memory.
For example, the RELOAD code snippet run by the attacker is shown in Fig. 3. If the attacker has access to the shared page (Line
3), versus an exclusive copy (Line 16), then it simulates an access to the page, which either moves the state of the page to
AccESSED (Line 10) if the state was SHARED (Line 9) or to ExcLUSIvE (Line 14) after making a copy (Line 13) if the state was al-
ready AccESSED and not owned by the attacker (Line 12). Leakage is detected if pages[virt] is 1 prior to the at- tacker setting it as
such (Line 19), which the attacker tests in Line 18.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 3: Code snippet for Reload.

To model the dashed lines in Fig. 1, we implemented an- other process, called timer, in PROMELA that periodically transitions

the physical page back to SHARED state from Ac- cESSED state, and periodically with a longer interval, merges the two pages by
changing the value of virt of each domain back to 0, owner to none, and state to SHARED.

The security specification is stated as a non-interference property. Specifically, as the attacker domain always FLUSHes

atomic {

if

::(virt == 0) ->

if

::(state == UNMAPPED) ->

assert(0)

::(state == EXCLUSIVE && owner != ATTACKER) ->

assert(0)

::(state == SHARED) ->

state = ACCESSED

owner = ATTACKER

::(state == ACCESSED && owner != ATTACKER) ->

virt = 1 /* copy-on-access */

state = EXCLUSIVE
fi

::else -> skip

fi

assert(pages[virt] == 0)

pages[virt] = 1

}

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 463 Copyright @ 2020 Authors

the memory block (sets pages[virt] to 0) before RELOADing it (setting pages[virt] to 1), if the non-interference prop- erty holds, then the
attacker should always find pages[virt] to be 0 upon RELOADing the page. The model checker checks for violation of this property.

Automated verification. We checked the model using Spin. Interestingly, our first model-checking attempt sug- gested that
the state transitions may leak information to a FLUSH-RELOAD attacker. The leaks were caused by the timer process that
periodically transitions the model to a SHARED state. After inspecting the design and implemen- tation, we found that there
were two situations that may cause information leaks. In the first case, when the timer transitions the state machine to the
SHARED state from the AccESSED state, if the prior owner of the page was the vic- tim and the attacker reloaded the memory
right after the transition, the attacker may learn one bit of information. In the second case, when the physical page was merged
with its copy, if the owner of the page was the victim before the page became SHARED, the attacker may reload it and again
learn one bit of information. Since in our implementation of CAcHEBAR, these two state transitions are triggered if the page
(or its copy) has not been accessed for a while (roughly ∆accessed and ∆copy seconds, respectively), the infor- mation leakage
bandwidth due to each would be approxi- mately 1/∆accessed bits per page per second or 1/∆copy bits per page per second,
respectively.

We improved our CAcHEBAR implementation to prevent this leakage by enforcing LLC flushes (as described in Sec. 3.2) upon
these two periodic state transitions. We adapted our model accordingly to reflect such changes by adding one more instruction
to assign pages[0] to be 0 right after the two timer -induced state transitions. Model checking this refined model revealed no further
information leakage.

3. CACHEABILITY MANAGEMENT
Another common method to launch side-channel attacks via caches is using PRIME-PROBE attacks, introduced by Os- vik et al.

[21]. These attacks have recently been adapted to use LLCs to great effect, e.g., [20, 12]. Unlike a FLUSH- RELOAD attack,
PRIME-PROBE attacks do not require the at- tacker and victim security domains to share pages. Rather, the attacker simply needs
to access memory so as to evict (PRIME) the contents of a cache set and later access (PROBE) this memory again to determine (by
timing the accesses) how much the victim evicted from the cache set. A potentially effective countermeasure to these attacks,
accordingly, is to remove the attacker’s ability to PRIME and PROBE the whole cache set and to predict how a victim’s demand for
that set will be reflected in the number of evictions from that set.

 Design
Suppose a w-way set associative LLC, so that each cache set has w lines. Let x be the number of cache lines in one set that the

attacker observes having been evicted in a PRIME- PROBE interval. The PRIME-PROBE attack is effective today because x is
typically a good indicator of the demand d that the victim security domain had for memory that mapped to that cache set during
the PRIME-PROBE interval. In partic- ular, if the attacker PRIMEs and PROBEs all w lines, then it can often observe the
victim’s demand d exactly, unless

d > w (in which case the attacker learns at least d ≥ w).

Figure 4: A cacheable queue for one
page color in a domain: (a) access to
page 24 brings it into the queue and
clears NC bit (“← 0”) in the PTE
trig- gering the fault; periodically,
(b) a
daemon counts the ACCESSED
bits (“+0”, “+1”) per page and (c)
re- orders pages accordingly; to
make room for a new page, (d) NC
bits in PTEs pointing to the least
recently used page are set, and the
page is re- moved from the queue.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 464 Copyright @ 2020 Authors

m

Here we propose to periodically and probabilistically re- configure the budget ki of lines per cache set that the se- curity domain
i can occupy. After such a reconfiguration, the attacker’s view of the victim’s demand d is clouded by the following three effects.
First, if the attacker is allotted a
budget ka < w, then the attacker will be unable to observe any evictions at all (i.e., x = 0) if d < w − ka.

2 Second, if the victim is
given allotment kv, then any two victim demands d, d′ satisfying d > d′ ≥ kv will be indistinguishable to the attacker. Third, the
probabilistic assignment of kv results
in extra ambiguity for the attacker, since x evictions might reflect the demand d or the budget kv, since x ≤ min{d, kv} (if all x
evictions are caused by the victim).

To enforce the budget ki of lines that security domain i can use in a given cache set, CAcHEBAR maintains for each cache set a
queue per security domain that records which memory blocks are presently cacheable in this set by pro- cesses in this domain.
Each element in the queue indicates a memory block that maps to this cache set; only blocks listed in the queue can be cached
in that set. The queue is maintained with a least recently used (LRU) replacement al- gorithm. That is, whenever a new memory
block is accessed, it will replace the memory block in the corresponding queue that is the least recently used.

 Implementation
Implementation of cacheable queues is processor micro- architecture dependent. Here we focus our attention on Intel x86

processors, which appears to be more vulnera- ble to PRIME-PROBE attacks due to their inclusive last- level cache [20]. As x86
architectures only support mem- ory management at the page granularity (e.g., by manip- ulating the PTEs to cause page faults),
CAcHEBAR con- trols the cacheability of memory blocks at page granularity. CAcHEBAR uses reserved bits in each PTE to manage the
cacheability of, and to track accesses to, the physical page to which it points, since a reserved bit set in a PTE in- duces a page
fault upon access to the associated virtual page, for which the backing physical page cannot be retrieved or cached (if it is not already)
before the bit is cleared [11, 23]. We hence use the term domain-cacheable to refer to a phys- ical page that is “cacheable” in the view
of all processes in a particular security domain, which is implemented by modi- fying all relevant PTEs (to have no reserved bits
set) in the

processes of that security domain. By definition, a physi- cal page that is domain-cacheable to one container may not necessarily
be domain-cacheable to another.

To ensure that no more than ki memory blocks from all processes in container i can occupy lines in a given cache set,

CAcHEBAR ensures that no more than ki of those pro- cesses’ physical memory pages, of which contents can be stored in that
cache set, are domain-cacheable at any point in time. Physical memory pages of which contents can be stored in the same cache
set are said to be of the same color, and so to implement this property, CAcHEBAR maintains, per container and per color (rather
than per cache set), one cacheable queue, each element of which is a physical mem- ory page that is domain-cacheable in this
container. Since the memory blocks in each physical page map to different cache sets, limiting the domain-cacheable pages of

a color to ki also limits the number of cache lines that blocks from these pages can occupy in the same cache set to ki.
To implement a non-domain-cacheable memory, CAcHEBAR uses one reserved bit, which we denote by NC, in all PTEs

within the domain mapped to that physical page. As such, accesses to any of these virtual pages will be trapped into the kernel
and handled by the page fault handler. Upon detect- ing page faults of this type, the page fault handler will move the accessed
physical page into the corresponding cacheable queue, clear the NC bit in the current PTE3, and remove a least recently used
physical page from the cacheable queue and set the NC bits in this domain’s PTEs mapped to that page. A physical page
removed from the cacheable queue will be flushed out of the cache using clflush instructions on all of its memory blocks to ensure
that no residue remains in the cache. CAcHEBAR will flush the translation lookaside buffers (TLB) of all processors to ensure
the correctness of page cacheabilities every time PTEs are altered. In this way,

CAcHEBAR limits the number of domain-cacheable pages of a single color at any time to ki.
To maintain the LRU property of the cacheable queue, a daemon periodically re-sorts the queue in descending order of recent

access count. Specifically, the daemon traverses the domain’s PTEs mapped to the physical frame within that domain’s
queue and counts the number having their ACCESSED bit set, after which it clears these ACCESSED bits. It then orders the
physical pages in the cacheable queue by this count (see Fig. 4). In our present implementation, this daemon is the same
daemon that resets pages from the

2This statement assumes a LRU replacement policy and
that the victim is the only security domain that runs in the PRIME-PROBE interval. If it was not the only security do- main to run,
then the ambiguity of the observable evictions will additionally cause difficulties for the attacker.
3We avoid the overhead of traversing all PTEs in the con- tainer that map to this physical page. Access to those virtual pages
will trigger page faults to make these updates without altering the cacheable queue.

security domain i. This drawing is memoryless and inde-
pendent of the draws for other security domains. Let Ki

denote the random variable distributed according to how ki is
determined. The random variables that we presume can
be observed by tΣhe attac}ker domains include K1, . . . , Km;

let Ka =min w,

i=1
Ki

denote the number of cache lines

Figure 5: Page fault handler for CacheBar.

AccESSED state to SHARED state (see Sec. 3), which already checks and resets the ACCESSED bits in copies’ PTEs. Again,

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 465 Copyright @ 2020 Authors

this daemon runs every ∆accessed = 1s seconds in our
allocated to the attacker domains. We also presume the at-
tacker can accurately measure the number X of its cache lines that are evicted during the victim’s execution.

Let Pd (E) denote the probability of event E in an exe- cution period during which the victim’s cache usage would populate

d lines (of this color) if it were allowed to use all w lines, i.e., if k0 = w. We (the defender) would like to dis- tribute K0 , . . . ,

Km so as to minimize the statistical distance between eviction distributions observable by the attacker for different victim
demands d, d′, i.e., to minimize

implementation. This daemon also performs the task of re- setting ki for each security domain i, each time it runs.

Interacting with copy-on-access. The cacheable queues
Σ

0≤d<d′ ≤w

Σ

|Pd (X = x) − Pd′ (X = x) | (1)
x

work closely with the copy-on-access mechanisms. In partic- ular, as both the COA and NC bits may trigger a page fault upon
page accesses, the page handler logic must incorporate both (see Fig. 5). First, a page fault is handled as normal unless it is due
to one of the reserved bits set in the PTE.
As CAcHEBAR is the only source of reserved bits, it takes

We begin by deriving an expression for Pd (X = x). Below we make the conservative assumption that all evictions are caused
by the victim’s behavior; in reality, caches are far noisier. We first consider the case x = 0, i.e., that the attacker domains
observe no evictions. .

K = k
P X = 0

. 0

0 =
1 if w ≥ ka + min{k0 , d}

over page fault handling from this point. CAcHEBAR first checks the COA bit in the PTE. If it is set, the correspond-

d
. ∧ Ka

= ka

0 otherwise
ing physical page is either SHARED, in which case it will be transitioned to AccESSED, or AccESSED, in which case it will be copied
and transitioned to either SHARED or ExcLUSIvE. CAcHEBAR then clears the COA bit and, if no other re- served bits are set, the
fault handler returns. Otherwise, if the NC bit is set, the associated physical page is not in the
“min{k0 , d}” is used above because any victim demand for memory blocks that map to this cache set beyond k0 will
back-fill the cache lines invalidated when CAcHEBAR flushes other blocks from the victim’s cacheability queue, rather than

evicting others. Since K0 and Ka are independent,
cacheable queue for its domain, and so CAcHEBAR enqueues the page and, if the queue is full, removes the least-recently-

Σd

Pd (X = 0) =
wΣ−k0

P (K0 = k0) · P (Ka = ka)
used page from the queue. If the NC bit is clear, this page
k0=0 ka=0

fault is caused by unknown reasons and CAcHEBAR turns control over to the generic handler for reserved bits.

Σw wΣ−d

+

P (K0 = k0) · P (Ka = ka) (2)

 Security
Recall that ki is the number of cache lines in a certain cache set that is available to domain i for a period. While

k0=d+1 ka=0

Note that we have dropped the “d” subscripts from the prob- abilities on the right, since K0 and Ka are distributed inde- pendently

of d. And, since K1, . . . , Km are independent,
the budget ki is in effect, each access to a memory block
that maps to this cache set, beyond the in-queue ki memory blocks, will incur a page fault (because they are all in dif-
ferent pages). Because the page-fault processing time will

P (K = k) =

Σ Ym

k1+...+km=ka i=1

P (Ki = ki) if ka <w

(3)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 466 Copyright @ 2020 Authors

m

overwhelm the timing granularity of modern PRIME-PROBE attacks by an order of magnitude, the attacker i realistically needs to

restrict himself to accessing ki pages in his PROBE phase and hence to occupying ki lines in that cache set.
a a

Σ k1+...+km

Similarly, for x ≥ 1,Ym

P (Ki = ki) if ka = w≥w i=1
The security of this design hinges critically on how each .
K = k

P X = x
. 0

0 =
1 if x+w = ka +min{k0 , d}

ki is set by the daemon. When ki is reset, it is drawn from d

a distribution. In the remainder of this section we present
. ∧ Ka = ka

0 otherwise

how this distribution is determined.
Suppose there are (at most) m domains on a host that are owned by the attacker—which might be all domains on the host except

the victim—and let w be the number of cache lines per LLC set. Below we consider domain 0 to be the “victim” domain being
subjected to PRIME-PROBE attacks

and so for x ≥ 1,

Σd

Pd (X = x) =
k0 =0

Σw

+

P (K0 = k0) · P (Ka = x+w−k0)

P (K0 = k0) · P (Ka = x+w−d) (4)
by the “attacker” domains Σ1, . . . , m. Of course, the attacker

k =d+1

domains make use of all

i=1
ki

cache lines available to

them for conducting their PRIME-PROBE attacks. Periodically, CAcHEBAR draws a new value ki for eachFrom here, we proceed

to solve for the best distribution for K0 , . . . , Km to minimize Eqn. 1 subject to constraints

Eqns. 2–4. That is, we specify those constraints, along with

∀i, i′ , k : P (Ki = k) = P (Ki′ = k) (5)

Σw

0
200
150
100

250
200
150
100

∀i : P (Ki = ki) = 1 (6)
ki =0

∀i, ki : P (Ki = ki) ≥ 0 (7)

(a) CAcHEBAR disabled

(b) CAcHEBAR enabled

and then solve for each P (Ki = ki) to minimize Eqn. 1.

Unfortunately, solving to minimize Eqn. 1 alone simply results in a distribution that results in no use of the cache at all (e.g., P

(Ki = 0) = 1 for each i). As such, we need to rule out such degenerate and “unfair” cases:

∀i : P (Ki < w/(m + 1)) = 0 (8)

Also, to encourage cache usage, we counterbalance Eqn. 1 with a second goal that values greater use of the cache. We express this

goal as minimizing the earth mover’s distance [6] from the distribution that assigns P (Ki = w) = 1, i.e.,

Σw

(w − k) · P (K0 = k) (9)
k=0

As such, our final optimization problem seeks to balance Eqn. 1 and Eqn. 9. Let constant γ denote the maximum (i.e., worst)

possible value of Eqn. 1 (i.e., when P (Ki = w) = 1 for each i) and δ denote the maximum (i.e., worst) possible value of Eqn. 9

(i.e., when P (Ki = 0) = 1 for each i). Then, given a parameter ǫ, 0 < ǫ < 1, our optimization computes distributions for K0 , . . . ,
Km so as to minimize u subject to

0

C
P

U
 c

y
cl

es

C
P

U
 c

y
cl

es

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 467 Copyright @ 2020 Authors

Figure 6: Reload timings in Flush-Reload attacks on
a shared address vs. on an unshared address

 Security Evaluation
We evaluated the effectiveness of CAcHEBAR in defending against both FLUSH-RELOAD and PRIME-PROBE attacks.

 Flush-Reload Attacks
Although we used Spin model checker to validate the security of our copy-on-access design (Sec. 3), we empiri- cally tested our

implementation to validate its effectiveness. To do so, we constructed a FLUSH-RELOAD covert channel between sender and receiver
processes, which were isolated in different containers. Both the sender and receiver were linked to a shared library,
libcrypto.so.1.0.0, and were pinned to run on different cores of the same socket, thus sharing the same last-level cache. The sender
ran in a loop, repeatedly accessing one memory location (the beginning address of function AES_decrypt()). The receiver exe- cuted
FLUSH-RELOAD attacks on the same memory address, by first FLUSHing the memory block out of the shared LLC with an clflush
instruction and then RELOADing the block

u =
1

Σ

Σ

|Pd (X = x) − Pd′ (X = x) |
by accessing it directly while measuring the access latency.

The interval between FLUSH and RELOAD was set to 2500 cycles. The experiment was run for 500,000 FLUSH-RELOAD γ
0≤d<d′ ≤w x

 !
Σw

trials. We then repeated this experiment with the sender accessing an unshared address, to form a baseline.

u ≥
1

δ(1 + ǫ)

(w − k) · P (K0 = k)
k=0

Fig. 6(a) shows the results of this experiment, when run over unmodified Linux. The three horizontal lines forming the
“box” in each boxplot represents the first, second (me-

and constraints Eqns. 2–8.
Our evaluation in Sec. 5.2.2 and Sec. 5.3.1 empirically char- acterizes the security and performance that result from set- ting ǫ =

0.01 the default setting in CAcHEBAR. Of course, other balances could be chosen between these concerns, though as we will see
below, this setting achieves convincing secu- rity while inducing only a modest performance overhead for most PaaS workloads.

4. EVALUATION
In this section, we evaluate the security and performance of CAcHEBAR to validate its design and implementation.

 Setup
Our testbed is a rack mounted DELL server equipped with two 2.67GHz Intel Xeon 5550 processors. Each processor contains

4 physical cores (hyperthreading disabled) sharing an 8MB last-level cache (L3). Each core has a 32KB L1 data and instruction
cache and a 256KB L2 unified cache. The rack server is equipped with 128GB DRAM and 1000Mbps NIC connected to a
1000Mbps ethernet.

We implemented CAcHEBAR as a kernel extension for Linux kernel 3.13.11.6 that runs Ubuntu 14.04 server edi-
dian), and third quartiles of the FLUSH-RELOAD measure- ments; whiskers extend to cover all points that lie within 1.5× the
interquartile range. As can be seen in this figure,
the times observed by the receiver to RELOAD the shared ad-
dress were clearly separable from the times to RELOAD the unshared address, over unmodified Linux. With CAcHEBAR enabled,
however, these measurements are no longer separa- ble (Fig. 6(b)). Certain corner cases are not represented in Fig. 6. For
example, we found it extremely difficult to con- duct experiments to capture the corner cases where FLUSH and RELOAD takes
place right before and after physical page mergers, as described in Sec. 3.3. As such, we rely on our manual inspection of the
implementation in these cases to check correctness and argue these corner cases are very dif- ficult to exploit in practice.

 Prime-Probe Attacks

We evaluated the effectiveness of CAcHEBAR against PRIME-
PROBE attacks by measuring its ability to interfere with a simulated attack. Because the machine architecture on which we
performed these tests had a w-way LLC with w = 16, we limited our experiments to only a single at- tacker container
(i.e., m = 1), but an architecture with a
larger w could accommodate more.4
tion. Our implementation adds ∼7000 lines of code to this

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 468 Copyright @ 2020 Authors

Linux kernel. We set up containers using Docker 1.7.1.
4For example, on an Itanium 2 processor with a 64-way LLC,

In our simulation, a process in the attacker container repeatedly performed PRIME-PROBE attacks on a specific cache set, while
a process in a victim container accessed data that were retrieved into the same cache set at the rate of d accesses per attacker

PRIME-PROBE interval. The cache lines available to the victim container and attacker container, i.e., kv and ka respectively, were

fixed in each ex-

NONE ONE FEW SOME LOTS MOST

NONE

Classification by attacker
ONE FEW SOME LOTS MOST

periment. The calculations in Sec. 4.3 implied that kv and ka could take on values from {4, 5, 6, . . . , 14}. In each test with fixed kv

and ka, we allowed the victim to place a demand of (i.e., retrieve memory blocks to fill) d ∈ {0, 1, 2, ..., 16} cache lines of the
cache set undergoing the PRIME-PROBE
attack by the attacker. The attacker’s goal was to classify the victim’s demand into one of six classes: NONE = {0}, ONE =
{1}, FEW = {2, 3, 4}, SOME = {5, 6, 7, 8}, LOTS =
{9, 10, 11, 12}, and MOST = {13, 14, 15, 16}.

To make the attack easier, we permitted the attacker to
know ka; i.e., the attacker trained a different classifier per value of ka, with knowledge of the demand d per PRIME-

NONE ONE FEW SOME LOTS MOST

(a) ithout CAcHEBAR

Classification by attacker
NONE ONE FEW SOME LOTS MOST

.33 .16 .26 .18
.36 .19 .19

 .14 .40 .19
 .10 .16 .37

.04 .02

.06 .04

.09 .05
.16
.13
.09 .20 .07
.08
.10

 .06 .10 .16 .46 .13
 .07 .18 .18 .18 .29

(b) With CAcHEBAR

PROBE trial, and then tested against additional trial re- sults to classify unknown victim demands. Specifically, after training a

na¨ıve Bayes classifier on 500,000 PRIME-PROBE trials per (d, ka, kv) triple, we tested it on another 500,000 trials. To filter out
PROBE readings due to page faults, ex- cessively large readings were discarded from our evaluation. The tests without CAcHEBAR
yielded the confusion matrix in Table 7(a), with overall accuracy of 67.5%. In this table, cells with higher numbers have lighter
backgrounds, and so the best attacker would be one who achieves white cells along the diagonal and dark-gray cells elsewhere. As
can be seen there, classification by the attacker was very accurate for d falling into NONE, ONE, or LOTS; e.g., d = 1 resulted
in a classification of ONE with probability of 0.80. Other de- mands had lower accuracy, but were almost always classified into
adjacent classes; i.e., every class of victim demand was

classified correctly or as an adjacent class (e.g., d ∈ FEW was
classified as ONE, FEW, or SOME) at least 96% of the time.

In contrast, Fig. 7(b) shows the confusion matrix for a na¨ıve Bayes classifier trained and tested using PRIME-PROBE trials
conducted with CAcHEBAR enabled. Specifically, these values were calculated using

.
′

Figure 7: Confusion matrix of näıve Bayes classifier

kv

4

5

6

7

8

9

10

11

12

13

14

Figure 8: Accuracy per values of kv and ka

4 5

.18 .17

.19 .17

.17 .31

.17 .33

.33 .35

6

.17

.30

.24

.22

.32

7 8 9 10 11 12 13 14

.17 .17 .17 .17 .17 .36 .22 .33

.32 .27 .27 .20 .26 .33 .46 .39

.20 .26 .31

.18

.22

.23

.28

.21 .17 .20 .27 .43 .39 .41

.19 .31 .33 .33 .46 .48 .54

.43

.44
.41
.45
.55
.55

.31 .27 .35 .50

.37 .43 .42 .32

.38 .34 .34 .46

.55 .53 .31 .53
.45 .40 .45 .47 .54 .54 .57 .67
.50 .59 .63 .49 .48 .54 .49 .56
.53 .68 .68 .54 .65 .52 .56 .57 .66 .66

 .53 .56 .45 .65 .46 .62 .48 .68 .55 .57 .53

k
a

V
ic

ti
m

V

ic
ti

m

d
e

m
an

d

d

d
e

m
an

d

d

.96 .04 .00 .00 .00 .00

.01 .80 .19 .01 .00 .00

.00 .16 .50 .30 .04 .00

.00 .00 .07 .54 .34 .04

.00 .00 .00 .03 .84 .13

.00 .00 .00 .03 .56 .41

.38 .49

.39 .56

.50 .62

.50 .50

.58 .57

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 469 Copyright @ 2020 Authors

Heroku
Jetty, Tomcat, Tornado, Nginx, Apache, Mongrel, Thin, Puma, Unicorn, Hypnotoad, Starman, Mongoose,
Yaws, Mochiweb (Java, Python, PHP, Node.js, Ruby, Go, Perl, C, Erlang, Scala, Clojure)

OpenShift
JBoss, Wildfly, Tomcat, Apache, Spring, Tornado, Zend, Vert.x (Java, Python, PHP, Node.js, Ruby, Perl,
Ceylon)

Google Cloud
JBoss, Wildfly, Tomcat, Apache, Nginx, Zend, Passenger, Mongrel, Thin, IIS (Java, Python, PHP,
Node.js, Ruby, ASP.NET, Go)

HP Stackato Apache, Apache TomEE, Nginx (Java, Python, PHP, Node.js, Ruby, Perl, Erlang, Scala, Clojure, ASP.NET)

limited to fewer lines in the cache set (i.e., small values of ka and kv, in the upper left-hand corner of Fig. 8) the accuracy of the
attacker will suffer, whereas when the attacker and victim are permitted to use more lines of the cache (i.e., in the lower right-
hand corner) the attacker’s accuracy would improve. Fig. 8 supports these general trends.

Returning to Fig. 7(b), we see that CAcHEBAR substan-
tially degrades the adversary’s classification accuracy, which
 class = c . d ∈ c

. Σ P class= c
.
d ∈ c′ ∧ K

 ! = k ∧ K = k
overall is only 33%. Moreover, the adversary is not only wrong more often, but is also often “more wrong” in those

. v v a a

4≤k ,k ≤14

· P (Ka = ka) · P (Kv = kv)
cases. That is, whereas in Fig. 7(a) shows that each class of

a v victim demand was classified as that demand or an adjacent

where class denotes the classification obtained by the adver- sary using the na ı̈ve Bayes classifier; c, c′ ∈ {NONE, ONE, FEW, SOME,
LOTS, MOST}; and P (Ka = ka) and P (Kv = kv) ar e calculate.d as described in Sec. 4.3. T he factor
P class = c . d ∈ c′ ∧ Kv = kv ∧ Ka = ka was measured em-
pirically. Though space limits preclude reporting the full
class confusion matrix for each kv, ka pair, the accuracy of the na¨ıve Bayes classifier per kv, ka pair, averaged over all classes
c, is shown in Fig. 8. As in Fig. 7, cells with larger values in Fig. 8 are more lightly colored, though in this case, the diagonal has
no particular significance. Rather, we would expect that when the attacker and victim are each

CAcHEBAR could accommodate m = 3 or larger. That said, we are unaware of prior works that have successfully con- ducted
PRIME-PROBE attacks from multiple colluding at- tackers, which would itself face numerous challenges (e.g., coordinating
PROBEs by multiple processes).
demand at least 96% of the time, this property no longer holds true in Fig. 7(b). Indeed, the attacker’s best case in this regard
is classifying victim demand LOTS, which it clas- sifies as SOME, LOTS, or MOST 75% of the time. In the case of a victim
demand of MOST, this number is only 47%.

 Performance Evaluation
In this section we describe tests we have run to evalu- ate the performance impact of CAcHEBAR relative to an unmodified

Linux kernel. As mentioned previously, we are motivated by side-channel prevention in PaaS clouds, and so we focused our
evaluation on typical PaaS applications.

In order to increase server utilization and reduce cost, most public PaaS clouds isolate tenants within the same operating
system using Linux containers. While a web ap- plication may contain web servers, programming language runtimes,
databases, and a set of middleware tha enrich its

Table 1: Server+language support in selected PaaS clouds

PaaS cloud

AppFog

Supported server engines (+ application languages)

Tomcat, Apache, Nginx, IIS (Java, Python, PHP, Node.js, Ruby, Go)

Elastic Beanstalk Tomcat, Apache, Nginx, Passenger, Puma, IIS (Java, Python, PHP, Node.js, Ruby, Go, .NET)
Engine Yard Nginx, Rack, Passenger, Puma, Unicorn, Trinidad (Java, PHP, Node.js, and Ruby)

Azure Tomcat, Jetty, Apache, Nginx, GlassFish, Wildfly, IIS (Java, Python, PHP, Node.js, Ruby, .NET)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 470 Copyright @ 2020 Authors

0.3% 4.2%
1.3% -0.9%

-3.0%

1.2%
2.4% 2.7%

rate w/o CacheBar rate w CacheBar

160

120

80

40

time w/o CacheBar time w CacheBar

3

2

1

rate w/o CacheBar rate w CacheBar

40

30

20

10

time w/o CacheBar time w CacheBar

5

4

3

2

1

rate w/o CacheBar rate w CacheBar

160

120

80

40

time w/o CacheBar time w CacheBar

5

4

3

2

1

0 0

Requests per second

0 0

Requests per second

0
4 6 8 10 12 14 16

0

Number of containers

(a) 4 webservers

(b) 16 webservers

(c) different numbers of webservers

Figure 9: Average throughput and response time per Apache+PHP-FPM server, each in a separate container

w/o CacheBar w CacheBar

40

30

20

10

0

0.8

0.6

0.4

0.2

0

w/o CacheBar w CacheBar

rate w/o CacheBar rate w CacheBar

8

6

34 32
3634 3432 34

24

33 34 36
32

28 27

15.0

9%74.7%

11.9%
% 1 8.4 % % 9.4 1.7% 2.4

8%27.
33.

%

R
es

p
o

n
se

s
p

e
r

se
c

T
h

ro
u

g
h

p
u

t
(r

eq
u

es
ts

/s
ec

)

R
es

p
o

n
se

 t
im

e
(m

s)

R
es

p
o

n
se

s
p

e
r

se
c

R
es

p
o
n

se
 t
im

e
(m

s)

R
es

p
o

n
se

 t
im

e
(m

s)

T
h

ro
u

g
h

p
u

t
(r

eq
u

es
ts

/s
e
c)

R
es

p
o

n
se

s
p

er
 s

ec

R
es

p
o

n
se

 t
im

e
(m

s)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 471 Copyright @ 2020 Authors

4

2

time w/o CacheBar time w CacheBar

12

8

4

0
1 4 8 16

0

umber of containers

Figure 10: By webserver+language

Figure 11: By operation

Figure 12: Media streaming

functionality, in all PaaS clouds we have studied, language runtimes and web servers are located on different servers from
databases and middleware; web/app servers controlled by different tenants may share the same OS, however. Be- cause users of
PaaS clouds do not have the permission to ex- ecute arbitrary code on databases and middleware that are typically shared by
multiple tenants, the targets of the side- channel attacks we consider in this paper are primarily web servers that supports various
language runtimes, which may be co-located with the adversary-controlled malicious web servers on which arbitrary code can be
executed. We con- ducted a survey to understand the popular web/app servers that are used in major PaaS clouds, and the
programming languages they support; see Table 1.

 Runtime and Throughput Overhead

Our experiments explored CAcHEBAR’s performance (1) per the number of container (and webserver) instances; (2) for different
combinations of webserver and application lan- guage; (3) for complex workloads characteristic of a social networking website;
and (4) for media-streaming workloads.

Webserver performance. In the first experiments, each container ran an Apache 2.4.7 web server with PHP-FPM and SSL
enabled. We set up one client per server using autobench; clients were spread across four computers, each with the same
networking capabilities as the (one) server computer (not to mention more cores and memory than the

server computer), to ensure that any bottlenecks were on the server machine. Each client repeatedly requested a web page and
recorded its achievable throughputs and response times at those throughput rates. The content returned to each client request
was the 86KB output of phpinfo().

Fig. 9 shows the throughputs and response times when clients sent requests using SSL without reusing connections. In
particular, Fig. 9(a) shows the achieved response rates (left axis) and response times (right axis), averaged over all containers,
as a function of offered load when there were four containers (and so four web servers). Bars depict av- erage response rates
running over unmodified Linux (“rate w/o CAcHEBAR”) or CAcHEBAR (“rate w CAcHEBAR”), and lines depict average
response times running over unmodi- fied Linux (“time w/o CAcHEBAR”) or CAcHEBAR (“time w CAcHEBAR”). Fig. 9(b)
shows the same information for 16 containers. As can be seen in these figures, the throughput impact of CAcHEBAR was
minimal, while the response time increased by around 20%. Fig. 9(c) shows this information in another way, with the number
of containers (and hence servers) increasing along the horizontal-axis. In Fig. 9(c), each bar represents the largest request rate
at which the responses could keep up.

Webserver+language combinations. Next, we selected other common webserver+app-language combinations, namely Java over a
Tomcat we server, Python over Apache+cgi, Python over Tornado, and Ruby over Puma. For each con-

figuration, we instantiated 16 containers and set each up to dynamically generate 80KB random strings for clients. We also did
tests using another four web servers running the same Ruby application, namely Passenger, Unicorn, Thin, and Mongrel. Fig. 10
shows the throughput that resulted in each case, over Linux and over CAcHEBAR. As shown there, the throughput overheads were
modest for most of the server+language combinations that we considered. The worst case was Python over Apache+cgi, which
suf-
fered a throughput degradation with CAcHEBAR of 25%;

600

450

300

150

0

R
es

p
o

n
se

 t
im

e
(m

s)

M
em

o
ry

 o
v

er
h

ea
d

 (
M

B
)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 472 Copyright @ 2020 Authors

4 8 12 16 20 24 28 32 36 42
Number of containers

other degradations were much more modest.

Impact on a more complex workload. To test effects on more complex workloads, we used the webserver instance in CloudSuite [8]
that implements a social community website written in PHP over Nginx on our CAcHEBAR-protected machine. This implementation
queries a MySQL database and caches results using Memcached; in keeping with PaaS architectures, the database and Memcached
server were im- plemented on another machine without protection, since ten- ants cannot typically execute directly on these machines.
We used the Faban tool to generate a mix of requests to the webserver, including browse (7.9%), login (7.5%), post (24.9%), addFriend
(7.3%), sendMsg (44.0%), register (0.8%), and logout (7.5%). In addition, a background ac- tivity happened on the webserver every
10s, which was ei- ther receiveMsg or update with equal likelihood. Fig. 11 shows that the responsiveness of the various common
op- erations suffered little with CAcHEBAR, between 2% and 15% overhead. Three operations (register, update, and logout) suffered
over 25% overhead, but these operations were rare in the Faban workload (and presumably in prac- tice).

Media streaming in CloudSuite. In addition to the webserver benchmark setup used above, CloudSuite offers a media streaming
server running over Nginx that serves 3.1GB static video files at different levels of quality. We set up a client process per server
to issue a mix of requests for videos at different quality levels and, through a binary search, to find the peak request rate the
server can sustain while keeping the failure rate below a threshold. Fig. 12 shows that CAcHEBAR affected this application least
of all, in both throughput and response time.

SPEC CPU 2006 benchmarks. For completeness, we measured the impact of CAcHEBAR on nine SPEC CPU 2006
benchmarks. Six resulted in reasonable overheads: hmmer (13.3% overhead), gamess (3.5%), gromacs (13.1%),
namd (14.3%), povray (0.4%), and tonto (16.8%). How- ever, three exhibited substantially higher overheads: perl- bench (225%),
bzip2 (76%), and h264ref (143%). (Over- heads caused by copy-on-access alone were below 5%.) It is not surprising that limiting
cache usage using cacheable queue can interfere with some workloads. CAcHEBAR is not a panacea and is best suited for the PaaS
workloads that formed the core of our evaluation.

 CAcHEBAR’s Memory Savings

To measure the memory savings that copy-on-access offers over disabling memory sharing between containers, we mea- sured the
total unique physical memory pages used across various numbers of webservers, each in its own container, when running over (i)
unmodified Linux, (ii) Linux with- out cross-container memory sharing, and (iii) CAcHEBAR-

Figure 13: Memory overhead comparison

enabled Linux. We used the system diagnosis tool smem for memory accounting, specifically by accumulating the PSS
(proportional set size) field output by smem for each pro- cess, which reports the process’ shared memory pages di- vided by the
number of processes sharing these pages, plus the process’ unshared memory pages and all kernel pages.

Fig. 13 shows the memory overhead of Linux without cross- container sharing and with CAcHEBAR, computed by sub- tracting
the memory measured for unmodified Linux from the memory measured for each of these systems. We grew the number of
containers to 16 in each case, and then extrap- olated to larger numbers of containers using best-fit lines. As can be seen in Fig. 13,
the overhead of CAcHEBAR is vir- tually zero (“CAcHEBAR-idle”) with negligible query load. “Non-cross-shared-busy” and
“CAcHEBAR-busy” shows the same measures in an experiment where every fourth server was subjected to a slightly more
active load of four requests per second. This was enough to induce CAcHEBAR’s copy- on-access mechanism to copy some
memory pages. Again, however, the memory overhead of CAcHEBAR was much less than of disabling cross-container sharing
altogether.

5. CONCLUSION
We have presented two techniques to defend against side- channel attacks via LLCs, namely (i) copy-on-access for phys- ical

pages shared among multiple security domains, to in- terfere with FLUSH-RELOAD attacks, and (ii) cacheability management
for pages to limit the number of cache lines per cache set that an adversary can occupy simultaneously, to mitigate PRIME-
PROBE attacks. We described the im- plementation of these techniques in a memory-management subsystem called CAcHEBAR
for Linux, to interfere with LLC-based side-channel attacks across containers. Using formal analysis (model checking for copy-
on-access, and prob- abilistic modeling for cacheability management), we devel- oped designs that mitigate side-channel
attacks in our em- pirical evaluations. Our experiments also confirmed that the overheads of our approach are modest for PaaS
workloads.

Acknowledgments. This work was supported in part by NSF grants 1330599 and 1566444.

6. REFERENCES
[1] A. Arcangeli, I. Eidus, and C. Wright. Increasing memory density by using KSM. In Linux Symposium, 2009.

[2] Y. Azar, S. Kamara, I. Menache, M. Raykova, and
B. Shepard. Co-location-resistant clouds. In 6th ACM Cloud Computing Security Workshop, 2014.

[3] E. Bosman, K. Razavi, H. Bos, , and C. Giuffrida. Dedup est machina: Memory deduplication as an

Non-cross-shared-busy
Non-cross-shared-idle
CacheBar-busy
CacheBar-idle

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 473 Copyright @ 2020 Authors

advanced exploitation vector. In 37th IEEE Symposium on Security and Privacy, 2016.

[4] B. Coppens, I. Verbauwhede, K. D. Bosschere, and
B. D. Sutter. Practical mitigations for timing-based side-channel attacks on modern x86 processors. In 30th IEEE
Symposium on Security and Privacy, 2009.

[5] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and
M. Franz. Thwarting cache side-channel attacks through dynamic software diversity. In ISOC Network and Distributed
System Security Symposium, 2015.

[6] L. Elizaveta and P. Bickel. The earth mover’s distance is the Mallows distance. In 8th International Conference on
Computer Vision, 2001.

[7] F. J. T. Fá brega, F. Javier, and J. D. Guttman. Copy on write, 1995.

[8] M. Ferdman et al. Clearing the clouds: a study of emerging scale-out workloads on modern hardware. In ACM SIGPLAN
Notices, 2012.

[9] D. Gruss, C. Maurice, and K. Wagner. Flush+Flush: A stealthier last-level cache attack. CoRR, abs/1511.04594,
2015.

[10] D. Gullasch, E. Bangerter, and S. Krenn. Cache games
– bringing access-based cache attacks on AES to practice. In 32nd IEEE Symposium on Security and Privacy, 2011.

and countermeasures: the case of AES. In Topics in Cryptology–CT-RSA, 2006.

[22] R. Owens and W. Wang. Non-interactive OS fingerprinting through memory de-duplication technique in
virtual machines. In 30th IEEE International Performance Computing and Communications Conference,
2011.

[23] S. Raikin et al. Tracking mechanism coupled to retirement in reorder buffer for indicating sharing logical registers of
physical register in record indexed by logical register, 2014. US Patent 8,914,617.

[24] H. Raj, R. Nathuji, A. Singh, and P. England. Resource management for isolation enhanced cloud services. In ACM
Cloud Computing Security Workshop, 2009.

[25] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing digital side-channels through obfuscated execution. In 24th
USENIX Security Symposium, 2015.

[26] J. Shi, X. Song, H. Chen, and B. Zang. Limiting cache-based side-channel in multi-tenant cloud using dynamic page
coloring. In Workshops of the 41st IEEE/IFIP International Conference on Dependable Systems and Networks,
2011.

[27] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei,

A. Russo, and D. Mazières. Eliminating cache-based

[11] Intel. IntelⓍR

64 and IA-32 Architectures Software
timing attacks with instruction-based scheduling. In

Developer’s Manual, 2010.

[12] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A shared cache attack that works across cores and defies VM
sandboxing—and its application to AES. In 36th IEEE Symposium on Security and Privacy, 2015.

[13] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and
S. Kaxiras. Non deterministic caches: A simple and effective defense against side channel attacks. Design Automation for
Embedded Systems, 12(3), 2008.

[14] T. Kim, M. Peinado, and G. Mainar-Ruiz. STEALTHMEM: System-level protection against cache-based side
channel attacks in the cloud. In USENIX Security Symposium, 2012.

[15] R. Könighofer. A fast and cache-timing resistant implementation of the AES. In Topics in Cryptology–CT-RSA,
2008.

[16] M. Li, Y. Zhang, K. Bai, W. Zang, M. Yu, and X. He. Improving cloud survivability through dependency based
virtual machine placement. In International Conference on Security and Cryptography, 2012.

[17] P. Li, D. Gao, and M. K. Reiter. StopWatch: A cloud architecture for timing channel mitigation. ACM Trans.
Information and System Security, 17(2), 2014.

[18] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas,
G. Heiser, and R. B. Lee. Catalyst: Defeating last-level cache side channel attacks in cloud computing. In 22nd
IEEE Symposium on High Performance Computer Architecture, 2016.

[19] F. Liu and R. B. Lee. Random fill cache architecture. In 47th Annual IEEE/ACM International Symposium on
Microarchitecture, 2014.

[20] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-channel attacks are practical. In 36th IEEE
Symposium on Security and Privacy, 2015.

[21] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
Computer Security–ESORICS, 2013.

[28] E. Tromer, D. A. Osvik, and A. Shamir. Efficient cache attacks on AES, and countermeasures. Journal of
Cryptology, 23(1), 2010.

[29] V. Varadarajan, T. Ristenpart, and M. Swift. Scheduler-based defenses against cross-VM side channels. In 23rd
USENIX Security Symposium, 2014.

[30] B. C. Vattikonda, S. Das, and H. Shacham. Eliminating fine grained timers in Xen. In 3rd ACM Cloud
Computing Security Workshop, 2011.

[31] Z. Wang and R. B. Lee. A novel cache architecture with enhanced performance and security. In 41st IEEE/ACM
International Symposium on Microarchitecture, 2008.

[32] J. C. Wray. An analysis of covert timing channels. In

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

Page | 474 Copyright @ 2020 Authors

1991 IEEE Symposium on Security and Privacy, 1991.

[33] Y. Yarom and K. E. Falkner. FLUSH+RELOAD: A high resolution, low noise, L3 cache side-channel attack.
In USENIX Security Symposium, 2014.

[34] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM side channels and their use to extract private keys.
In ACM Conference on Computer & Communications Security, 2012.

[35] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-tenant side-channel attacks in PaaS clouds. In ACM
Conference on Computer & Communications Security, 2014.

[36] Y. Zhang, M. Li, K. Bai, M. Yu, and W. Zang. Incentive compatible moving target defense against VM-colocation
attacks in clouds. In 27th IFIP Information Security and Privacy Conference, 2012.

[37] Y. Zhang and M. K. Reiter. Düppel: Retrofitting commodity operating systems to mitigate cache side channels in
the cloud. In ACM Conference on Computer & Communications Security, 2013.

[38]

