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Abstract 

Recent research has demonstrated that deterministic-by-default semantics in disciplined shared-

memory programming models can simplify parallel hardware as well as software. The De- Novo 

hardware system has specifically demonstrated how the software guarantees of such models (such as 

data-race-freedom and explicit side-effects) might enable simpler, faster, and more energy-efficient 

hardware than the current state-of-the-art for deterministic programmes. Yet non-deterministic 

elements can be found in many applications, for instance when lock synchronisation is used. It is 

consequently required to extend DeNovo to handle non-deterministic applications in order for 

commercial hardware to profit from its advantages. In this study, DeNovoND, a system with the 

simplicity, performance, and energy advantages of DeNovo, is proposed. DeNovoND enables lock-

based, disciplined nondeterminism. We implement a coherence protocol that does not require 

transitory states, invalidation traffic, directories, or fake sharing, and instead uses a combination of 

distributed queue-based locks and access signatures to offer basic memory consistency semantics for 

safe non-determinism. In comparison to an advanced invalidation-based protocol for 8 lock 

synchronisation applications, the resulting system is simpler, exhibits equivalent or better execution 

times, and typically has 33% less network traffic (which immediately translates into energy savings). 

 

Categories and Subject Descriptors B.3.2 [Hardware]: Memory Structures – Cache memories; 

Shared memory; C.1.2 [Processor Architectures]: Multiple Data Stream Architectures (Multiproces- 

sors) – Parallel processors 

Keywords shared memory, cache coherence, disciplined paral- lelism, memory consistency, non-

determinism 

1. Introduction 

Shared-memory remains a popular programming model among multicore programmers and is the de 

facto model provided by multicore hardware. It is, however, increasingly evident that un- bridled 

“wild” shared-memory programming environments that al- low data races, ubiquitous non-determinism, 

unstructured paral- lelism, and complex memory consistency models make program- 

Permission to make digital or hard copies of all or part of this work for personal or classroom use is 

granted without fee provided that copies are not made or distributed for profit or commercial advantage 

and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to 

post on servers or to redistribute to lists, requires prior specific permission and/or a fee. 

ming, debugging, testing, and maintaining software difficult [1, 32]. Recent software research has 

therefore proposed more disciplined shared-memory programming models that retain the advantage of 

a global address space, but make it easier to write safe parallel programs that are easier to debug, 

test, and maintain [4–6, 10– 12, 14, 18, 19, 30, 39]. 

At the same time, providing hardware cache coherence and con- sistency that can scale in a power-

efficient manner to hundreds of cores is also a significant challenge. There has recently been a surge in 

research by academics (see Section 7) and hardware compa- nies [23, 26] to address this challenge in 

unconventional ways. In particular, the DeNovo hardware project observes that disciplined shared-

memory programming models such as mentioned above can drive a holistic rethinking of the multicore 
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memory hierarchy, pro- viding more complexity-, performance-, and power-efficient hard- ware than 

the state-of-the-art for deterministic programs [17]. This paper shows that the benefits of disciplined 

programming and De- Novo can be extended to non-deterministic programs as well. 

DeNovo has used Deterministic Parallel Java (DPJ) as an ex- ample disciplined programming model 

[11] to drive its design. DPJ provides the programmer with a novel region-based type and effects 

system to convey the read and write side-effects on shared-memory for every method. A type-

checked DPJ program is guaranteed deterministic-by-default semantics. That is, unless non-

determinism is explicitly requested, DPJ programs appear de- terministic and with sequential 

semantics (the programmer can debug and test such a program as if it were sequential). Even when 

non-determinism is explicitly requested, DPJ provides strong safety guarantees; e.g., data-race-freedom, 

strong isolation, and sequential composition of deterministic code sections [12]. The DPJ compiler 

enforces these guarantees by checking that conflicting accesses from two concurrent tasks – the root 

cause of non-determinism – are always identified (as atomic) and always occur within explicitly 

marked atomic sections. 

DeNovo has so far focused on deterministic programs, and shown that DPJ’s information and guarantees 

can be exploited to provide a simpler and more efficient cache coherence protocol than the state- of-the-

art MESI for such programs [17]. Specifically, DeNovo’s protocol has the following advantages: (1) 

The implementation has no transient states and so is much easier to verify (verification is an order of 

magnitude faster) and much easier to extend (incorporat- ing optimizations did not introduce any 

protocol state changes). (2) DeNovo does not rely on writer-induced invalidations; it therefore 

eliminates invalidation message traffic and does not require stor- age overhead for sharer lists in 

directories, removing a key source of unscalability. (3) DeNovo keeps coherence state at the granular- 

ity at which data is shared and so does not suffer from false shar- ing (the added state overhead is 

much less than the reduced direc- tory state). Overall, compared to MESI, DeNovo is much simpler, 

performs comparably or better than MESI, and is more energy- efficient (since it reduces cache misses 

and network traffic) for a range of deterministic codes. 

Although determinism is considered desirable for many ap- plication classes, there are many common 

codes that are non- deterministic or contain parts that are non-deterministic, most com- monly through 

lock synchronization. For example, 21 out of 25 of the PARSEC and SPLASH-2 benchmarks contain 

locks in some parts. DeNovo currently cannot run such codes.
1
 For commercial hardware to be able to 

exploit the benefits of DeNovo, it is im- perative that we develop techniques to support non-

deterministic codes with at least as much performance as conventional systems, without losing the 

benefits of DeNovo. 

This paper explores exploiting disciplined programming models to develop simpler and more 

efficient hardware even for programs that contain non-determinism. We use DPJ’s safe non-

determinism model (with atomic sections replaced with locks), and show that simple additions to the 

DeNovo coherence protocol can support such non-determinism without giving up on DeNovo’s 

previous advantages. We call the resulting system DeNovoND. 

For deterministic programs, DeNovo achieves its benefits pri- marily by recognizing that DPJ 

explicitly provides the regions that could be potentially written in a parallel phase (e.g., DPJ’s fore- ach 

or cobegin constructs) through its explicit effects. At the start of a new phase, DeNovo’s cores execute 

compiler-inserted self- invalidations to all regions that could have write effects in the previ- ous phase. 

Their caches therefore now have only valid data. If any of this data is updated in the next phase, DPJ’s 

data-race-freedom guarantee ensures that only the writing core will read that data, ensuring up-to-date 

values for all reads. These observations elimi- nate the need for writer-induced invalidations, 

directories, and false sharing due to cache line driven protocols. 
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Unlike DeNovo, DeNovoND cannot assume that a parallel phase will have no conflicting accesses 

among concurrent tasks any more, but it knows that such accesses will be protected by the same lock 

(this lock may change in a different parallel phase). Further, such accesses are explicitly identified as 

atomic accesses in DPJ programs. Within a critical section, DeNovoND therefore tracks atomic writes 

through a signature which is conveyed to the next acquirer of the lock. The acquirer uses the signature 

to determine which data to invalidate in its cache. The strong guarantees given by DPJ enable an efficient 

implementation, while still providing free- dom to express a variety of non-deterministic algorithms. 

Underly- ing the above is an implementation for a lock that does not require directories and a full-

fledged MESI protocol – we use a distributed queue based implementation modeled after the Queue-on-

Sync-Bit (QOSB) lock [20]. 

Overall, our system retains the advantages of DeNovo while sig- nificantly expanding the class of 

programs it supports without com- promising performance. Specifically, for lock accesses, although 

DeNovo’s coherence protocol state machine is extended to handle the distributed queue, it reuses the 

state bits from DeNovo’s data ac- cesses. For data accesses, again, no new externally visible states are 

added; the only support needed is a signature per core, the ability to transfer it to the next acquirer, and 

to use it for self-invalidation at subsequent reads. A bit per word at the L1 cache is used as an 

optimization. We continue to not have any directories, not have in- validations, and not incur false 

sharing. 

We compared DeNovoND with a state-of-the-art MESI protocol for 11 benchmarks with lock 

synchronization. 3 of these spent more than 70% of their time in lock acquires, clearly requiring 

alternate 

 

1 The DeNovo work reports results for some of these benchmarks, but the parts with locks were 

either run sequentially or rewritten or not simu- lated [17]. 

synchronization techniques for reasonable parallel efficiency that are out of the scope of this work. We 

therefore focus on the remain- ing 8 benchmarks here, although we report results for the above 3 as well 

for completeness. We found that DeNovoND performs com- parably or slightly better than MESI in 

terms of execution time. DeNovoND also shows 33% lower network traffic than MESI on average, 

which directly translates into energy savings. Performance optimizations previously proposed for 

DeNovo (for cache to cache and flexible granularity data transfer) [17] are applicable to DeN- ovoND 

as well without any additional changes, but are orthogonal to this work and not reported here. Thus, 

DeNovoND allows us to extend the benefits of DeNovo to include lock-based (safe) non- 

deterministic applications. 

Our system shares commonalities with previous software dis- tributed shared memory consistency 

models such as lazy release consistency [27], entry consistency [7], and scope consistency [22] as well 

as recent hardware shared-memory work that exploits data- race-freedom such as SARC [25]. 

However, none of those systems distinguish between deterministic and non-deterministic accesses in a 

way that is possible with our hardware/software co-designed approach, and so those systems cannot 

exploit the corresponding optimizations. Section 7 discusses the relationship of our work to prior 

work in more detail. 

While DeNovoND takes a major step in exploiting software dis- cipline in hardware for a larger class 

of programs, there is still much left to future work and outside the scope of one paper. Sec- tion 8 

discusses future work to explore how to incorporate other key constructs (e.g., pipelined parallelism), 

and support more com- plex codes such as legacy codes and operating systems within this vision. 

 

2. Background 
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 Deterministic Parallel Java (DPJ) 

DPJ is an extension to Java that enforces deterministic-by-default semantics via compile-time type 

checking [11, 12]. We first dis- cuss DPJ without non-deterministic constructs [11]. DPJ provides 

parallel constructs of foreach and cobegin to express parallelism in a structured way as in many 

current languages (we refer to an iteration of a foreach loop or a parallel statement of a cobegin as a 

task). DPJ provides a new type and effect system for expressing common patterns of imperative, object-

oriented programs. The DPJ programmer assigns every object field or array element to a named “region” 

and annotates every method with read and write “effects” summarizing the regions read and written 

by that method (a re- gion can be non-contiguous in memory). The compiler uses this information to 

(i) type-check program operations in the region type system and (ii) ensure that no two parallel tasks 

interfere (conflict). DPJ also provides parallel constructs that are potentially non- deterministic; i.e., 

foreach nd and cobegin nd [12]. These con- structs allow conflicting accesses between their tasks, 

but require that such accesses be enclosed within atomic sections, their read and write effect 

declarations also include the atomic keyword, and their region types be declared as atomic. Note that 

there continue to be no conflicts allowed between a task from a deterministic parallel construct and any 

other concurrent (non-deterministic or determin- istic) task. The compiler checks that all of the above 

constraints are satisfied by any type-checked program, again using a simple, 

modular type checking algorithm. 

With the above constraints, DPJ is able to provide the follow- ing guarantees: (1) Data-race 

freedom. (2) Strong isolation of ac- cesses in atomic section constructs and all deterministic parallel 

constructs; i.e., these constructs appear to execute atomically. (3) Sequential composition for 

deterministic constructs; i.e., tasks of a deterministic construct appear to occur in the sequential 

order 

implied by the program (even if they contain or are contained within non-deterministic constructs). (4) 

Determinism-by-default; i.e., any parallel construct that does not contain an explicit non- deterministic 

construct provides deterministic heap output for a given heap input. The above guarantees are strong – 

they not only ensure sequential consistency but also allow programmers to reason with very high-level 

strongly isolated and composable components such as complete foreach constructs and all atomic 

sections. 

Although DPJ supports atomic sections, this paper assumes we can convert them to locks. This is 

possible because by default we can associate each atomic region with its own lock. For each atomic 

section, we can acquire locks for each atomic region that it accesses in a predefined order. This can be 

optimized in several ways; e.g., by coarsening the locks. An implementation of this algorithm is outside 

the scope of this paper. We therefore use hand inserted locks 

– for the applications we used, these locks were as provided in the original application. 

 

 DeNovo for Deterministic Codes 

DeNovo divides the coherence problem into two parts: 

(1) No stale data: A read should never see stale data in its private cache(s). 

(2) Locatable up-to-date data: When a read misses in its private cache(s), it should know where to get 

an up-to-date copy of the data. 

Above, stale and up-to-date are defined by the memory consis- tency model (sequential semantics, in 

our case). For (1), DeNovo recognizes that DPJ explicitly provides the regions that could be 

potentially written in a parallel phase (each DPJ parallel construct such as cobegin and foreach forms a 

phase, with an implicit barrier at the join). Before starting a new phase, a core issues compiler- inserted 

self-invalidations for all regions that could have write ef- fects in the previous phase, eliminating all stale 
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data from its private cache(s).
2
 For data updated in the current phase, DPJ’s data-race- freedom 

guarantee ensures that only the writing core will read that data, ensuring up-to-date values for all 

(private) cache hits. For (2), DeNovo uses a structure called the registry to keep track of one up-to-date 

copy of each cache line. This is analogous to a conven- tional directory, but unlike the latter, it does not 

track all sharers of a cache line (eliminating a source of unscalability). With systems with a shared last 

level cache, the data bank of the cache doubles as the registry storing the data or a pointer to it. 

The DeNovo protocol has three states, Registered, Valid, and In- valid. These states are analogous to 

those in a conventional MSI directory protocol; Registered is similar to M with the line modified in a 

private cache and Valid is similar to S. The DeNovo protocol state transition diagram also resembles 

typical textbook pictures for MSI. A key difference, however, is that real implementations of MSI have 

tens of transient states to handle protocol races, in- troducing significant complexity and making 

verification difficult. In contrast, DeNovo has no transient states since it assumes race- free software, 

which eliminates virtually all races from the protocol hardware. 

Next we describe the key aspects of the protocol’s operation and refer to [17] for more details. For 

easier exposition, we assume a two level cache hierarchy with a shared L2 without loss of general- ity, 

and a line size of one word (this is relaxed below). A read hits in the L1 if the line is Valid or 

Registered. A read miss request goes to the registry (the shared L2) and either finds the data there or a 

pointer to the L1 that contains the data in Registered state. In the latter case, the request is routed to the 

registered data for service. 

 

2 This requires the cache to store region information as described in [17]. 

A write to data in Registered state at the L1 updates the data. A write to data in Valid or Invalid state 

at the L1 immediately transi- tions the data to Registered and updates it (no transients) and gener- ates a 

registration request (and a writeback if needed). If the data is not registered elsewhere, the L2 

immediately registers it and sends an acknowledgment. Otherwise, the L2 records the new registra- 

tion and forwards the request to the previously registered core to relinquish its registration. Due to the 

data-race-free guarantee, reg- istration transfer occurs only once in a phase (assuming no task mi- 

gration, which can also be easily handled [17]), without any danger of protocol races. 

Additionally, as an optimization, L1 contains touched bits that are set when the corresponding data 

is read. Due to data-race- freedom, it is guaranteed that no other core will write such data in that 

phase. Thus, “touched” data is up-to-date and does not need to be invalidated for the next phase. All 

self-invalidations occur at the end of the phase – regions with write effects in that phase are 

invalidated unless the data is registered or touched. Touched bits are reset after the invalidation, in 

preparation for the next phase. 

The baseline word-based DeNovo protocol assumes equal ad- dress/tag allocation, communication, 

and coherence granularity, which is the granularity at which data-race-freedom is ensured. This 

granularity is a word for the applications evaluated. (Details about supporting sub-word (byte) 

granularity can be found in [17].) DeNovo further observes that any data that is marked touched or 

Registered is always up-to-date and can be freely copied from one cache to another without informing 

anyone (there is no di- rectory tracking sharer lists). Thus, the word-based DeNovo pro- tocol is easily 

enhanced to operate on larger communication and address/tag allocation granularities, while still 

maintaining coher- ence state at the word granularity. 

A natural granularity for communication and allocation is a con- ventional cache line (e.g., 64 bytes), 

and the corresponding DeNovo protocol is referred to as the line based protocol. Here, a responding 

cache for a demand request sends a cache line worth of data (poten- tially with some words marked as 

invalid) and the valid words in the response message are merged with the local copy of the cache line of 
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the requestor. These words are marked as Valid, but not touched (the touched bit is set when those 

words are actually read). DeN- ovoND is designed on top of this line-based protocol. 

DeNovo has also explored more flexible communication granu- larities (more or less than one cache 

line) and direct L1 to L1 data transfers. These optimizations are simple with DeNovo and do not 

require any new states, but are difficult to incorporate in conven- tional protocols because they 

introduce even more transient states. The same optimizations can be directly applied to DeNovoND as 

well, again with no new states for DeNovoND. We do not study them here since they are orthogonal 

to the goal of this paper. 

The DeNovo protocol we study additionally implements the opti- mization of write combining where 

multiple registration requests to words in a given cache line are combined into one request. This op- 

timization was mentioned, but not implemented, in [17] to reduce write traffic. This optimization is 

not meaningful for conventional protocols since conventional store requests always operate on a full 

line while DeNovo registrations are for a word. 

 

3. DeNovoND Design Overview 

 Basic Assumptions and Definitions 

We assume all synchronization occurs through DPJ’s parallel con- structs (foreach, cobegin, and their 

nd versions) and through locks. We assume a barrier at the implicit join associated with the parallel 

constructs. We say all concurrent tasks of a given parallel construct 

– loop iterations in a foreach and parallel statements in a cobegin – form a phase. 

For locks, we assume that an atomic section does not call a parallel construct, as is the case with all 

our applications. Thus, all operations of an atomic section occur within a single task and are enclosed 

within a lock acquire and release to the same lock variable (there may be nested locks to different lock 

variables). We refer to memory operations within such a lock acquire/release pair as occurring in a 

critical section protected by that lock variable. 

For data accesses, we assume the ISA provides a mechanism by which loads and stores can be tagged 

as accessing atomic regions with atomic effects (e.g., with a bit in the op-code). The DPJ com- piler 

has this information and can generate code with the bit set for such accesses. We refer to such accesses 

below as atomic accesses and to others as non-atomic accesses. Note that the former are reg- ular data 

accesses from atomic sections and are not to be confused with atomic read-modify-writes or the C++ 

atomic keyword used for synchronization races. 

Without loss of generality, we assume a two level cache hier- archy. We also assume a shared L2 

cache. DeNovoND can be extended to deeper hierarchies and private last level caches in a 

straightforward way (similar to DeNovo [17]). 

 

 Memory Consistency Model 

For a correct design, we must first understand the constraints im- posed by the memory consistency 

model which specifies what value a read must return. 

Informal model: DPJ provides a very strong consistency model. It guarantees sequential consistency 

and hence a total order over all memory operations (that is consistent with program order). A read 

must return the value of the last write to its location as defined by this total order. DPJ also enforces 

additional rules that further constrain this last write for data operations, simplifying reasoning for 

software and implementation for hardware as follows. 

Non-atomic accesses: DPJ ensures that for a non-atomic access, there cannot be a conflicting access 

by another concurrent task in the same phase. Thus, for a non-atomic read, the last conflicting write is 

either from its own task or from a task in a previous phase. This is identical to DeNovo and we can 
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→ 

→ 

→ 

use the identical implementation. 

Atomic accesses: For atomic accesses as defined above, DPJ allows conflicting accesses among 

concurrent tasks, but ensures that all such accesses to a given location are in critical sections protected 

with the same lock. These critical sections must execute atomically, imposing a total order on all 

conflicting atomic accesses within a phase. A read therefore must return the value from the (unique) last 

conflicting write from a critical section in the current phase; if such a write does not exist, then the read 

must return the (unique) last conflicting write from the previous phase. 

Formal model: We now state the model more formally. Note that this model is motivated as a 

specification for hardware and is therefore at a low level, in terms of individual reads and writes. DPJ 

programmers work at a higher level in terms of composition and serialization of higher level constructs 

(cobegin, atomic section, etc.) as described in Section 2.1. Our model can be stated in two parts for 

synchronization and data accesses respectively: 

(1) Synchronization accesses are sequentially consistent. This implies a total order between phases 

and between critical sections to a given lock variable within a phase; this total order is consistent with 

program order. 

(2) For conflicting data accesses, X and Y , we define a happens- before relation, denoted →hb such that 

X →hb Y iff 

Type 1 edge: X’s phase precedes Y ’s phase (by the total order in (1)), or 

Type 2 edge: X and Y are in the same task, and X is before Y 

by program order, or 

Type 3 edge: X and Y are atomic accesses in critical sections protected by the same lock variable, 

and X’s critical section precedes Y ’s critical section (by the total order in (1)). 

Then DPJ’s guarantees ensure that  hb orders all conflicting accesses, and hardware 

should ensure that a data read returns the value of the last conflicting write in hb order. For a non-

atomic read, the last write is always ordered before it by a type 1 or type 2 hb edge. For an atomic read, 

the last write may be ordered before 

it by a type 2 or type 3 edge if such a write exists; otherwise, it is ordered by a type 1 edge. 

 Data Coherence Mechanism 

The coherence mechanism must simply ensure that a read returns the value from the write as 

defined by the consistency model. As with DeNovo, we divide the coherence mechanism into two 

components: 

(1) No stale data: A read should never see non-last (stale) data in its L1 cache(s). 

(2) Locatable up-to-date data: When a read misses in its L1 cache(s), it should know where to get the 

last (up-to-date) copy of the data. 

Above, last is precisely defined by the happens-before order. For non-atomic accesses, both 

components above remain identical to DeNovo since the consistency model requirements are 

identical. For atomic accesses, the requirements are met as follows. 

No stale data: For the first requirement of no stale data, we use self-invalidations as with DeNovo, 

thereby precluding the need for adding invalidation messages and directories with sharer lists. 

Additional self-invalidations are needed with DeNovoND only if there are conflicting atomic 

accesses among concurrent tasks in a phase (otherwise, DeNovo’s self-invalidations at the start of a 

phase suffice). In the case of conflicting atomic accesses among concurrent tasks, we use the 

happens-before relation to determine when and what to self-invalidate as follows. 

To determine when to self-invalidate, we note that a concurrent conflicting read must be in a critical 

section itself and must return the value of the last write also in a critical section protected by the same 

lock in the same phase (type 2 or 3 edge). Thus, it is sufficient to self-invalidate any time between the 
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start of a critical section and an atomic read in that section. 

To determine what to self-invalidate, we have several choices. We could invalidate the entire cache 

(which seems excessive) or only the atomic regions (for which we would need to keep extra state to 

identify in the cache). An alternative is for each core to update a signature that records all writes to 

atomic regions, and then to transfer this signature when the lock is acquired by another core. On a 

first atomic read to a location, the acquiring core needs to check the signature and self-invalidate the 

location if it is present in the signature. The acquiring core must forward the union of its signature and 

the signatures it has received to the next acquirer. 

Locatable up-to-date data: For the second requirement of finding the value of the last write on a 

miss, we use ideas similar to DeNovo. On a write to valid or invalid data, the L1 cache sends a 

registration request to the L2. The registrations are required to complete before the lock release so 

that conflicting writes from critical sections are serialized in the right order (it is possible to postpone 

the registration completion until the next lock acquire). A read that misses in the cache simply goes to 

the registry (L2) to find the up-to-date value. 

Thus we continue with only three states in the protocol as before: Valid, Invalid, and Registered. The 

extra work over DeNovo is to update the signature on atomic writes, send the signature on a lock 

transfer, and invalidate appropriately on atomic reads. Section 4.1 discusses each of these steps in 

more detail. 

 Distributed Queue-based Locks 

Our distributed queue-based lock design is modeled after QOSB [20, 24], where the identities of the 

cores waiting for a lock are main- tained in a queue of pointers distributed across the waiting cores’ 

L1 caches and the L2 cache. All requests to a given lock are serial- ized at the corresponding shared L2 

cache bank. The data portion of the L2 cache entry for a contended lock tracks the last requestor (i.e., 

the tail of the queue of waiters), referred to as tailPtr. When the L2 receives the next request for the 

lock, it forwards it to the current tail’s L1. On receiving such a forwarded request, the L1 checks a 

bit in its copy of the lock word, called the Locked bit, to determine if the lock is still held or was 

unlocked. In the former case, the L1 stores the requestor’s ID in another field of the lock word, 

referred to as nextPtr. In the latter case, the L1 responds to the requestor with its signature and 

transfers the lock, marking its own lock word Invalid. When a core releases a lock, its L1 checks its 

nextPtr – if not null, it transfers the lock (with the signature) to the nextPtr core; otherwise, it unsets 

its Locked bit. We allow eviction of lock words from the L1 and L2 caches by reusing the data 

portion of the lock words in the next level of the memory hi- erarchy to store lock queue information. 

This approach relies on using L2 data banks to store (non-data) metadata, which is similar to 

DeNovo’s tracking of registration information for the Registered state. Section 4.2 discusses our 

implementation in more detail. 

 

4. Implementation 

This section discusses in detail how DeNovoND implements the memory consistency model and the 

coherence mechanism de- scribed in Section 3 using access signatures and the distributed queue-based 

lock mechanism. We also qualitatively discuss the hardware and performance overheads of the 

implementation. 

 Access Signatures for Coherence of Atomic Accesses 

DeNovoND’s memory consistency model requires that a read re- turn the value of the last write 

preceding it, as ordered by the three types of happens-before edges described in Section 3. DeNovo al- 

ready guarantees that a write ordered by a type 1 or type 2 edge is seen at a read (the former through 

self-invalidations at the start of a new phase and the latter through single core semantics). For a non-
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atomic read, a write is ordered only through the above two edge types; therefore, DeNovo already 

provides consistency for such reads. For atomic reads where a previous (atomic) write is or- dered by a 

type 3 edge, however, DeNovoND must provide a new mechanism – it needs to track which data in 

atomic regions has been modified in a critical section in the current phase, as well as a mechanism to 

efficiently represent and transfer this information on a successful lock acquire. 

We use an “access signature” for the purpose of tracking atomic writes. A signature is a compact 

representation of a set at the expense of precision. Its main functionality includes element in- sertion, 

membership query, and flash clear functions. DeNovoND implements the access signature as a small 

Bloom filter in hard- ware [9]. Due to its storage efficiency, simplicity, and low access la- tency, a 

hardware Bloom filter has been a popular solution for many areas including networking and transactional 

memory [13, 16]. 

For our Bloom filters, the keys are addresses accessed (i.e., atomic regions that have atomic effects 

in this phase), since we are interested only in modifications made to those addresses. The key domain 

dynamically changes between cores and phases, as a new set of atomic accesses occurs. To keep the 

false positive rate of Bloom filter reasonably low, the size of each Bloom filter should be determined 

based on the average size of the key domain. This turns out to be quite small in our case (256 bits 

suffice) since we only track atomic accesses in a given phase (later sections discuss 

 

 
Figure 1: An example of propagating atomic writes using access signatures. Assume a and b are in the 

same cache line. 

 

the size in more detail). We conservatively keep one filter per core to track all modifications across 

different critical sections (with dif- ferent locks) on the same core. Thus, for a system with n cores, we 

have a total of n Bloom filters in the system. 

The following uses Figure 1 as a running example to show how DeNovoND uses the Bloom filters. 

On the left, the figure shows DPJ style code depicting three variables, a, b, and c in atomic region xR. 

It then shows a critical section protected by lock x with atomic read and write effects on region xR. 

The right side of the figure shows an execution with two cores, C1 and C2. C2 acquires the lock for 

the critical section first, followed by C1 and then C2 again. The figure also shows the signatures at 

each core, assuming a perfect hash function. 

On atomic writes: An atomic write (as determined by the op-code of the store instruction as discussed 

in Section 3) invokes the same cache protocol operations as in DeNovo. That is, if the word is not in 

Registered state at the L1, a registration request is sent to the L2. Additionally, the word is updated 

right away and any required writeback is sent to the L2 as well. 
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For DeNovoND, an atomic write additionally inserts the accessed address into its core’s Bloom filter. 

To avoid repeating insertion of the same address to the Bloom filter, we can add an additional bit, 

called the “dirty bit,” to mark a memory location already updated in a given phase. The “dirty bit” is set 

on the first atomic store request to a word in a phase, and all dirty bits get unset at the end of a phase. If a 

store finds the dirty bit already set, it means the word is already inserted into the core’s Bloom filter and 

does not need to be inserted again. Since this is purely an optimization, we can piggyback the 

functionality of a dirty bit on other state bits described below (e.g., the touched-atomic bit) – this may 

result in some extraneous resets, but does not affect correctness and reduces extra state. 

Thus, at the end of a critical section, all addresses modified in the section are recorded in the core’s 

filter; i.e., their entries are non- zero. From Figure 1, every store request to a, b, and c in the lightly 

shaded critical sections updates the Bloom filter on C1 and C2. The second critical section phase on C2 

does not update the Bloom filter since it does not have atomic writes. 

On acquire/release: On an acquire, all modifications preceding the release associated with the 

acquire are made visible to the acquirer by transferring the access signature at the releaser. The 

releaser compresses and sends the Bloom filter at its core to the acquirer, when transferring the lock. 

The acquirer, on receiving the Bloom filter, updates its own Bloom filter by making a union of its 

local Bloom filter and the releaser’s Bloom filter. Figure 1 shows the resulting Bloom filters at the 

beginning of each critical 

section, of which the lightly shaded entries come from the union operation. Note that we only send the 

signature, not the actual data. On acquire and release points, we also reset the “touched-atomic” and 

“prefetch” bits (as will be explained in detail below). 

On atomic reads: Atomic reads need to conceptually consult the signatures obtained from remote 

releasers to determine if cached data is valid or stale. If the read is to a word in Registered state in the 

L1, then regardless of the signature state, the word is up-to-date in the cache and the read is a cache hit. 

If the word is Invalid in L1, then a normal read request is sent to L2. If the word is in Valid state, then it is 

also up-to-date if its address does not appear in the access signature. If the word is in Valid state and its 

address hits in the access signature, then it may or may not be up-to-date depending on whether it has 

been previously read in this critical section. 

Specifically, if the word has already been read in this critical section, the previous read brought up-

to-date data that is still valid (since no other core can write to the word during the same critical 

section). We identify this situation by using a touched-atomic bit that is set on the first read of the word 

in a critical section and reset at the release – more precisely, it needs to be reset only when the lock is 

handed off for another core’s acquire (lock hand-off). Thus, a read to a word in Valid state with touched-

atomic bit set is a cache hit. 

Another case where a valid word may be up-to-date is when it is obtained as part of a cache line 

transfer for a demand access to another word in that line. We would like to take advantage of such a 

prefetch as with conventional cache lines and with DeNovo. If the word comes directly from the L2 or 

from memory, then it is definitely valid. If it comes from a remote cache, then it is valid if that word 

was marked as touched-atomic or Registered in the remote cache. In this case, we can conceptually 

add another bit called the “prefetch bit” which can be set for prefetched words with the above 

properties. These bits must be reset on the next lock hand-off or the next acquire, whichever happens 

first. A read that accesses a valid word with prefetch bit set is considered a cache hit. Although the 

touched-atomic and prefetch bits are separately motivated, both functions can be achieved by a single 

bit that we collectively refer to as the touched-atomic bit. 

In summary, the touched-atomic bit of a word is set on the first read of the word in a critical section 

or for a word prefetched from L2/memory or from a remote L1 in touched-atomic or Registered state. 
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The bit is reset on an acquire or a lock hand-off, including the end of the phase. A read to Valid data 

with touched-atomic bit set or with an address that misses in the access signature is considered a hit. 

Otherwise, the Valid data is no longer up-to-date and must be marked invalid and a read miss request is 

issued. 

In Figure 1, assume that variables a and b are in the same cache line. Then C1’s load b will be a hit 

since C1’s load   a will bring in b as well and set its touched-atomic bit. On the other hand, load b 

in C2’s second critical section is a miss. This is because the preceding load a will read a in its own 

cache in Registered state and so will not prefetch b which is registered at C1. 

Finally, we note that using a single, plain Bloom filter at each core to determine what to invalidate is 

inherently conservative. For example, it is possible that an address may have been updated be- fore it 

had been last seen by a core but not updated again since then; our system will still invalidate the address 

on a read (in the same phase) from that core. In addition, false positives in a finite Bloom filter cause 

valid addresses to be invalidated if the filter entry is up- dated by another address mapped to the same 

entry. Another source of imprecision occurs when the signature is transferred well after the lock release 

occurs. Such a signature may include addresses to accesses after the release and before the subsequent 

acquire – these do not precede the acquire by happens-before and may lead to false positives and 

unnecessary invalidations. Our evaluation, how-ever, showed that such cases did not occur often for 

applications with reasonable lock synchronization; nevertheless, we later dis- cuss some approaches to 

mitigate such effects (Section 6). 

End of phase actions:   At the end of a phase, as with DeNovo, we insert self-invalidation 

instructions for all regions with writable effects in that phase. This includes atomic and non-atomic 

regions. Analogous to DeNovo, all data in such regions is invalidated unless it is registered or its 

touched bit (for non-atomic regions) is set or its touched-atomic bit (for atomic regions) is set. All 

touched and touched-atomic bits are reset at the end of the phase and all Bloom filters are cleared. 

 

 Lock Implementation 

Tables 1a and 1b describe the state transitions for the L1 and L2 caches respectively for lock words, 

building on top of the DeNovo line protocol (as with DeNovo, the coherence states are at word 

granularity). We next discuss these in detail. 

L1 transitions: There are two states at L1 for a lock word: LockQ and Invalid. The lock word 

transitions to LockQ on receiving a lock request from its core, and stays there until it transfers the 

lock (along with the access signature) to nextPtr or until the line is evicted. While in LockQ state, a 

bit in the data portion of the lock entry, called Locked, indicates whether the lock is held or released. 

Figure 2 shows the lock word layout at the L1 with a lock queue. 

On a lock request by a core, its L1 sets the Locked bit for the corresponding word. If the word was 

already in LockQ state, the L1 informs the core of a successful lock acquire. If the previous state was 

Invalid, a lock request is sent to the L2 and the core is stalled (the cache does not service any further 

requests from the core) until the response is received. 

On an unlock request to LockQ state, if nextPtr is not null, the L1 transfers the lock to the nextPtr 

core and transitions to Invalid. Otherwise, it unsets Locked. An unlock request to Invalid state 

generates a request to the L2. This request is simply a notification and does not bring back the cache 

line (the state stays Invalid). 

An L1 in LockQ state may receive a remote lock request for- warded by the L2. If the Locked bit is 

set, the request is queued in nextPtr; otherwise, it is serviced immediately by transferring the lock and 

changing the state to Invalid. The L1 may also receive a remote lock request in Invalid state due to a 

previous writeback. If this request is only for the signature, it transfers the signature (along with an 
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implicit lock transfer) to the remote requestor. If the request is for the lock as well, then it signifies a 

race between the L1’s writeback and the remote request at the L2. In this case, L1 returns a Nack to 

the L2 – we discuss how the L2 responds to the Nack in detail below. 

Eviction of lines with lock words at the L1 is similar to DeNovo’s L1 evictions (not shown in Table 

1a). The main difference is that the writeback message needs to indicate which words are in LockQ 

state so that the L2 can perform appropriate action as discussed below. Table 1a does not show any 

action for writeback requests generated by L2 for L1. This is because the L2 does not need to 

maintain inclusion with the L1 for lock words (similar to Valid data in DeNovo). The distributed lock 

queue constructed in the L1s stays valid and does not need to be rebuilt on an L2 writeback. 

L2 transitions without L1 writebacks: The L2 has two states – Invalid and Valid. The main source 

of complexity at the L2 comes from L1 writebacks of LockQ words; we therefore first discuss L2 

transitions without L1 writebacks, indicated by WB=0 in Table 1. 

On a lock request in Valid state, the L2 forwards the request to its tailPtr core and updates the tailPtr 

with the requesting core’s ID. A lock request in Invalid state allocates the line for the lock word, 

triggers a fetch from memory, and keeps the L2 in Invalid state. When the response returns, the L2 

transitions to Valid and applies the actions for the Valid state to the lock request (i.e., forwards the 

 Lock request 

from core i 

Unlock request 

from core i 

Response for 

lock request 

from core i 

Remote lock 

request 

from core k 

 

Lock

Q 

 

set Locked 

if nextPtr != null 
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else 

unset Locked 
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k 
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e 
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if WB == 0 

fwd req to 

tailPtr; 

else // WB == 1 

if Locked is 

not set send 

sig-only req 

to 

lastAcquirer 

for i; 

WB := 0 

else   // Locked 

is set 

if firstWaiter 

!= null fwd 

req to 

tailPtr 

else 

firstWaite

r := i; tailPtr 

:= i 

 

 

if firstWaiter 

!= null send 

sig-only req 

to 

i for 

firstWaiter; 

WB := 0 

else 

unset Locked 

 

 

 

 

X 

if firstWaiter 

== null copy 

Locked from 

WB 

message; 

lastAcquirer 

:= i; 

firstWaiter := 

nextPtr; WB := 

1; 

else // race 

if Locked is 

not set send 

sig-only req 

to 

i for 

firstWaiter 

 

if WB == 0 

firstWaiter := k 

else 

if Locked is 

not set send 

sig-only req 

to 

lastAcquirer 

for k; 

lastAcquirer 

:= null 

else 

firstWaiter := k 

 

 

Inval

id 

 

update tag; 

send data req to 

memory; 

(writeback if 

needed) 

 

update tag; 

send data req to 

memory; 

(writeback if 

needed) 

if not tag match 

allocate 

line; 

update 

tag; 

(writeback if 

needed) go to 

Valid; 

apply actions for 

Lock/Unlock/W

B/Nack as 

specified in 

Valid 

 

update tag; 

send data req to 

memory; 

(writeback if 

needed) 

 

update tag; 

send data req to 

memory; 

(writeback if 

needed) 

(b) L2 cache 

Table 1: State transitions for a lock word. X indicates unreachable states. 
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request to tailPtr). If the line was deallocated between the request and the response due to eviction, 

another line is allocated and the above action taken. 

An unlock request in Valid state can only occur if the unlocking L1 previously performed a writeback 

on the lock (i.e., WB=1), and so is discussed below. 

Writebacks generated by the L2 to memory are similar to DeN- ovo. As we see below, all the lock 

queue related information needed at the L2 is maintained as part of the lock word in the L2 – on an L2 

writeback, this information is simply preserved at memory and made available to the L2 for later use. 

Handling L1 lock writeback at the L2: When the L2 receives a writeback from an L1, it must ensure 

that it stores all information needed to construct the lock queue that was stored at the L1. This 

information is stored in the data portion of the L2 along with the tailPtr. An L1 writeback containing 

a lock word can originate only from the head of the lock queue in LockQ state because other cores 

are either stalled on their lock request or invalidated after transferring the lock. The L2, therefore, 

stores the following information in its data portion on an L1 writeback from core i (Figure 2 illustrates 

the L2 data layout with example values before and after the writeback):
3
 

WB: The WB bit is set to 1 to indicate that the lock has been evicted from the L1 of the head of the 

lock queue. 

 
3 Storing these fields in the data bank of the L2 does not limit the number of cores that can be 

supported as we can increase the data size of a lock variable as needed. 

Locked: The Locked bit from the writeback message is copied into the L2 to indicate whether the 

lock was released (Locked=0) at the time of the writeback. 

lastAcquirer: L2 sets lastAcquirer as i. This is used to forward the next lock requestor to core i to 

obtain the access signature. firstWaiter: L2 copies nextPtr from the writeback message into 

its firstWaiter field to indicate the first element in the queue after 

the head. On a subsequent unlock, the lock must be transferred to the firstWaiter core if it is not 

null. 

Next we revisit the transitions for various messages at the L2 when the Valid state has WB=1. On a 

lock request, if Locked is not set (writeback occurred after lock release), L2 forwards the re- quest to 

the lastAcquirer core. This request is for the access signa- ture only since we already know that the 

lock has been released. If Locked is set (writeback before release), then L2 checks if first- Waiter is 

null. If it is not null, then L2 queues the request by for- warding it to tailPtr. Otherwise, it sets 

firstWaiter to i since there is no other waiter in the queue. 

Similarly for unlock requests, if firstWaiter is not null, L2 for- wards the request of firstWaiter to 

lastAcquirer for the signature (and implicit lock transfer). Otherwise, the queue is empty. L2 re- sets 

Locked, indicating that the evicted head is unlocked now and is ready to transfer the lock. 

Handling races: There can be a race between an L1 lock writeback from core i and a request for the 

same lock from another core k. Thus, before getting the writeback, the L2 can forward core k’s 

request to L1. In this case, L1 nacks the request back to L2, which takes the following actions 

depending on whether it has already received the writeback (last column of Table 1b): 
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(a) 

 

 
(b) 

Figure 2: Example showing L1 and L2 data layout for the distributed queue- based lock (a) before 

writeback and (b) after writeback. 

 

The Nack arrives before the writeback (WB=0): L2 simply sets firstWaiter to core k. When the 

writeback arrives, L2 finds its firstWaiter is not null and its request must be handled. If the Locked bit in 

the writeback is unset, L2 knows the lock was released and so can forward firstWaiter’s request to core 

i for signature transfer. If the Locked bit is set, then nothing needs to be done; the lock transfer to core k 

will occur when the Unlock arrives. 

The Nack arrives after the writeback (WB=1): L2 services core k’s request using the information stored 

in the writeback; if Locked is not set, the request is forwarded to lastAcquirer. Otherwise, k is stored as 

the firstWaiter. 

The above race is the only one that occurs in the lock protocol. It involves at most two cores and 

results in exactly one possible Nack message that the L2 immediately handles, with no deadlock or 

livelock causing actions. 

 Overheads 

DeNovoND incurs the following overheads over DeNovo. Hardware Bloom filter: There is one 

Bloom filter per core. A con- servative upper bound for its size is the virtual memory size. In practice, 

an effective size can be empirically determined by mea- suring the number of atomic writes to distinct 

addresses in various applications. The size must also be large enough to have tolerable false positive 

rates. In our system, a relatively small size Bloom fil- ter of only 256 bits worked well and provided 

performance similar to an infinite size Bloom filter for most cases. This is because the size of the key 

domain is restricted only to the addresses in atomic regions, and the filter is flash cleared at the end of a 

phase. 

The quality of the hash function also impacts the efficiency of Bloom filters [42]. We 

experimented with two hash functions, multi-bit selection (similar to the one used in [16]) and H3 

(univer- sal hash function that provides uniformly distributed hash values [15]), which showed 

consistent performance across applications. For our evaluation, we used H3 which worked better with 

appli- cations with high false positive rates. Finally, [16] has shown that Bloom filter operations of 

element insertion, membership query, and flash clear can be implemented very efficiently in hardware. 

Storage overhead: Our distributed queue-based lock protocol reuses the L1 and L2 cache data banks 

to store the waiter queue information, incurring zero storage overhead for that purpose. It re- quires one 

additional state LockQ at L1 to distinguish between lock and data words. This does not result in any 

added storage overhead for L1 state as DeNovo already requires two bits per word for stor- ing three 

states (Invalid, Valid, and Registered). With an additional LockQ state, we now have four states stored 

in two bits. The two 

L2 states for lock words can reuse the L2 per-word state bit of the baseline DeNovo protocol – lock 

words simply add new transitions to the existing L2 states, triggered by lock related messages. Thus, 

the lock protocol does not incur any additional storage overhead. The externally visible protocol states 
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for data accesses also stay the same as for DeNovo. For efficient tracking of atomic writes, however, 

we added a touched-atomic bit per word in the L1 as an additional state bit (used only by the local 

core). 

Communication and computation overhead: On acquire/release, the Bloom filter of the releaser is 

piggybacked on the lock transfer message. In order to minimize impact on network traffic, we can 

compress the Bloom filter using run-length encoding as in [16] or a Bloom-filter specific compression 

technique [38]. In our evalua- tions, we conservatively do not model such compression and charge the full 

256 bits (32 bytes) of network traffic for the Bloom filter at a lock transfer. When a core receives a lock 

transfer message along with the signature, it needs to merge the received Bloom filter with its own 

before executing memory instructions in the critical section. The time for merging can be partially 

hidden by not blocking the execution until the first write/read instruction to an atomic region is issued. 

For the distributed queue-based lock, there is an additional over- head for writeback messages which 

need to include an additional bit per word to indicate if the word is in LockQ state so that the L2 can 

perform appropriate lock related actions for this word. This overhead, however, can be compensated 

by observing that the writeback message does not have to contain full lock words, but only the Locked 

and nextPtr parts. The queue-based lock protocol also requires new state transitions in response to 

lock related mes- sages; however, these do not introduce any new transient states or interact with the 

data protocol and can be separately verified. 

 

5. Evaluation Methodology 

 Simulation Environment 

For our evaluations, we use the Wind River Simics [34] full-system functional simulator to drive the 

Wisconsin GEMS detailed mem- ory timing simulator [35] that we modified to implement our pro- 

tocols. We also use the Princeton Garnet [3] interconnection net- work simulator to model network 

communication. To keep simula- tion times reasonable, as is common practice, we employ a simple, 

single-issue, in-order core model with blocking loads and 1 CPI for all non-memory instructions. 

(Note that DeNovoND does not require simple cores, but detailed timing simulation of a complex 

core would take an inordinate amount of time and we believe would not qualitatively affect our results.) 

We also assume 1 CPI for in- structions executed inside the OS. 

Table 2 shows the key parameters of our simulated systems. We simulate a multicore with 16 cores, 

a 64KB private L1 data cache per core (we do not model an Icache), a 16MB shared, NUCA L2 

cache, and 4 memory controllers, all connected by a 2D mesh network. We configured the miss 

latencies to approximate those of the Nehalem processors [21]; e.g., a last-level shared cache miss 

(memory hit) costs 190 to 309 cycles on Nehalem (several of the latencies specify a range, 

depending on which L2 bank, remote L1 cache, or memory controller is accessed). We use the Bloom 

filter implementation shipped with GEMS [35] with the H3 hashing function and 256 single-bit 

entries. We also simulated configurations with infinite Bloom filter entries for reference. 

 Simulated Systems 

Our distributed queue-based lock is specifically designed for De- NovoND, reusing the coherence 

states of DeNovo, with no added transient states and limited race interactions. Implementing it on a 

conventional MESI-like protocol is possible, but will involve far 

more complexity to deal with interactions with the already exist- ing numerous transient states and 

race conditions. On the other hand, comparing DeNovoND with distributed queue-based locks and 

MESI with conventional locking may not be fair to MESI. We therefore implemented simplified 

(idealized) queue-based locks that work for both MESI and DeNovo to isolate the effectiveness of access 

signatures. This idealized implementation maintains a “lock table” which is keyed by a lock variable 
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× 

address and maintains the waiter queue for each lock. Accesses to this table – creating an en- try and 

grabbing the lock, adding a core to the waiter queue, waking up the first waiter in the queue, etc. – do not 

incur extra cycles. We also do not charge traffic overhead for lock and signature transfer for the 

idealized lock. Once a core is ready to release the ideal- ized lock, lock transfer is instant and the next 

requestor wakes up immediately. Hence we evaluated the following systems: 

MESI: We simulated MESI using idealized queue-based locks (MIL) and the POSIX pthreads mutex 

library (MPL). We modi- fied the original implementation of MESI in GEMS [35] to support non-

blocking writes for a fair comparison with DeNovoND where writes are non-blocking by default. 

Atomic instructions used in pthreads mutex codes are simulated using blocking store fences for correct 

execution. 

DeNovoND: We simulated DeNovoND with idealized queue-based locks (DIL) and with distributed 

queue-based locks (DQL), both with a 256 bit Bloom filter (DIL-256 and DQL-256)) and, for 

reference, an infinite size Bloom filter (DIL-inf and DQL-inf). For DQL, operations on the lock incur 

latency consistent with table 2. For the signature transfer, we add a 256 bit (32 byte) payload to the 

lock transfer message and simulate network traffic and latency accordingly. This is conservative for 

DQL-256 since the signature could be compressed. It is aggressive but reasonable for DQL-inf since 

DQL-inf is intended to be a best case reference model. 

 

 Workloads 

We evaluated 11 benchmarks with lock synchronization, taken from various suites to represent a range 

of behavior such as lock frequency, lock granularity, contention, critical section length, and shared 

working-set size. We evaluated barnes (16K particles), ocean (258 258), and water (512 molecules) 

from SPLASH-2 [45]; fluidanimate (35K particles) and streamcluster (8,192 points) from PARSEC 2.1 

[8]; tsp (17 cities) as used in [12]; and kmeans 

(8,192 points, 24 dimensions, 16 centers), ssca2 (2
13

 nodes), genome (256 nucleotides), intruder (1,024 

traffic flows), and va- cation (16,384 records) from STAMP [37]. 

The benchmarks from SPLASH-2 and PARSEC represent tradi- tional applications designed and 

optimized to scale well with lock synchronization. The benchmarks from STAMP and tsp, however, 

were originally designed for hardware and software transactional memory. We ported them to use 

locks for our simulated systems. For short transactions, we directly replaced them with critical sec- 

tions (tsp, kmeans, ssca2, and intruder). For longer transactions, we used finer-grained locks (genome, 

vacation). 

We found that 3 out of the 6 transactional applications (genome, intruder, and vacation) spent > 70% of 

their execution time on lock acquire for all studied configurations. Clearly, parallelization us- ing lock 

synchronization is inappropriate for these applications, for both MESI and DeNovoND. We therefore 

focus our results on the other 8 applications, referring to them as “lock-efficient” applica- tions 

(Section 6.1). For completeness, we separately report results for the above three lock-inefficient 

applications (Section 6.2). We discuss optimizations to improve the performance of DeNovoND for 

the lock-inefficient applications, but fundamentally, these must be parallelized using different 

techniques for reasonable parallel speedups. Such techniques (including possibly transactional mem- 

ory) are outside the scope of this work. 

 

Core frequency 2GHz 

# of cores 16 

L1 data cache 64KB, 64 bytes (16 

words) line size 
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L2 (16 banks, 

NUCA) 

16MB, 64 bytes line 

Memory 4GB, 4 on-chip 

controllers 

L1 hit latency 1 cycle 

L2 hit latency 29 to 61 cycles (bank-

dependent) 

Remote L1 hit 

latency 

35 to 83 cycles 

Memory hit 

latency 

197 to 261 cycles 

Network 

parameters 

2D mesh, 16 bit flits 

Bloom filter 

size 

256 bits (infinite for 

reference) 

hash function 4 H3 

Table 2: Simulated system parameters. 

Finally, the lock-inefficient applications showed significant non- determinism in execution time. 

Although our timing simulations are deterministic, they depend on the state of the system when the 

application is started (the Simics checkpoint at the start of the application). For different state, the 

lock-inefficient applications showed varying results. We therefore ran each such application with five 

different checkpoints for each system and averaged the results (the same five checkpoints are used for 

all systems). We also report the results for the lock-efficient applications averaged across three 

different checkpoints, but these applications did not show much variability across their checkpoints. 

 

6. Performance Results 

 Lock-Efficient Applications 

Figure 3a shows the execution time for our 8 lock-efficient appli- cations for the 6 configurations 

described in Section 5.2. All bars are normalized to MIL. Each bar is divided into compute time, stall 

time due to data memory accesses (henceforth referred to as mem- ory time), barrier time, and lock 

acquire time. Since we model non- blocking lock releases, lock release time is negligible. Since our fo- 

cus is on the memory system, Figure 3b blows up the memory time in each bar of Figure 3a, divided 

into stalls for L1 misses resolved at L2, a remote L1, or main memory. Since all modeled systems 

implement non-blocking stores, virtually all memory stalls are due to loads. Figure 4a presents 

network traffic for the same applica- tions on MPL and DQL-256 (normalized to MPL), classified by 

the message type: load, store, queue lock/unlock, writeback, and invalidation. The queue lock/unlock 

traffic exists only in DQL-256 for transferring distributed queue-based locks with signatures. For MPL, 

the lock traffic is aggregated with the data load and store traf- fic. Note that only MPL incurs invalidation 

traffic. We do not show network numbers with other configurations because they are ideal- ized, but we 

confirmed that the network results for DQL-256 stay qualitatively similar even when compared to 

MIL. 

MIL vs. DIL-inf: For all 8 applications, DeNovoND shows the same or slightly better (up to 5%) 

execution time compared to MESI with idealized locks and infinite length Bloom filter. Focus- ing on 

memory time, again DIL-inf is either the same or better than MIL. For some applications, DIL is much 

better than MIL; e.g., 47% and 84% better for kmeans and tsp respectively. This is be- cause MIL 

suffers from false sharing while DIL does not due to its per-word coherence state. 
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MPL vs. DQL-inf: Comparing the realistic lock implementations (but still with infinite Bloom filter 

size), we find that for all 8 ap- plications, DQL-inf shows comparable or slightly better execution time 

than MPL. In fact, even compared to the idealized lock im- plementation in MIL, the execution time 

for DQL-inf is about the same or better in 7 of 8 cases and only 4% worse in the remain- ing case 

(ssca2). In terms of memory time, again DQL-inf is either comparable or sees large benefits due to the 

lack of false sharing relative to both MPL and MIL. 

Impact of finite signatures: We next evaluate the impact of re- stricting the Bloom filter size: DIL-

inf vs. DIL-256 and DQL-inf 

 
(a) Execution time. 

(b) Memory stall time. 

Figure 3: Total execution time (a) and memory stall time (b) of lock-efficient applications on 6 

configurations, normalized to MIL. 

(a) Network traffic (lock-efficient). (b) Network traffic 

(lock-inefficient). Figure 4: Network traffic of all applications on MPL 

and DQL-256, normalized to MPL. 

vs. DQL-256. The 256 bit Bloom filters show virtually the same execution times as the infinite length 

filters. In terms of memory time, the two Bloom filter sizes are similar for 6 of the 8 appli- cations. For 

fluidanimate and kmeans, however, the 256 bit filter shows a degradation. For kmeans, memory time 

for DQL-256 con- tinues to remain significantly better than for both MESI configura- tions (20% or 

more better), but for fluidanimate, it is worse by 13% (the only application where this is the case). 

Fluidanimate and kmeans show the above behavior due to a confluence of a few subtle effects. First, 

both use critical sections where an atomic region address that is read is also written. Often an atomic 

region address read by a core was also last written by the same core (either in the previous phase or in 

a previous critical section). If this address is still in the core’s cache in modified (for MESI) or 

registered (for DeNovoND) state, then the read will be a hit for both MESI and DeNovoND. 
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Otherwise, if the address was written back, the read will be a miss for both MESI and DeNovoND. 

The difference between the protocols arises for any other atomic region addresses that come along 

with such a read miss as part of the same cache line. If the same core reads such an address in a 

subsequent critical section without an intervening write by another core, then MESI will still hit in the 

cache but DeNovoND will have to check against the Bloom filter. This could require a self-invalidation 

since the corresponding Bloom filter bit may be set, resulting in an extra miss over MESI. A smaller 

Bloom filter exacerbates this problem since it also results in false positives on the key domain. Further, 

the effect is more noticeable in DQL than in DIL because fluidanimate and kmeans have fine-grained 

locks – these locks pollute the cache and cause more replacements, exacerbating the above effect. 

Network traffic: Figure 4a shows that for all the applications, DQL-256 has much lower traffic than 

MPL (33% on average, 67% maximum). This directly translates into energy reduction. 

The primary sources of these savings in DeNovoND are as fol- lows: (1) DeNovoND does not incur 

any traffic for invalidations, a significant effect in all applications. (2) Store traffic is reduced in some 

applications because store requests in DeNovoND do not bring in the cache line – they directly write 

into the L1 word and only send out a registration request for that word (multiple regis- trations for a 

given line are combined and sent on the network as mentioned in Section 2.2). (3) The net reduction 

in load misses (memory time) due to the lack of false sharing (Figure 3b) directly leads to lower load 

traffic in several applications. (4) Load traffic is further reduced because a load response only 

contains valid or registered words of a cache line. Since coherence state is preserved per word, some 

words may be invalid at the servicing cache. 

A source for increased network traffic in DeNovoND is the 32 byte signature with all lock 

transfers. Figure 4a shows that this is small in all our applications. It can be further reduced through 

compression techniques mentioned in Section 4.3. 

Summary: Overall, our results show that for these applications, the access signature mechanism 

allows DeNovoND to enjoy all the benefits of DeNovo even in the presence of lock-based synchro- 

nization. Further, the signature size needed is small (32 bytes) 

  
(a) Baseline. (b) “Write-Once” Atomic Region and 

Signature Clearing. 

Figure 5: Total execution time of lock-inefficient applications on six configurations: (a) baseline, (b) with 

“write-once” atomic region optimization and signature clearing (threshold=99%) applied, normalized to 

the MESI with idealized locks (MIL) configuration. 
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 Lock-Inefficient Applications 

The lock-inefficient applications spend more than 70% of their time on lock acquires, but are presented here 

for completeness. Figure 5a shows their execution times analogous to Figure 3a. There are sev- eral ways 

in which these applications differ from the lock-efficient ones. First, as mentioned earlier, they are 

dominated by lock ac- quire time and so need a significantly different algorithm for par- allelization 

and/or synchronization. These applications were origi- nally designed to study transactional memory. 

Some of them use patterns for which lock-free synchronization is commonly used. Supporting such 

forms of parallelism and synchronization is out- side the scope of this paper, but forms a key part of our 

future work. Second, as discussed in Section 5.3, these applications show significant non-determinism. 

Although we report results averaged over five runs starting from five different Simics checkpoints (the 

same five checkpoints for each system), the variability makes com- 

paring different systems difficult. 

Third, we find that compute time varies across different systems for each of these applications. 

Although not shown here, a signif- icant fraction of compute time comes from the OS (e.g., due to 

frequent memory allocations), forming the main source of the com- pute time variation. (The lock-

efficient applications have negligible OS compute time.) Our results must therefore be understood in the 

context of the above caveats. 

MIL vs. DIL-inf: For all three applications, DIL-inf shows ob- servably worse performance than MIL 

(16% for genome, 36% for intruder, and 5% for vacation). A large part of the performance difference 

appears to come from acquire time; e.g., DIL-inf spends 40% more cycles waiting for lock acquisition 

than MIL with in- truder. Though memory time is a very small portion, it affects ac- quire time by 

increasing the time spent within critical sections. Our detailed results show that DIL-inf suffers from 

higher memory time than MIL, especially for genome and intruder. 

The higher memory time above occurs due to an access pattern where an address is written only once 

in a phase and then read several times. Specifically, genome and intruder use list and hash table data 

structures that store “data” or “key-data” pairs of each entry as a field of the entry object – in these 

programs, the data is initialized when a new element is inserted (within a critical section) but never 

modified afterwards. A core may read this data later in different critical sections – DeNovoND will 

self-invalidate on such reads since it does not know if there was an intervening write since the last read. 

MESI, on the other hand, will hit on such reads if they happen close enough to exploit temporal locality. 

Section 6.2.1 discusses how we can use software information to remedy the above situation. We 

believe, however, that a better solution to this problem is a better synchronization construct – using 

locks for such reads is overkill. Such constructs in the context of DeNovo and DeNovoND are a key part 

of our future work. 

MPL vs. DQL-inf: DQL-inf performs slightly worse than MPL with genome for the same reason as 

the comparison between MIL 

and DIL-inf. DQL-inf outperforms MPL with intruder and vaca- tion – for these applications, MPL 

has significantly higher acquire time than MIL. MPL’s pthread locks, however, are inherently ineffi- cient 

with high lock contention; therefore, this is not a fair compar- ison for MESI. Thus, little can be 

deduced here except perhaps that DeNovoND performance seems to be in the same range as MESI 

(this inability to draw a conclusion is an inherent artifact of the problem studied). 

Impact of finite signatures: With smaller Bloom filter sizes, false positives exacerbate the impact of 

the conservative invalidations described above; for genome and intruder – DIL-256 and DQL- 256 

perform worse than DIL-inf and DQL-inf by 4% to 10%. 

Vacation does not suffer from the conservative invalidations of genome and intruder, but reveals a 

different source of inefficiency with smaller signatures. Figure 5a shows DIL-256 is 8% worse than 
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DIL-inf, while DQL-256 is 17% worse than DQL-inf for this application. This is mainly due to its 

large working set of atomic data, which can increase the false positive rate if a Bloom filter is too 

small. In addition, vacation has only one phase without any barriers in between; thus the Bloom 

filters get filled up for a long period without clearing. This further exacerbates the false positive rate, 

resulting in unnecessary self-invalidations and higher memory times. Section 6.2.1 describes an 

optimization technique called signature clearing to deal with this issue. 

Network traffic: Figure 4b shows network traffic of the lock- inefficient applications on MPL and 

DQL-256. DQL-256 generates less network traffic (up to 48%) than MPL for all three applications for 

reasons similar to that for the lock-efficient applications. In addition, with relatively high lock 

contention, repeated accesses to lock variables can generate increasingly higher network traffic in 

MPL. In contrast, distributed queue-based lock request/response traffic scales in proportion to the 

number of lock transfers. 

 

6.2.1 Optimizations 

Handling “write-once” atomic data: As with the case with in- truder and genome, once a new entry 

is created and then inserted into a data structure (list, hash table, etc.), the “data” portion of the entry 

may remain read-only for the entire execution while other fields of the entry are modified as the 

structure grows or shrinks. In this case, classifying the “data” as atomic makes every self- invalidation 

after the very first one (the memory location may have been used and freed before) unnecessary. 

DeNovoND can safely get rid of these invalidations by identify- ing such atomic accesses as made to 

a “write-once” atomic region. In addition to general information about atomic regions and effects, 

software can allow such “write-once” atomic data to be marked dif- ferently by using a special region 

ID or a special op-code for the write. Then DeNovoND can exploit it to prevent such data from being 

self-invalidated as follows. If the data is known to be in a “write-once” atomic region, DeNovoND 

does not reset its touched- atomic bit on lock transfer; therefore, when the data is accessed 

(read) again later, it is treated as if it has been already accessed in the same critical section (with 

touched-atomic bit set) and will not be self-invalidated, thereby eliminating several subsequent misses. 

The write-once annotation can be considered to be a generaliza- tion of final variables in Java; a final 

variable can only be initialized once, either at the time of declaration or by the constructor of the class in 

which it is declared [40]. Our write-once variables must be 

written (at most) once per parallel phase. 

Signature clearing: Depending on the atomic write-set size in a phase, the fixed-size hardware Bloom 

filter may get saturated (all bits set) before the phase is over. This drives the false positive rate very 

high, resulting in many unnecessary self-invalidations. Saturated Bloom filters can be flash-cleared by 

a simple hardware operation, but it also requires flushing out atomic words in the cache. Also, the fact 

that a signature has been cleared in the releaser should be propagated to the acquirer so that the acquirer 

can update its cache according to the new version of the Bloom filter. We implemented a signature 

clearing algorithm that carries a vector of clearing counters per core. When signature clearing is 

triggered on a core, its counter is incremented. The vector of clearing counters is transferred on a lock 

transfer along with the access signature. The acquirer compares the received vector with its own, and 

performs signature clearing if there exists an element in the received vector that has a larger counter 

than the corresponding element in its own vector. Before the lock is transferred again, the vector is 

updated to have up-to-date values. 

Performance impact: Figure 5b presents execution times analo- gous to figure 5a, but with the above 

optimizations applied. 

For genome, all DeNovoND protocols now perform comparable to the MESI counterpart. Our detailed 
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results show large reductions in memory time from the write-once optimization (118% to 151%). Since 

this reduction mainly comes from atomic accesses within critical sections, lock contention also 

improved. Intruder shows similarly dramatic results in memory time improvement with con- sequently 

large improvements in execution time for the DeNovoND configurations; acquire time is reduced by 36 to 

42%, memory time by 56 to 76%, and overall execution time by 43% on average. 

For vacation, DIL-256 and DQL-256 (protocols with finite Bloom filters) show performance benefits 

from signature clear- ing; DIL-256 and DQL-256 were 17% and 8% worse than DIL-inf and DQL-inf 

respectively without signature clearing. With signa- ture clearing, with 99% filter saturation percentage 

as the trigger for clearing, the difference is reduced to 5% and 2%. 

Overall, the optimizations are quite effective, making the De- NovoND protocols comparable or 

better than the corresponding MESI protocols even for the lock-inefficient applications. 

7. Related Work 

There has been much research on improving the performance of memory consistency models by 

guaranteeing consistency only at synchronization points. Our work is closest to that of lazy release 

consistency (LRC) [27], entry consistency (EC) [7], and scope con- sistency (ScC) [22]. A key focus of 

these models is saving invali- dation network traffic by postponing propagation of modified data until 

an acquire. LRC maintains consistency of all shared data at every lock transfer. EC attempts to reduce 

traffic by requiring pro- grammers to bind every shared object with a lock, and transferring only the 

bound data objects on a lock transfer. ScC attempts to re- lax the strict and explicit bindings between 

data and lock in EC; instead, it uses “consistency scope” to implicitly associate data and the 

acquire/release pair protecting the data. DeNovoND is similar in that it also assumes a software 

guarantee for data-race freedom and association of atomic regions and sections. However, a key dif- 

ference between DeNovoND and the above models is that the latter are designed for software 

distributed shared memory, keeping co- 

herence information at a coarse-grained page granularity and stor- ing information about modified data 

in data structures in user space. DeNovoND focuses on tightly coupled multicores with different trade-

offs. In particular, DeNovoND implements a much simplified yet effective scheme for tracking 

modified atomic locked data in hardware, while leveraging the feature of the baseline system (no 

invalidation traffic) for non-atomic data. 

REFLEX [33] employs software distributed shared memory with release consistency to make it easier 

to program low-power smart- phones. It uses either eager or lazy update propagation depending on the 

initiating core’s power profile. While REFLEX concentrates on adapting release consistency for low 

power on heterogeneous systems, DeNovoND is a more general solution that addresses com- plexity, 

performance, and power. 

The recent SARC coherence protocol [25] also exploits the data- race-free programming model, but 

their goal is to improve the conventional directory-based protocol [2]. SARC self-invalidates “tear-

off, read-only” (TRO) copies of data to save power. However, SARC does not eliminate directory 

storage overhead or reduce pro- tocol complexity like DeNovoND and its baseline system. Also, the 

concept of touched bit, which plays an important role in DeNovo and DeNovoND is not present in 

SARC. 

Other efforts to improve coherence achieve one or more of our goals at the expense of other goals. 

[31] introduces more complex- ity for self-invalidations and [36] requires writes to go to a shared 

cache if there are potential conflicts. SWEL [41] and Atomic Co- herence [44] rely on specific 

interconnect substrates to simplify their protocols. Rigel [28] and Cohesion [29] propose systems with 

accelerators using a hybrid memory model based on shared mem- ory, and employ software-driven 

invalidation for coherence. How- ever, Rigel eagerly writes back all dirty lines to the global shared 



Juni Khyat                                                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                      Vol-10 Issue-3 No.01 March 2020 

 

Page | 387                                                                                      Copyright @ 2020 Authors 
 

cache at phase boundaries, causing potentially unnecessary and bursty network traffic. DeNovoND 

self-invalidates potentially stale blocks only, avoiding this unnecessary traffic. Cohesion does not 

address existing limitations of software and directory-based hard- ware coherence mechanisms. Its 

software coherence issues extra coherence instructions wasting cycles and network bandwidth since its 

coherence tracking is conservative and coarse-grained, while the hardware directory-based protocol has 

the same current complexity and scalability issues. In contrast, DeNovoND starts from a simple 

protocol and makes it easy to add various optimizations to improve performance and energy further 

without complicating the protocol. We leverage much prior work on Bloom filters, which have 

recently been widely used for access tracking [16, 43, 46]. Typical prior such usage, however, uses 

filters in the range of 1K to 2K bits. DeNovoND is able to achieve competitive performance with 256 

bits, with commensurately lower space and computation overheads, 

since its key domain is limited to atomic addresses. 

8. Conclusion 

This paper takes a significant step towards a vision for complexity- 

, performance-, and energy-efficient multicores enabled by disci- plined shared-memory programming 

practices. Prior work on De- Novo showed how this vision could be achieved for deterministic 

programs. This paper develops DeNovoND, a system that addition- ally supports disciplined non-

determinism with minimal additional overheads and complexity relative to DeNovo. 

DeNovoND exploits a previously developed software-level guar- antee that non-deterministic 

(atomic) data accesses are distinguish- able and protected by a lock. The key insight is to use small and 

simple hardware Bloom filters to track and communicate such ac- cesses across lock transfers, 

preserving DeNovo’s previous advan- tages of no transient states, directory overhead, invalidation 

mes- sages, or false sharing. Underlying the data transfer mechanism is a distributed queue-based lock 

mechanism that uses the cache data 

banks to construct a lock-waiter queue, without additional state bits or directory storage. 

DeNovoND provides comparable or better performance than MESI with the lock-efficient programs 

studied here. Further, net- work traffic is significantly reduced, impacting energy. We also identified 

some patterns in lock-inefficient code that did not work as well with DeNovoND – we showed 

optimizations to mitigate those effects, but believe the correct solution lies in alternate forms of 

synchronization for such codes. 

As future work, we plan to explore broadening the scope of our vision of hardware-software co-

design rooted in disciplined programming to embrace further programming patterns such as pipelined 

parallelism and “lock-free” data structures, as well as support complex codes such as legacy codes and 

operating systems. Our ability to easily extend DeNovo to embrace lock based codes gives us further 

confidence in generalizing this vision. 
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