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Abstract— CMPs are gravitating towards caches with greater capacity and associativity due to 

the importance of main memory latency and bandwidth increasing daily. Increasing the variety of 

approaches is often used to demonstrate associativity. As a result, there must be a strict trade-off 

in cache architecture between reducing conflict misses and increasing hit latency and energy. We 

introduce the zcache, a cache architecture that permits far larger associativity than the number of 

physical ways (e.g. a 64-associative cache with 4 ways). The zcache is based on earlier research 

on cuckoo hashing and skew-associative caches. Hits, which are the most frequent situation, only 

require a single lookup, resulting in the latency and energy costs associated with a cache with a 

very small number of ways. In the event of a miss, further tag lookups take place outside of the 

critical path, producing an arbitrarily high number of replacement candidates for the incoming 

block. Associativity is provided by the zcache, in contrast to conventional designs, by increasing 

the number of replacement candidates but not the number of cache methods. We create an 

universal analysis framework that enables associativity comparison across various cache designs 

(such as a set-associative cache and a zcache) by modelling associativity as a probability 

distribution in order to better grasp the ramifications of this strategy. Using this paradigm, we 

demonstrate that associativity for zcaches is independent of other parameters and solely relies on 

the quantity of replacement candidates (such as the number of cache ways or the workload). We 

further demonstrate that, for the majority of workloads, the associativity of a zcache is superior to 

that of a set-associative cache for the same number of replacement candidates. Lastly, we run 

thorough multithreaded simulations. zcache serves as the last-level cache for multiprogrammed 

workloads on a large-scale CMP. We demonstrate that zcaches outperform conventional caches in 

terms of performance and energy efficiency while avoiding the costs associated with complex 

designs. 

I. INTRODUCTION 

As Moore’s law enables chip-multiprocessors (CMPs) with tens and hundreds of cores [22, 40], the 

limited bandwidth, high latency, and high energy of main memory accesses become an important 

limitation to scalability. To mitigate this bottleneck, CMPs rely on complex memory hierarchies with 

large and highly associative caches, which commonly take more than 50% of chip area and contribute 

significantly to static and dynamic power consumption [29, 43]. 

The goal of this work is to improve the efficiency of cache associativity. Higher associativity 

provides more flexibility in block (re)placement and allows us to utilize the limited cache capacity in 

the best possible manner. Last-level caches in existing CMPs are already highly associative and the 

trend is to increase the number of ways with core count. More- over, several architectural proposals 

rely on highly associative caches. For example, many designs for transactional memory and thread-

level speculation [13, 19], deterministic replay [42], 

event monitoring and user-level interrupts [8, 34], and even memory consistency implementations 

[12] use caches to buffer or pin specific blocks. Low associativity makes it difficult to buffer large 

sets of blocks, limiting the applicability of these schemes or requiring expensive fall-back 

mechanisms. 
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Conventional caches improve associativity by increasing the number of physical ways. 

Unfortunately, this also increases the latency and energy cost of cache hits, placing a stringent trade-

off on cache design. For example, this trade-off limits the associativity of first-level caches in 

most chips to two 

or four ways. For last-level caches, a 32-way set-associative cache has up to 3.3× the energy per hit 

and is 32% slower than a 4-way design. Most alternative approaches to improve associativity rely on 

increasing the number of locations where a block can be placed (with e.g. multiple locations per way 

[1, 

10, 37], victim caches [3, 25] or extra levels of indirec- tion [18, 36]). Increasing the number of 

possible locations of a block ultimately increases the energy and latency of cache hits, and many 

of these schemes are more complex than conventional cache arrays (requiring e.g. heaps [3], hash- 

table-like arrays [18] or predictors [10]). Alternatively, hashing can be used to index the cache, 

spreading out accesses and avoiding worst-case access patterns [26, 39]. While hashing- based 

schemes improve performance, they are still limited by the number of locations that a block can be 

in. 

In this paper, we propose a novel cache design that achieves arbitrarily high associativity with a 

small number of physical ways, breaking the trade-off between associativity and access latency or 

energy. The design is motivated by the observation that associativity is the ability of a cache to 

select a good block to evict on a replacement. For instance, assuming an access pattern with high 

temporal locality, the best block to evict is the least recently used one in the entire cache. For a 

transactional memory system, the best block to evict is one that does not store transactional metadata. 

A cache that provides a higher quality stream of evicted blocks essentially has higher associativity, 

regardless of the number of ways it uses and the number of locations each block can be placed in. 

Our three main contributions are: 

1) We propose zcache, a cache design that improves associa- tivity while keeping the number of 

possible locations (i.e. ways) of each block small. The zcache’s design is based on the insight 

that associativity is not determined by the number of locations that a block can reside in, but by the 

number of replacement candidates on an eviction. Like a skew-associative cache [39], a zcache 

accesses each way 

using a different hash function. A block can be in only one location per way, so hits, the common 

case, require only a single lookup. On a replacement, the zcache exploits that with different hash 

functions, a block that conflicts with the incoming block can be moved to a non-conflicting location 

in another way instead of being evicted to accommodate the new block. This is similar to cuckoo 

hashing [35], a technique to build space-efficient hash tables. On a miss, the zcache walks the tag 

array to obtain additional replacement candidates, evicts the best one, and performs a series of 

relocations to accommodate the incoming block. This happens off the critical path, concurrently 

with the miss and other lookups, so it has no effect on access latency. 

2) We develop a novel analysis framework to understand associativity and compare the associativities 

of different cache designs independently of the replacement policy. We define associativity as a 

probability distribution and show that, under a set of conditions, which are met by zcaches, 

associativity depends only on the number of replacement candidates. Therefore, we prove that the 

zcache decouples associativity from the number of ways (or locations that a block can be in). 

3) We evaluate a first use of zcaches at the last-level cache of the CMP’s memory hierarchy. Using the 

analytical frame- work we show that, for the same number of ways, zcaches provide higher 

associativity than set-associative caches for most workloads. We also simulate a variety of 

multithreaded and multiprogrammed workloads on a large-scale CMP, and show that zcaches achieve 
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the benefits of highly-associative caches without increasing access latency or energy. For example, 

over a set of 10 miss-intensive workloads, a 4- way zcache provides 7% higher IPC and 10% better 

energy efficiency than a 32-way set-associative cache. 

The rest of the paper is organized as follows. Section II gives the necessary background on 

approaches to increase cache associativity. Section III presents the zcache design. Section IV develops 

the theoretical framework to understand and analyze associativity. Section V discusses our evaluation 

methodology, and Section VI presents the evaluation of the zcache as a last- level cache. Section VII 

discusses additional related work, and Section VIII concludes the paper. 

II. BACKGROUND ON CACHE ASSOCIATIVITY 

Apart from simply increasing the number of ways in a cache and checking them in parallel, there is 

abundant prior work on alternative schemes to improve associativity. They mainly rely on either using 

hash functions to spread out cache accesses, or increasing the number of locations that a block can 

be in. 

A. Hashing-based Approaches 

Hash block address: Instead of using a subset of the block address bits as the cache index, we can 

use a better hash function on the address to compute the index. Hashing spreads out access patterns 

that are otherwise pathological, such as strided accesses that always map to the same set. Hashing 

slightly increases access latency as well as area and power 

overheads due to this additional circuitry. It alssince the full block address needs to be stored in the tag. 

Simple hash functions have been shown to perform well [26], and some commercial processors 

implement this technique in their last-level cache [41]. 

Skew-associative caches: Skew-associative caches [39] index each way with a different hash 

function. A specific block address conflicts with a fixed set of blocks, but those blocks conflict with 

other addresses on other ways, further spreading out conflicts. Skew-associative caches typically 

exhibit lower conflict misses and higher utilization than a set-associative cache with the same number 

of ways [7]. However, they break the concept of a set, so they cannot use replacement policy 

implementations that rely on set ordering (e.g. using pseudo- LRU to approximate LRU). 

B. Approaches that Increase the Number of Locations 

Allow multiple locations per way: Column-associative caches [1] extend direct-mapped caches to 

allow a block to reside in two locations based on two (primary and secondary) hash functions. 

Lookups check the second location if the first is a miss and a rehash bit indicates that a block in the 

set is in its secondary location. To improve access latency, a hit in a secondary location causes the 

primary and secondary locations to be swapped. This scheme has been extended with better ways to 

predict which location to probe first [10], higher associativities [45], and schemes that explicitly 

identify the less used sets and use them to store the more used ones [37]. The drawbacks of allowing 

multiple locations per way are the variable hit latency and reduced cache bandwidth due to multiple 

lookups, and the additional energy required to do swaps on hits. 

Use a victim cache: A victim cache is a highly or fully- associative small cache that stores blocks 

evicted from the main cache until they are either evicted or re-referenced [25]. It avoids conflict 

misses that are re-referenced after a short pe- riod, but works poorly with a sizable amount of conflict 

misses in several hot ways [9]. Scavenger [3] divides cache space into two equally large parts, a 

conventional set-associative cache and a fully-associative victim cache organized as a heap. Victim 

cache designs work well as long as misses in the main cache are rare. On a miss in the main cache, 

they introduce additional latency and energy consumption to check the victim cache, regardless of 

whether the victim cache holds the block. Use indirection in the tag array:   An alternative 

strategy is to implement tag and data arrays separately, making the tag array highly associative, 
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and having it contain pointers to a non-associative data array. The Indirect Index Cache (IIC) [18] 

implements the tag array as a hash table using open- chained hashing for high associativity. The V-

Way cache [36] implements a conventional set-associative tag array, but makes it larger than the data 

array to make conflict misses rare. Tag indirection schemes suffer from extra hit latency, as they are 

forced to serialize accesses to the tag and data arrays. Both the IIC and the V-Way cache have tag 

array overheads of around 

2×, and the IIC has a variable hit latency. 

Several of these designs both increase cache associativity and propose a new replacement policy, 

sometimes tailored to the proposed design [3, 18, 36, 39]. This makes it difficult to elucidate how 

much improvement is due to the higher associa- tivity and how much depends on the better replacement 

policy. In this work we consider that associativity and replacement policy are separate issues, and 

focus on associativity. 

III. THE ZCACHE DESIGN 

Structurally, the zcache shares many common elements with the skew-associative cache. Each way is 

indexed by a different hash function, and a cache block can only reside in a single position on each 

way. That position is given by the hash value of the block’s address. Hits happen exactly as in the 

skew-associative cache, requiring a single lookup to a small number of ways. On a miss, however, 

the zcache exploits the fact that two blocks that conflict on a way often do not conflict on the 

other ways to increase the number of replacement candidates. The zcache performs a replacement over 

multiple steps. First, it walks the tag array to identify the set of replacement candidates. It then picks 

the candidate preferred by the replacement policy (e.g. least recently used block for LRU), and evicts 

it. Finally, it performs a series of relocations to be able to accommodate the incoming block at the 

right location. 

The multi-step replacement process happens while fetching the incoming block from the memory 

hierarchy, and does not affect the time required to serve the miss. In non-blocking caches, 

simultaneous lookups happen concurrently with this process. The downside is that the replacement 

process requires extra bandwidth, especially on the tag array, and needs extra energy. However, should 

bandwidth or energy become an issue, the replacement process can be stopped early, simply resulting 

in a worse replacement candidate. 

A. Operation 

We explain the operation of the replacement process in detail using the example in Fig. 1. The 

example uses a small 3-way cache with 8 lines per way. Letters A-Z denote cache blocks, and numbers 

denote hash values. Fig. 1g shows the timeline of reads and writes to the tag and data arrays, and 

the memory bus. Throughout Fig. 1, addresses and hash values obtained in the same access share the 

same color. 

Walk: Fig. 1a shows the initial contents of the cache and the miss for address Y that triggers the 

process. Initially, the addresses returned by the tag lookup for Y are our only replacement candidates 

for the incoming block (addresses A, D and M). These are the first-level candidates. A skew- 

associative cache would only consider these candidates. In ablock A to line 2 in way 1 (evicting 

K) or line 1 in way 2 (evicting X) and write incoming block Y in line 5 of way 0. We take the six 

non-matching hash values in Fig. 1b and 

perform two accesses, giving us an additional set of six 

second-level replacement candidates, as shown in Fig. 1c (addresses B, K, X, P, Z, and S). We can 

repeat this process (which, at its core, is a breadth-first graph walk) indefinitely, getting more and 

more replacement candidates. In practice, we eventually need to stop the walk and select the best 

candidate found so far. In this example, we expand up to a third level, reaching 21 (3+6+12) 
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replacement candidates. In general, it is not necessary to obtain full levels. Fig. 1d shows a tree with 

the three levels of candidates. Note how, in expanding the second level, some hash values are 

repeated and lead to the same address. These repeats are bound to happen in this small example, but 

are very rare in larger caches with hundreds of blocks per way. 

Relocations: Once the walk finishes, the replacement policy chooses the best replacement candidate. 

We discuss the im- plementation of replacement policies in Section III-E. In our example, block N is 

the best candidate, as shown in Fig. 1d. To accommodate the incoming block Y, the zcache evicts N 

and relocates its ancestors in the tree (both data and tags), as shown in Fig. 1e. This involves 

reading and writing the tags and data to their new locations, as the timeline in Fig. 1g indicates. Fig. 

1f shows the contents of the cache after the replacement process is finished, with N evicted and Y in 

the cache. Note how N and Y both used way 0, but completely different locations. 

B. General figures of merit 

 

A zcache with W ways where the walk is limited to L levels has the following figures of merit: 

 

• Replacement  candidates  (R)Σ:  Assuming  no  repeats  when expanding the tree, R = W 
L−1

(W − 

1)
l
. 

• Replacement process energy (Emiss): If the energies to read/write tag or data in a single way are 

denoted Ert, Ewt, Erd  and Ewd, then Emiss = Ewalk + Erelocs  = R × Ert + m × (Ert + 

Erd + Ewt + Ewd), where m ∈ {0, .., L − 1} is the number of relocations. Note that reads and 

writes to the 

data array, which consume most of the energy, grow with 

L, i.e. logarithmically with R. 

• Replacement process latency: Because accesses in a walk can be pipelined, the latency of a 

walk grows with the number of levels, unless there are so many accesses on each 

level  thatΣthey  fully  cover  the  latency  of  a  tag  array  read: 

zcache, the controller starts the walk to expand the number of 

walk = 
L−1

 max(T 

tag 

, (W − 1)
l
). This means that, for 

andidates by computing the hash values of these addresses, 

shown in Fig. 1b. One of the hash values always matches the hash value of the incoming block. 

The others denote the positions in the array where we could move each of our current replacement 

candidates to accommodate the incoming block. For example, as column A in Fig. 1b shows, we 

could move 

W > 2, we can get tens of candidates in a small amount of 

delay. For example, Fig. 1g assumes a tag read delay of 4 cycles, and shows how the walk process for 

21 candidates (3 levels) completes in 4×3 = 12 cycles. The whole process finishes in 20 cycles, much 

earlier than the 100 cycles used to retrieve the incoming block from main memory. 
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(a) Initial state of the cache and initial miss 

(b) Hash values of first-level candidates (c) Hash values of second-level 

candidates 

   
(d) The three levels of replacement candidates. N is selected by the 

replacement policy 

 

(e) Relocations done to accommodate the incoming block (f) Final cache state 

after replacement 
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ig. 1.   Replacement process in a zcache 

C. Implementation 

To implement the replacement process, the cache controller needs some modifications involving hash 

functions, some additional state and, for non-blocking caches, scheduling of concurrent operations. 

Hash functions: We need one hash function per way. Hash functions range from extremely simple (e.g. 

bit selection) to exceedingly complex (e.g. cryptographic hash functions like SHA-1). In this study, we 

use H3 hash functions [11], a family of low-cost, universal, pairwise-independent hash functions that 

require a few XOR gates per hash bit [38]. 

State: The controller needs to remember the positions of the replacement candidates visited during 

the walk and the position of the best eviction candidate. Tracking only the most desirable replacement 

candidate is not sufficient, because relocations need to know about all blocks in the path. However, a 

single-ported SRAM or small register file suffices. Note that we do not have to remember full tags, 

just hash values. Also, no back-pointers need to be stored, because for a certain position in the SRAM, 

the parent’s position is always the same. 

In the example shown in Fig. 1, the controller needs 63 bits of state to track candidates (21 hash 

values × 3 bits/value). If the cache was larger, e.g. 3MB, with 1MB per way and 64- byte lines 

(requiring 14 bits/hash value), it would need 294 bits. Additionally, the controller must buffer the tags 

and data 

of the L lines it reads and writes on a relocation. Since the number of levels is typically small (2 or 3 in 

our experiments), this also entails a small overhead. 

Concurrent operations for non-blocking caches: To avoid increasing cache latency, the replacement 

process should be able to run concurrently with all other operations (tag/data reads and writes due to 

hits, write-backs, invalidations, etc.). The walk process can run concurrently without interference. This 

may lead to benign races where, for example, the walk identifies the best eviction candidate to be a 

block that was accessed (e.g. with a hit) in the interim. This is exceedingly rare in large caches, so 

we simply evict the block anyway. In smaller caches (e.g. highly-associative but small TLBs or first-

level caches), we could keep track of the best two or three eviction candidates and discard them if they 

are accessed while the walk process is running. 

In the second part of the replacement, the relocations, the controller must block intervening 

operations to at most L positions while blocks in these positions are being relocated. We note that the 

controller already has logic to deal with these cases (e.g. with MSHRs [28]). 

While it is feasible to run multiple replacement processes concurrently, it would complicate the 
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cache controller, and since replacements are not in the critical path, they can simply queue up. 

Concurrent replacements would only make sense to increase bandwidth utilization when the cache is 

close to bandwidth saturation. As shown in Section VI, we do not see the need for such mechanism in 

our experiments. 

In conclusion, the zcache imposes minor state and logic overheads to traditional cache controllers. 

D. Extensions 

We now discuss additional implementation options to en- hance zcaches. 

Avoiding repeats: In small first-level caches or TLBs, repeats can be common due to walking a 

significant portion of the cache. Moreover, a repeat at a low level can trigger the expansion of 

many repeated candidates. Repeats can be avoided by inserting the addresses visited during the 

walk in a Bloom filter [6], and not continuing the walk through addresses that are already represented 

in the filter. Repeats are rare in our experiments, so we do not see any performance benefit from this. 

Alternative walk strategies: The current walk performs a breadth-first search for candidates, fully 

expanding all levels. Alternatively, we could perform a depth-first search (DFS), always moving 

towards higher levels of replacement candi- dates. Cuckoo hashing [35] follows this strategy. DFS 

allows us to remove the walk table and interleave walk with re- locations, reducing state. However, 

it increases the number of relocations for a given number of replacement candidates (since L = R/W 

), which in turn increases both the energy required per replacement (as relocations read and write to 

the much wider data array) and replacement latency (as accesses in the walk cannot be pipelined). 

BFS is a much better match to a hardware implementation as the extra required state for BFS is a 

few hundred bits at most. Nevertheless, a controller can implement a hybrid BFS+DFS strategy to 

increase associativity cheaply. For instance, in our example in Fig. 1, the controller could perform a 

second phase of BFS, trying to re-insert N rather than evicting it, to double the number of 

candidates without increasing the state needed. 

 

E. Replacement Policy 

So far, we have purposely ignored how the replacement policy is implemented. In this section, we 

cover how to implement or approximate LRU. While set-associative caches can cheaply maintain an 

order of the blocks in each set (e.g. using LRU or pseudo-LRU), since the concept of a set does not 

exist in a zcache, policies that rely on this ordering need to be implemented differently. However, 

several processor designs already find it too expensive to implement set ordering and resort to 

policies that do not require it [20, 41]. Additionally, some of the latest, highest-performing policies 

do not rely on set ordering [24]. While designing a replacement policy specifically tailored to 

zcaches is an interesting endeavor, we defer it to future work. 

Full LRU: We use a global timestamp counter, and add a timestamp field to each block in the 

cache. On each access, the timestamp counter is incremented, and the timestamp field is updated to 

the current counter value. On a replacement, the controller selects the replacement candidate with the 

lowest timestamp (in mod 2
n
 arithmetic). This design requires very simple logic, but timestamps have 

to be large (e.g. 32 bits) to make wrap-arounds rare, thus having high area overhead. 

ucketed LRU: To decrease space overheads, timestamps are made smaller, and the controller 

increases the timestamp counter once every k accesses. For example, with k = 5% of the cache size 

and n = 8 bits per timestamp, it is rare for a block to survive a wrap-around without being either 

accessed or evicted. We use this LRU policy in our evaluation. 

IV. AN ANALYTICAL FRAMEWORK FOR ASSOCIATIVITY 

Quantifying and comparing associativity across different cache designs is hard. In set-associative 

caches, more ways im- plicitly mean higher associativity. However, when comparing different designs 
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(e.g. a set-associative cache and a zcache), the number of ways becomes a useless proxy for 

associativity. 

The most commonly used approach to quantify associativity is by the number of conflict misses 

[21]. Conflict misses for a cache are calculated by subtracting the number of misses incurred by a 

fully-associative cache of the same size from the total number of misses. Using conflict misses as a 

proxy for associativity has the advantage of being an end-to-end metric, directly linking associativity to 

performance. However, it is subject to three problems. First, it is highly dependent on the 

replacement policy; for example, by using an LRU replacement policy in a workload with an anti-LRU 

access pattern, we can get higher conflict misses when increasing the number of ways. Second, in 

CMPs with multilevel memory hierarchies, changing the associativity can alter the reference stream at 

higher cache levels, and comparing the number of conflict misses when the total number of accesses 

differs is meaningless. Finally, conflict misses are workload-dependent, so they cannot be used as a 

general proxy for associativity. 

In this section, we develop a framework to address these issues, with the objectives of 1) being able 

to compare associativity between different cache organizations, and 2) determining how various design 

aspects (e.g. ways, number of replacement candidates, etc) influence cache associativity. 

A. Associativity Distribution 

Model: We divide a cache into the following components: 

• Cache array: Holds tags and data, implements associative lookups by block address, and, on a 

replacement, gives a list of replacement candidates that can be evicted. 

• Replacement policy: Maintains a global rank of which cache blocks to replace. 

This model assumes very little about the underlying cache implementation. The array could be set-

associative, a zcache, or any of the schemes mentioned in Section II. The only requirement that we 

impose on the replacement policy is to define a global ordering of blocks, which most policies 

inherently do. For example, in LRU blocks are ranked by the time of their last reference, in LFU they 

are ordered by access frequency, and in OPT [4] they are ranked by the time to their next reference. 

This does not mean that the implementation actually maintains this global rank. In a set-associative 

cache, LRU only needs to remember the order of elements in each set, and in a zcache this can be 

achieved with timestamps, as explained in Section III-E. 

By convention, blocks with a higher preference to be evicted are given a higher rank r. In a 

cache with B blocks, r ∈ [0, ..., B − 1]. To make the rest of the analysis independent of cache size, 

we define a block’s eviction priority to be its rank normalized to [0, 1], i.e. e = r/(B − 1). 

Associativity distribution: We define the associativity distribu- tion as the probability distribution of 

the eviction priorities of evicted blocks. In a fully-associative cache, we would always evict the block 

with e = 1.0. However, most cache designs examine only a small subset of the blocks in an eviction, 

so they select blocks with lower eviction priorities. In general, the more skewed the distribution is 

towards e = 1.0, the higher the associativity is. The associativity distribution characterizes the 

quality of the replacement decisions made by the cache in a way that is independent of the 

replacement policy. Note that this decouples how the array performs from ill-effects from the 

replacement policy. For example, a highly associative cache may always find replacement candidates 

with high eviction priorities, but if the replacement policy does a poor job in ranking the blocks, this 

may actually hurt performance. 

 

B. Linking Associativity and Replacement Candidates 

Defining associativity as a probability distribution lets us evaluate the quality of the replacement 

candidates, but is still dependent on workload and replacement policy. How- ever, under certain 
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general conditions this distribution can be characterized by a single number, the number of 

replacement candidates. This is the figure of merit optimized by zcaches. Uniformity assumption: If 

the cache array always returns n replacement candidates, and we treat the eviction priorities 

of these blocks as random variables Ei, assuming that they are 1) uniformly distributed in [0,1] 

and 2) statistically in- dependent from each other, we can derive the associativity distribution. 

Since E1, ..., En ∼ U [0, 1], i.i.d, the cumula- tive distribution function (CDF) of each eviction 

priority is FEi (x) = Prob(Ei ≤ x) = x, x ∈ [0, 1]
1
. The associativity is 

the random variable A = max {E1, ..., En}, and its CDF is: 

FA(x)    =    Prob(A ≤ x) = Prob(E1 ≤ x ∧ ... ∧ En ≤ x) 

=   Prob(Ei ≤ x)
n
 = x

n
, x ∈ [0, 1] 

Therefore, under this uniformity assumption, the associativity distribution only depends on n, the 

number of replacement candidates. Fig. 2 shows example CDFs of the associativity distribution, in 

linear and semi-log scales, with each line representing a different number of replacement candidates. 

The higher the number of replacement candidates, the more skewed towards 1.0 the associativity 

distribution becomes. Also, evictions of blocks with a low eviction priority quickly 

become very rare. For example, for 16 replacement candidates, the probability of evicting a block 

with e < 0.4 is 10
−6

. 

 
1
Note that we are treating Ei as continuous random variables, even though they are discrete 

(normalized ranks with one of B equally probable values in [0, 1]). We do this to achieve results that 

are independent of cache size B. Results are the same for the discretized version of these equations. 

 
1.0 

 

0.8 

 

0.6 

 

0.4 

 

0.2 

 

0.0 0.2 0.4 0.6 0.8 1.0 

Eviction priority 

10
0
 

10−1 

10−2 

10−3 

10−4 

10−5 

10−6 

10−7 

10−8 

10−9 

n=4 n=8 n=16 n=64 

A
s
s
o

c
ia

ti
v
it
y
 C

D
F

 

A
s
s
o

c
ia

ti
v
it
y
 C

D
F

 

     

     

     

     

     

 



Juni Khyat                                                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                      Vol-10 Issue-3 No.01 March 2020 

Page | 400                                                                                      Copyright @ 2020 Authors 
  

  Unif. Assumption 

wupwise m 

apsi m 

mgrid m 

canneal 

fluidanimate 

blackscholes 

10−10 

0.0 

 

 

0.2 0.4 0.6 0.8 1.0 

Eviction priority 

 

Fig. 2.    Associativity CDFs under the uniformity assumption (FA(x) = x
n
, x ∈  [0, 1]) for n = 4, 8, 

16, 64 candidates, in linear and logarithmic scales. 
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Fig. 3. Associativity distributions for selected PARSEC and SPECOMP workloads using 

different types of caches. 
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Random candidates cache: The uniformity assumption makes it simple to characterize associativity, 

but it is not met in general by real cache designs. However, a cache array that returns n randomly 

selected replacement candidates (with rep- etition) from all the blocks in the cache always achieves 

these associativity curves perfectly. Each Ei is uniformly distributed because it is an unbiased random 

sampling of one of the B possible values of a rank, and since different selections are done 

independently, the Ei are independent as well. We simulated this cache design with tens of real 

workloads, under several configurations and replacement policies, and obtained associativity 

distributions as shown in Fig. 2, experimentally validating the previous derivation. 

Although this random candidates cache design is unrealis- 

tic, it reveals a sufficient condition to achieve the uniformity assumption: the more randomized the 

replacement candidates, the better a cache will match the uniformity assumption. 

C. Associativity Measurements of Real Caches 

Our analytical framework implies that the number of re- placement candidates is the key metric in 

determining asso- ciativity. We now evaluate whether this is the case using real cache designs. 

Set-associative caches: Fig. 3a shows the associativity dis- tributions for 8MB L2 set-associative 

caches of 4 and 16 ways, using an LRU replacement policy. The details on system configuration and 

methodology can be found in Section V. Each of the 6 solid lines represents a different 

benchmark, 

Cores 32 cores, x86-64 ISA, in-order, IPC=1 except on memory 

accesses, 2 GHz 

L1 

caches 

32 KB, 4-way set associative, split D/I, 1-cycle latency 

L2 

cache 

8 MB NUCA , 8 banks, 1 MB bank, shared, inclusive, MESI 

directory coherence, 

4-cycle average L1-to-L2-bank latency, 6–11-cycle L2 bank 

latency 

MCU 4 memory controllers, 200 cycles zero-load latency, 64 GB/s 

peak memory BW 

TABLE I 

MAIN  CHARACTERISTICS  OF  THE  SIMULATED  CMPS. THE  LATENCIES  

ASSUME  A  32 NM  PROCESS  AT  2GHZ. 

rom a representative selection of PARSEC and SPECOMP applications. The single dotted line per 

graph plots the asso- ciativity distribution under the uniformity assumption, which is independent of 

the workload. We see that the distributions differ significantly from the uniformity assumption. Two 

work- loads (wupwise and apsi) do significantly worse, with the CDF 

rapidly climbing towards 1.0. For example, in wupwise, 60% of the evictions happen to blocks with ≤ 

20% eviction pri- ority. Others (mgrid, canneal and fluidanimate) have sensibly worse associativity, 

and only one benchmark (blackscholes) outperforms the uniformity assumption. These differences are 

not surprising: replacement candidates all come from the same small set, thwarting independence, and 

locality of reference will skew eviction priorities towards lower values, breaking the assumption of an 

uniform distribution. 

We can improve associativity with hashing. Fig. 3b shows the associativity distributions of set-

associative caches indexed by an H3 hash of the block address. Associativity distribu- tions generally 

improve, but some hot-spots remain, and all workloads now perform sensibly worse than the 

uniformity assumption case. 

Skew-associative caches and zcaches: Fig. 3c shows the associativity distributions of 4 and 16-way 

skew-associative caches. As we can see, skew-associative caches closely match the uniformity 

assumption on all workloads. These results provide an analytical foundation to the previous empirical 
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ob- servations that skew-associative caches “improve performance predictability” [7]. 

Fig. 3d shows the associativity of 4-way zcaches with 2 and 3 levels of replacement candidates. 

We also observe a close match to the uniformity assumption. This is expected, 

since replacement candidates are even more randomized: n
th

- level candidates depend on the addresses 

of the (n−1)
th

-level candidates, making the set of positions checked varying with 

cache contents. 

In conclusion, both skew-associative caches and zcaches match the uniformity assumption in 

practice. Hence, their associativity is directly linked to the number of candidates examined on 

replacement. Although the graphs only show a small set of applications for clarity, results with other 

work- loads and replacement policies are essentially identical. The small differences observed between 

applications decrease by either increasing the number of ways (and hash functions) or improving the 

quality of hash functions (the same experiments using more complex SHA-1 hash functions instead of 

H3 yield distributions identical to the uniformity assumption). 

Overall, our analysis framework reveals two main results: 

 

1) In a zcache, associativity is determined by the number of replacement candidates, and not the 

number of ways, essentially decoupling ways and associativity. 

2) When using an equal number of replacement candidates, zcaches empirically show better 

associativity than set- associative caches for most applications. 

 

 

V. EXPERIMENTAL     METHODOLOGY 

 

Infrastructure: We perform microarchitectural, execution- driven simulation using an x86-64 

simulator based on Pin [31]. We use McPAT [30] to obtain comprehensive timing, area and energy 

estimations for the CMPs we model, and use CACTI 

6.5 [33] for more detailed cache area, power and timing models. We use 32nm ITRS models, with a 

high-performance process for all the components of the chip except the L2 cache, which uses a low-

leakage process. 

System: We model a 32-core CMP, with in-order x86 cores modeled after the Atom processor [17]. 

The system has a 2- level cache hierarchy, with a fully shared L2 cache. Table I shows the details of 

the system. On 32nm, this CMP requires about 220mm
2
 and has a TDP of around 90W at 2GHz, both 

reasonable budgets. 

Workloads: We use a variety of multithreaded and multipro- grammed benchmarks: 6 PARSEC [5] 

applications (blacksc- holes, canneal, fluidanimate, freqmine, streamcluster and swaptions), 10 

SPECOMP benchmarks (all except galgel, which gcc cannot compile) and 26 SPECCPU2006 

programs (all except dealII, tonto and wrf, which we could not compile). For multiprogrammed runs, 

we run different instances of the same single-threaded CPU2006 application on each core, plus 30 

random CPU2006 workload combinations (choosing 

32 workloads each time, with repetitions allowed). These make a total of 72 workloads. All 

applications are run with their reference (maximum size) input sets. For multithreaded workloads, we 

fast-forward into the parallel region and run the first 10 billion instructions. Since synchronization 

can skew IPC results for multithreaded workloads [2], we do not count instructions in 

synchronization routines (locks, barriers, etc.) to determine when to stop execution, but we do 

include them in energy calculations. For multiprogrammed workloads, we follow standard 

methodology from prior work [24]: we fast- forward 20 billion instructions for each process, 

simulate until all the threads have executed at least 256 million instructions, and only take the first 

256 million instructions of each thread into account for IPC computations. 
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TABLE II 

AREA, POWER  AND  LATENCY  OF  8MB, 8-BANKED  L2 CACHES  WITH  

DIFFERENT  ORGANIZATIONS. 
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Fig. 4. L2 MPKI and IPC improvements for all workloads, over a 4-way set-associative with 

hashing baseline. 

 

 

VI. EVALUATION OF ZCACHE AS A LAST-LEVEL CACHE 

The zcache can be used with any design that requires high associativity at low overheads in terms 

of area, hit time, and hit energy. In this paper, we evaluate zcache as a last- level cache in a 32-

node CMP. We defer other use cases, such as first-level caches or TLBs, to future work. We first 

quantify the area, energy and latency advantages of zcaches versus set-associative caches with similar 

associativity, then compare the performance and system-wide energy over our set of workloads. 

 

A. Cache Costs 

Table II shows the timing, area and power requirements of both set-associative caches and 

zcaches with varying asso- ciativities. We use CACTI’s models to obtain these numbers. Tag and data 

arrays are designed separately by doing a full design space exploration and choosing the design 

that 

minimizes area×delay×power. Arrays are sub-banked, and both the address and data ports are 

implemented using H-trees. 
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We show results for both serial and parallel-lookup caches. In serial caches, tag and data arrays are 

accessed sequentially, saving energy at the expense of delay. In parallel caches, both tag and data 

accesses are initiated in parallel. When the tag read resolves the appropriate way, it propagates a way- 

select signal to the data array, which selects and propagates the correct output. This parallelizes 

most of the tag and data accesses while avoiding an exceedingly wide data array 

port. For zcaches, we explore designs with two and three- level walks. We denote zcaches with 

“W /R”, indicating the number of ways and replacement candidates, respectively. For example, a 

4/16 zcache has 4 ways and 16 replacement candidates per eviction (obtained from a two-level 

walk). 

Table II shows that increasing the number of ways beyond 8 starts imposing significant area, latency 

and energy overheads. 

For example, a 32-way cache with serial lookups has 1.22× the area, 1.23× the hit latency and 2× the 

hit energy of a 4-way cache (for parallel lookups, hit latency is 1.32× and hit energy is 3.3×). 

This is logical, since a 32-way cache reads 4× more tag bits than data bits per lookup, the tag array 

has a much wider port, and the critical path is longer (slower 

tag array, more comparators). For zcaches, however, area, hit latency and hit energy grow with the 

number of ways, but not with the number of replacement candidates. This comes at the expense of 

increasing energy per miss, which, however, is still similar to set-associative caches with the same 

associativity. For example, a serial-lookup zcache 4/52 has almost twice the 

associativity of a 32-way set-associative cache at 1.3× higher energy per miss, but retains the 2× lower 

hit energy and 1.23× lower access latency of a 4-way cache. 

B. Performance 

Fig. 4 shows the improvements in both L2 misses per thousand instructions (MPKI) and IPC for all 

workloads, using both OPT and LRU replacement policies. Each line represents the improvement of a 

different cache design over a baseline 
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(b) LRU replacement 

Fig. 5. IPC and energy efficiency (BIPS/W) improvements for serial and parallel-lookup caches, over 

a serial-lookup 4-way set-associative with hashing baseline. Each graph shows improvements for 5 

representative workloads, plus the geometric mean over both all 72 workloads and the 10 workloads 

with the highest L2 MPKI. 

4-way set-associative cache with H3 hashing. Caches without hashing perform significantly worse 

(even at high associativ- ities), so we do not consider them here. Serial-lookup caches are used in all 

cases. For each line, workloads (in the x-axis) are sorted according to the improvement achieved, so 

each 

line is monotonically increasing. Fractional improvements are given (e.g. a L2 MPKI reduction of 1.2 

means 1.2× lower MPKI than the baseline). 

OPT:   Fig. 4a shows the effects of using OPT replacement (i.e. evicting the candidate reused furthest). 

OPT simulations are run in trace-driven mode. Although OPT is unrealistic, it removes ill-effects from 

the replacement policy (where e.g. increasing associativity degrades performance), allowing us to 

decouple replacement policy issues from associativity effects
2
. Note that these numbers do not 

necessarily show maximum improvements from increasing associativity, as other replace- ment 

policies may be more sensitive to associativity changes. In terms of misses, higher associativities 

always improve MPKI, and designs with the same associativity have practically the same improvements 

(e.g. 16-way set-associative vs Z4/16). However, for set-associative caches, these improvements in 

MPKI do not always translate to IPC, due to the additional access latency (1 extra cycle for 16-way, 

2 cycles for 32- way). For example, the 32-way set-associative design performs worse than the 4-way 

design on 15 workloads (which have a large number of L1 misses, but few L2 misses), and performs 

worse than the 16-way design on half of the workloads (36). In contrast, zcaches do not suffer from 

increased access latency, sensibly improving IPC with associativity for all workloads (e.g. a Z4/52 

improves IPC by up to 16% over the baseline). 

 
2
In caches with interference across sets, like skew-associative and zcaches, OPT is not actually 

optimal, but it is a good heuristic.LRU: Fig. 4b compares cache designs when using LRU. 

Associativity improves MPKI for all but 3 workloads, and both MPKI and IPC improvements are 

significant (e.g. a Z4/52 reduces L2 misses by up to 2.1× and improves performance by up to 25% over a 

4-way set-associative cache). With LRU, the 

difference between Z4/16 and Z4/52 designs is lower than with OPT, however they significantly 

outperform both the baseline and the Z4/4 (skew-associative) design. 

 

C. Serial vs Parallel-Lookup Caches 

Fig. 5 shows the performance and system-wide energy efficiency when using serial and parallel-

lookup caches, un- der both OPT and LRU replacement policies. Results are normalized to a serial-

lookup, 4-way set-associative cache with H3 hashing. Each graph shows improvements on five 

representative applications, as well as the geometric means of both all 72 workloads and the 10 

workloads with the highest L2 MPKI. 



Juni Khyat                                                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                      Vol-10 Issue-3 No.01 March 2020 

Page | 409                                                                                      Copyright @ 2020 Authors 
  

We can distinguish three types of applications: a few bench- marks, like blackscholes or freqmine, 

have low L1 miss rates, and are insensitive to the L2’s organization. Other applications, like ammp and 

gamess, have frequent L2 hits but infrequent L2 misses. These workloads are sensitive to hit 

latency, so parallel-lookup caches provide higher performance gains than increasing associativity 

(e.g. a 3% IPC improvement on gamess vs serial-lookup caches). In fact, increasing associativ- ity in 

set-associative caches reduces performance due to higher hit latencies, while highly-associative 

zcaches do not degrade performance. Finally, workloads like cpu2K6rand0, canneal, and cactusADM 

have frequent L2 misses. These applications are often sensitive to associativity, and a highly-

associative cache improves performance (by reducing L2 MPKI) more than reducing access time 

(e.g. in cactusADM with LRU, 

going from Z4/4 to Z4/52 improves IPC by 9%, while going from serial to parallel-lookup improves 

IPC by 3%). 

In terms of energy efficiency, set-associative caches and zcaches show different behaviors when 

increasing associativ- ity. Because hit energy increases steeply with the number of ways in parallel-

lookup caches, 16 and 32-way set-associative caches often achieve lower energy efficiency than serial- 

lookup caches (e.g. up to 8% lower BIPS/W in cactusADM). In contrast, serial and parallel-lookup 

zcaches achieve practi- cally the same energy efficiency on most workloads, due to their similarly low 

access and miss energies. In conclusion, zcaches enable highly-associative, energy-efficient parallel- 

lookup caches. 

Overall, zcaches offer both the best performance and energy efficiency. For example, under LRU, 

when considering all 72 workloads, a parallel-lookup zcache 4/52 improves IPC by 7% and BIPS/W by 

3% over the 4-way baseline. Over the subset of the 10 most L2 miss-intensive workloads, a zcache 

4/52 improves IPC by 18% and energy efficiency by 13% over the 4-way baseline, and obtains 7% 

higher performance and 10% better energy efficiency than a 32-way set-associative cache. 

D. Array Bandwidth 

Since zcaches perform multiple tag lookups on a miss, it is worth examining whether these 

additional lookups can satu- rate bandwidth. Of the 72 workloads, the maximum average load per bank 

is 15.2% (i.e. 0.152 core accesses/cycle/L2 bank). However, as L2 misses increase, average load de- 

creases: at 0.005 misses/cycle/bank, average load is 0.035 accesses/cycle/bank, and total load on the tag 

array for a Z4/52 cache is 0.092 tag accesses/cycle/bank. In other words, as L2 misses increase, 

bandwidth pressure on the L2 decreases; the system is self-throttling. ZCaches use this spare tag 

bandwidth to improve associativity. Ultimately, even for high-MLP archi- tectures, the load on the tag 

arrays is limited by main memory bandwidth, which is more than an order of magnitude smaller than 

the maximum L2 tag bandwidth and much harder to scale. 

VII. RELATED WORK 

The zcache is inspired by cuckoo hashing, a technique to build space-efficient hash tables 

proposed by Pagh and Rodler [35]. The original design uses two hash functions to index the hash 

table, so each lookup needs to check two locations. On an insertion, if both possible locations are 

occupied, the incoming item replaces one of them at random, and the replaced block is reinserted. This 

is repeated until either an empty location is found or, if a limit number of retries is reached, elements are 

rehashed into a larger array. Though cuckoo hashing has been mostly studied as a technique for 

software hash tables, hardware variants have been proposed to implement lookup tables in IP routers 

[16]. For additional references, Mitzenmacher has a survey on recent research in cuckoo hashing [32]. 

Both high associativity and a good replacement policy are necessary to improve cache 

performance. The growing importance of cache performance has sparked research into 

alternative policies that outperform LRU [14, 23, 24, 44]. The increasing importance of on-chip wire 

delay has also motivated research in non-uniform cache architectures (NUCA) [27]. Some NUCA 

designs such as NuRAPID [15] use indirection to enhance the flexibility of NUCA placement and 
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reduce access latency instead of increasing associativity. 

VIII. CONCLUSIONS AND FUTURE WORK 

We have presented the zcache, a cache design that enables high associativity with a small number 

of ways. The zcache uses a different hash function per way to enable an arbitrarily large number of 

replacement candidates on a miss. To evaluate the zcache’s associativity, we have developed a novel 

analyt- ical framework to characterize and compare associativity. We use this framework to show 

that, for zcaches, associativity is determined by the number of replacement candidates, not the 

number of ways, hence decoupling ways and associativity. An evaluation using zcaches as the last-

level cache in a CMP shows that they provide high associativity with low overheads in terms of area, 

hit time, and hit energy. ZCaches outperform traditional set-associative caches in both performance 

and energy efficiency, with a 4-way zcache achieving both 18% higher performance and 13% higher 

performance/watt than 4-way set-associative counterpart over a set of 10 L2 miss- intensive 

workloads, and 7% higher performance and 10% better energy efficiency than a 32-way set-

associative cache. 

There are several opportunities for further research, such as using zcaches to build highly 

associative first-level caches and TLBs for multithreaded cores. Additionally, replacement policies 

that are specifically suited to the zcache could be de- signed. Finally, since the zcache makes it trivial 

to increase or reduce associativity with the same hardware design, it would be interesting to explore 

adaptive replacement schemes that use the high associativity only when it improves performance, 

saving cache bandwidth and energy when high associativity is not needed, or even making 

associativity a software-controlled property. 
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