
Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 308 Copyright @ 2020 Authors

DESIGN AND ARCHITECTURE OF THE ALPHASERVER GS320

Mr. Gopal Behera
1
*, Ms. Swarnakanti Samantaray

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

 gopalbehera@thenalanda.com*, swarnakanti@thenalanda.com

Abstract

This paper details the design and implementation of the Compaq Al- phaServer GS320, a multiprocessor

with cache-coherent non-uniform memory access. With 32 to 64 processors, the AlphaServer GS320

architecture is specifically designed for medium-scale multiprocessing. Four Alpha 21264 processors, up

to 32GB of coherent memory, and an aggressive IO subsystem make up each node in the architecture.

For a total of 32 processors, the current implementation supports up to 8 of these nodes. While some

companies have extended snoopy-based designs to medium-scale multi-processors, supplying enough

snoop bandwidth remains a significant difficulty, especially in systems with aggressive processors. In

contrast to snoopy designs, directory protocols aimed for bigger scale designs have a number of intrinsic

inefficiencies. .

The Compaq AlphaServer GS320, a multiprocessor with cache-coherent non-uniform memory access, is

designed and implemented in detail in this work. The AlphaServer GS320 architecture, with 32 to 64

processors, is made specifically for medium-scale multiprocessing. Each node in the architecture consists

of four Alpha 21264 processors, up to 32GB of coherent memory, and an aggressive IO subsystem. The

current implementation supports up to 8 of these nodes for a total of 32 CPUs. Even while some

businesses have expanded snoopy-based designs to medium-scale multi-processors, providing enough

snoop bandwidth is still a major challenge, especially in systems with aggressive processors. Directory

protocols intended for larger scale designs, in contrast to snoopy designs, have a variety of inherent

inefficiencies.

1 Introduction

Shared-memory multiprocessors have been a major focus of study and development by both academia

and industry, leading to sig- nificant design improvements during the past decade. Snoopy-

Copyright © A.C.M. 2000 1-58113-317-0/00/0011...$5.00

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full cita- tion on the first page. Copyrights for components of this

work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permis- sion

and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1

(212) 869-0481, or permissions@acm.org.

based multiprocessors, which depend on broadcasting coherence transactions to all processors and

memory, have moved well bey- ond the initial designs based on a single bus. The Sun Enterprise 10000

[10, 34], for example, extends this approach to up to 64 pro- cessors by using four-way interleaved

address buses and a 16x16 data crossbar. Nevertheless, snoop bandwidth limitations, and the need to act

upon all transactions at every processor, make snoopy designs extremely challenging especially in light

of aggressive pro- cessors with multiple outstanding requests.

Directory-based multiprocessors [9, 28], which depend on maintaining the identity of sharers (at the

directory) to avoid the need for broadcast, are much better suited for larger designs. A state-of-the-art

example is the SGI Origin 2000 [27] which can scale to several hundred processors. Furthermore, the

typical NUMA (non-uniform memory access) nature of directory-based designs, considered to be a

liability by some, can in fact lead to major performance benefits over snoopy designs by exploiting the

lower latency and higher bandwidth local memory and alleviating the need for more global bandwidth.

Simple techniques, such as replication of application and operating system code, can provide major

mailto:swarnakanti@thenalanda.com
mailto:permissions@acm.org

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 309 Copyright @ 2020 Authors

gains in commercial workloads with large instruction foot- prints [4]. More sophisticated software

techniques that transpar- ently migrate and replicate pages have also been shown to be quite effective

[38]. Nevertheless, existing directory protocols exhibit several inefficiencies relative to snoopy

protocols, partly due to their steadfast focus on large-scale systems. For example, the use of various

acknowledgement messages and multiple protocol invoca- tions at the home node (e.g., for 3-hop

transactions), which help deal with races that arise due to the distributed nature of the proto- cols and the

underlying scalable networks, can lead to undesirably high protocol resource occupancies.

Meanwhile, small and medium scale multiprocessors (i.e., 4 to 64 processors) account for virtually all

the revenue in the server market, with small servers (i.e., 4 to 8 processors) having by far the largest

volume. While it is feasible to build larger servers with hundreds of processors, the market demand for

such sys- tems is extremely limited due to the lack of (i) scalable applica- tions and operating systems,

and (ii) a compelling solution that ad- dresses reliability and fault-containment in larger shared-memory

systems [8, 19, 35]. Yet, there has been surprisingly little research on scaling down directory protocols

to provide a more efficient alternative to snoopy protocols especially for medium-scale serv- ers. One

of the key goals of the AlphaServer GS320 architecture is to achieve the best-of-both-worlds by

tailoring a directory-based protocol to eliminate inefficiencies associated with existing designs and to

exploit the limited scale of the target systems.

The AlphaServer GS320 architecture is specifically targeted at medium-scale multiprocessing with 32

to 64 processors. Figure 1 shows a block diagram of the system. Each node consists of four Alpha

21264 [23] processors, up to 32GB of coherent memory, and an aggressive IO subsystem. The current

implementation sup- ports up to 8 such nodes connected through an external crossbar switch for a total

of 32 processors. This design began in early 1996. The quad-processor node first booted in March 1999,

followed by the 16 and 32 processor systems booting in July and September

1999. The AlphaServer GS320 supports three different operating systems: Tru64 Unix, VMS, and Linux

(for small configurations).

This paper focuses on the novel design features used in the Al- phaServer GS320 to efficiently

implement coherence and consist- ency. The hierarchical nature of our design and its limited scale make

it feasible to use simple interconnects such as a crossbar switch to connect the handful of nodes. One of

the guiding prin- ciples for our directory-based protocol is to exploit the extra or- dering properties of the

switch. The other guiding principle is to address correctness issues related to rare protocol races without

burdening the common transaction flows. We have developed a protocol that deals with deadlock issues

and various protocol races without resorting to typical negative-acknowledgement and retry mechanisms.

This approach also naturally lends itself to simple and elegant solutions for livelock, starvation, and

fairness. Our protocol exhibits lower occupancy and fewer message counts compared to previous

designs. We have especially optimized occupancy issues related to 3-hop transactions, which have been

shown to occur fre- quently in commercial workloads [4]. While our directory pro- tocol specifically

targets small and medium-scale servers, several of the same techniques can be applied to larger-scale

designs. In fact, the protocol design ideas explored in the AlphaServer GS320 have already influenced

other more recent designs within Compaq, including the Alpha 21364 [3] (next-generation Alpha

processor with glueless scalable multiprocessing support), Piranha [5] (re- search prototype that explores

scalable chip-multiprocessing), and Shasta [29, 31] (a software DSM system). These systems do not

depend on any special network ordering, with Alpha 21364 and Piranha not even depending on point-to-

point order.

The AlphaServer GS320 architecture also incorporates a couple of innovative techniques that extend

previous approaches for effi- ciently implementing memory consistency models. The first tech- nique

involves generating a commit event (used for memory order- ing purposes) well in advance of

formulating the reply to a trans- action. Commit events have been used in a limited form in current

designs for early acknowledgement of invalidation messages ([13], Section 5.4). This allows a processor

to move past ordering points (e.g., memory barrier in Alpha [33]) possibly before its invalid- ations take

place in the target caches. We extend the use of early commits to all read and read-exclusive transactions,

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 310 Copyright @ 2020 Authors

allowing a pro- cessor to go beyond ordering points before its pending transactions are serviced by the

target caches or memory. It is intuitively sur- prising that this optimization actually works since the commit

event is generated well before binding the value of the data reply. The second technique is applicable to

systems that exploit any form of early commit events. Previous techniques for achieving correct- ness in

such systems lead to either extra delay on inbound data (and acknowledgement) replies or extra delay at

memory ordering points [13]. We eliminate these undesirable delays by separating out the commit event

and allowing the time-critical reply com- ponent to bypass other inbound messages. The above two tech-

niques are applicable to both larger-scale directory and smaller- scale snoopy protocols, and are

complementary to existing tech- niques for efficiently implementing consistency models [14].

We also present results that characterize the latency and band- width properties of the AlphaServer

GS320 and evaluate the im- pact of some of the above optimizations. The rest of the paper is structured

as follows. The next section provides an overview of the AlphaServer GS320 architecture. Sections 3

and 4 present the novel aspects of our coherence protocol and consistency model im- plementation, and

describe generalizations of these techniques to other directory- and snoopy-baseddesigns. The current

implement- ation of this architecture is briefly described in Section 5. Section 6 presents some

performance results. Finally, we discuss related work and conclude.

2 AlphaServer GS320 Architecture Overview

As shown in Figure 1, the AlphaServer GS320 architecture is a hierarchical shared-memory

multiprocessor consisting of up to 8 nodes, referred to as quad-processor building blocks (QBB). Each

QBB consists of up to four processors, up to 32GB of memory, and an IO interface all connected via a

local switch. The QBBs are in turn connected to an 8x8 global switch. A fully configured system

supports 32 Alpha 21264 processors, 256GB of memory, 64 PCI buses (224 PCI adapters), with an

aggregate memory bandwidth of 51.2GB/s, a global switch bi-section data bandwidth of 12.8GB/s, and

an aggregate IO bandwidth of 12.8 GB/s.

 Quad-Processor Building Block (QBB)

Figure 1 depicts the logical organization of a quad-processor build- ing block. The QBB is built around a

10-port local switch. Four ports are occupied by processors, four by memory, and one each by the IO

interface and the global port. The switch has an aggreg- ate data bandwidth of 6.4GB/s, with each port

(except global port) at 1.6GB/s (data transfer bandwidths, excluding address and error code bits). The

global port is used for connecting the QBB to other nodes, and supports 1.6GB/s in each direction for a total

port band- width of 3.2GB/s. The local switch is not symmetric; for example, no connections are possible

between two memory ports.

The QBB supports up to four Alpha 21264 [23] processors, cur- rently running at 731 MHz. The Alpha

21264 has separate 64KB 2-way-associative on-chip instruction and data caches (64-byte line size), and a

4MB external cache. Each processor supports up to 8 outstanding memory requests and an additional 7

outstanding vic- tims/writebacks. Each QBB also supports up to four memory mod- ules, each with 2-8GB

of SDRAM memory with up to 8-way in- terleaving. The four modules provide a total capacity of 32GB

and an aggregate memory bandwidth of 6.4GB/s. The IO interface sup- ports up to 8 PCI buses (64-bit,

133MHz), with support for 28 PCI slots. This interface supports a small cache (64-entry, fully asso-

ciative) to exploit spatial locality for memory operations issued by IO devices, and allows for up to 16

outstanding memory operations and an additional 16 victims/writebacks. Furthermore, the inter- face

supports a prefetching mechanism [14] to allow simultaneous memory accesses even though IO devices

require strict ordering among memory operations.

The QBB employs a duplicate tag store (DTAG) to keep track of cached copies within the node. The

DTAG is a logically cent- ralized data structure that maintains an external copy of each of the four

processors' second-level cache tags, and serves as the primary module for maintaining coherence within

a QBB. Maintaining co- herence across multiple QBBs requires two other modules: the dir- ectory (DIR)

and the transactions-in-transit table (TTT). The dir- ectory maintains a 14-bit entry per 64-byte memory

line (approx. 2.5% overhead). This includes a 6-bit field that identifies one of 41 possible owners (32

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 311 Copyright @ 2020 Authors

P L2

P L2

P L2

P L2

IOP

IO System

Arbitration

Point

Local

Switch

M M M M

DIR

processors, 8 IO interfaces, and memory), and an 8-bit field which is used as a full bit-vector to

maintain the identity of sharers at the granularity of a QBB. The identity of the owner and sharers are

maintained simultaneously because our pro- tocol supports dirty-sharing. The sharing bit-vector at the

directory (at QBB granularity) along with the DTAG at the target nodes to- gether identify the exact

identity of the sharing processor caches. Finally, the TTT is a 48-entry associative table which keeps

track of pending transactions from a node.

Two QBBs can be connected directly through their global ports to form an 8 processor configuration.

Larger configurations require the use of the global switch.

 Global Switch (GS)

The global switch (GS) has 8 ports, each supporting 3.2GB/s of data bandwidth (1.6GB/s in each

direction), with an overall data

DTAG

TTT

Global Port

Figure 1: Block diagram of the AlphaServer GS320 architecture and the quad-

processor building block.

bi-section bandwidth of 12.8GB/s. The GS is implemented as a centrally-buffered switch, and supports

multiple virtual lanes to al- leviate coherence protocol deadlocks. All incoming packets are logically

enqueued into a central buffer, and dequeued independ- ently by output port schedulers. This model

allows us to efficiently implement totally-ordered multicast for specific virtual lanes where such ordering

is desirable.

3 Optimized Cache Coherence Protocol

The design of the AlphaServer GS320 cache coherence protocol has two goals. The first goal is to reduce

inefficiencies in current state-of-the-art directory-based protocols that arise from burdening common

transaction flows because of the solutions used to deal with rare protocol races. The second goal is to

exploit the limited size of our system, and the extra ordering properties of our inter- connect, to reduce

the number of protocol messages and the cor- responding protocol resource occupancies. As we will

see, there is synergy among the various mechanisms we use in our protocol, leading to a simple and

efficient implementation that minimizes special case logical structures to deal with rare protocol races.

The cache coherence protocol in the AlphaServer GS320 is an invalidation-based directory protocol

with support for four request types: read, read-exclusive, exclusive (requesting processor has a shared

copy), and exclusive-without-data1. The protocol supports dirty sharing, which allows data to be

shared without requiring

the home node to have an up-to-date copy. We also support reply forwarding from remote owners and

eager exclusive replies (own- ership given before all invalidations are complete). As discussed later, we

eliminate the need for invalidation acknowledgements by exploiting the ordering properties in the switch.

The intra-node protocol uses virtually the same mechanisms and transaction flows as the inter-node

protocol to maintain co- herence within a node, with the local switch replacing the global switch as the

8x8

Global

Switch

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 312 Copyright @ 2020 Authors

transport. For a single-node system, or at a home node, the duplicate tag (DTAG) logically functions as a

centralized full-map directory by providing sharing information for the four local processors. Remote

memory accesses are sent directly to the home node (similar to SGI Origin [27]), without incurring

delays to check whether they can be serviced by another local processor.

A key design decision in our protocol is to handle corner cases without depending on negative-

acknowledgements (NAKs)/retries or blocking at the home directory. NAKs are typically used in scal-

able coherence protocols to: (i) resolve resource dependencies that may result in deadlock (e.g., when

outgoing network lanes back up), and (ii) resolve races where a request fails to find the data at

1 This supports the Alpha write-hint instruction (wh64) which indicates intent to write the entire cache

line, thus avoiding a fetch of the line's current contents.the node or processor it is forwarded to (or, in

some designs, when the directory at home is in a “busy” state). Similarly, blocking at the home directory

is sometimes used to resolve such races.

Eliminating NAKs/retries and blocking at the home leads to several important and desirable

characteristics. First, by guaran- teeing that an owner node (or processor) can always service a for-

warded request, all directory state changes can occur immediately when the home node is first visited.

Hence, all transactions com- plete with at most a single message to the home (i.e., the original request)

and a single accessto the directory (and DTAG). This leads to fewer messages and less resource

occupancy for all 3-hop read and write transactions (involving a remote owner) compared to pro- tocols

that send extra confirmation messagesback to the home (e.g., “sharing writeback” or “ownership change”

in DASH [28] and SGI Origin [27]). Second, our directory controller can be implemented as a simple

pipelined state machine wherein transactions immedi- ately update the directory, regardless of other

ongoing transactions to the same line. Hence, we avoid blockages and extra occupancy at the directory,

and instead resolve dependencies at the system periphery. Third, our early commit optimization for

implement- ing memory consistency models (Section 4) also depends on the guarantee that an owner

can always service a request. Fourth, we inherently eliminate livelock, starvation, and fairness problems

that arise due to the presence of NAKs. In contrast, the SGI Origin [27] uses a number of complicated

mechanisms such as reverting to a strict request-reply protocol, while other protocols with NAKs ig-

nore this important problem [24, 28].

 Avoiding Protocol Deadlock

Our protocol uses three virtual lanes (Q0, Q1, and Q2) to elim- inate the possibility of protocol

deadlocks without resorting to NAKs/retries. The first lane (Q0) carries requests from a processor to a

home. Messages from the home directory/memory (replies or forwarded messages to third-party nodes

or processors) are always carried on the second lane (Q1). Finally, the third lane (Q2) car- ries replies

from a third-party node or processor to the requester. Our protocol requires an additional virtual lane (QIO,

used to carry requests to IO devices) to support a subtle PCI ordering rule (bey- ond the scope of this

paper). As we will see, our protocol depends on a total ordering of Q1 messages (comes naturally in a

crossbar switch) and point-to-point ordering of QIO and Q0 (same address) messages, with no ordering

requirements on Q2 messages.

 Dealing with Request Races

There are two possible races when a request is forwarded to an owner node or processor. The late

request race occurs if the request

arrives at the owner after the owner has already written back the line. The early request race occurs if a

request arrives at the owner before the owner has received its copy of the data. Our solutions for these races

guarantee that the forwarded request is serviced without any retrying or blocking at the directory.

Our solution for the late request race involves maintaining a valid copy of the data at the owner until

the home acknowledges the writeback, allowing us to satisfy any forwarded requests in the interim. Our

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 313 Copyright @ 2020 Authors

protocol uses a two-level mechanism. First, when the Alpha 21264 processor victimizes a line, it awaits

a victim- release signal before discarding the data from its victim buffer. The victim-release signal is

effectively delayed until all pending forwar- ded requests from the DTAG to a given processor are satisfied.

The above approach alleviates the need for complex address matching (used in snoopy designs) between

incoming and outgoing queues. For writebacks to remote homes, the responsibility of maintaining the

data is handed off to the transactions-in-transit table (TTT) in order to relieve the pressure on the

processor's victim buffers. This copy is maintained until the home acknowledges the writeback.

Our solution for the early request race involves delaying the for- warded request (on Q1) until the data

(on Q2) arrives at the owner. This functionality is supported within the Alpha 21264 processor

(a) 2-hop Read (b) 2-hop Read-Exclusive

Reply

Reply

whereby the address at the head of the inbound probe queue (Q1) is compared against addresses in the

processor's miss-address-file

(c) 3-hop Read

(d) 3-hop Read-Exclusive

(tracks pending misses) and is delayed in case of a match. Buffer- ing early requests on the side to

completely eliminate the possibil- ity of backing up the Q1 lane would require too large a buffer (256

entries in our design) due to the dirty-sharing property of our pro- tocol. Stalling the head of the Q1 lane

at target processors provides an extremely simple resolution mechanism, and is relatively effi- cient since

such stalls are rare and the amount of buffering at target nodes is sufficient to avoid impacting Q1

progress at the switch. Nevertheless, naive use of this technique can potentially lead to deadlock. All

such deadlock scenarios are eliminated, however, due the total ordering of Q1 messages in our design. 2

Finally, the hierarchical nature of our design allows transactions to be serviced within a node (e.g., at

the home) without necessar- ily involving the global switch. This optimization is critical for achieving

optimal system performance, yet it causes subtle interac- tions with the total ordering requirement for Q1

messages. The fol- lowing scheme is used for correctness. The transactions-in-transit table (TTT) at the

home node keeps track of Q1 messages that are sent out on behalf of local processors but have not yet

reached the global switch due to buffering. In the rare case that (i) a subsequent request to the same

address arrives while such a Q1 message is in transit, and (ii) the request can be serviced through a local

Q1 for- ward within the node, the latter Q1 forward is looped to the global switch and back to ensure total

ordering on Q1 messages.

 Putting it All Together: An Efficient Low Oc- cupancy Protocol

(Q2)

O
R

Marker

(Q1)

Rd

(Q0)

FwdRd

(Q1)

H

S
R S

Reply

(Q1)

RdEx

(Q0)

S

Invals (Q1)

H

R

Rd

(Q0)

Reply

(Q1)

H

(Q2)

O
R

Marker

(Q1)

RdEx

(Q0)

FwdRdEx

(Q1)

S

S

H

Invals

(Q1) S

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 314 Copyright @ 2020 Authors

Figure 2 shows several basic transaction in our protocol. We use the following notation: R is the

requester, H the home, O the owner, and S a sharer. The virtual lane (Q0, Q1, Q2) used by a message is

shown in parentheses. These protocol flows also apply to our intra- node protocol, with the duplicate-tag

(DTAG) behaving as home.

Figure 2(a) shows a basic 2-hop read case. Figure 2(b) shows a write to a line with multiple sharers.

The data reply is sent to the requester at the same time invalidates are sent to the sharers. This flow

illustrates two interesting protocol properties. First, our pro- tocol does not use invalidation-

acknowledgement messages, which

2 Consider P1 owning A and requesting B exclusively, while P2 owns B and re- quests A

exclusively. The home for A forwards a request R1/A to P1, and the home of B forwards a request R2/B

to P2. Since the directories are changed immediately, they reflect P1 owning B and P2 owning A now.

Assume P3 requests A causing request R3/A to P2, and P4 requests B causing request R4/B to P1.

Deadlock can occur if R4/B arrives at P1 before R1/A and R3/A arrives at P2 before R2/B. However,

the total ordering on Q1 messages disallows such reorderings.

Figure 2: Basic protocol transaction flows.

reduces message count and resource occupancy. Given the total or- dering property on Q1, an invalidate

appears to be “delivered” to its target node when it is scheduled on the switch. Second, as an op-

timization, we use the multicast capability of our switch whenever the home needs to send multiple Q1

messages to different nodes as part of servicing a request. In this example, we inject a single message

into the switch that atomically schedules the appropriate invalidate messages and the reply to the

requester.

Figure 2(c) shows a 3-hop read transaction. The home forwards the request to the owner and

immediately alters the directory to re- flect the requester as a sharer. As mentioned before, the immediate

change to the directory is possible because the owner is guaranteed to service the forwarded request. The

owner directly responds to the requester, and the dirty-sharing property of our protocol avoids the need

for a sharing writeback message to home (typical in other protocols). The message labeled “marker”

sent from home to the requester serves several purposes in our protocol. First, the marker is used at the

requester to disambiguate the order in which other requests to the same line (that are forwarded it) were

seen by the directory. For example, the requester node filters out any invalidate messages that arrive

before the marker, while an invalidate mes- sage that arrives after the marker is sent to the requesting

processor. Second, the marker serves as the commit event for the read which is used for memory

ordering purposes (discussed in Section 4.3). Finally, Figure 2(d) shows a 3-hop write transaction.

Given the dirty-sharing nature of our protocol, it is possible for a line to have an owner and multiple

sharers as shown in this scenario. As in the 3-hop read-case, the directory is changed immediately, and

(in contrast to other protocols) there are no further messages sent to the home to complete this

transaction. The marker serves the same purpose as in the read case, and is also used to trigger

invalidates to other processors (sharing the line) on the requester's node.

Figure 3 shows an interesting consequence of changing direct- ory state immediately and our early

request race solution. The scenario shown involves multiple nodes writing to the same line (initially

dirty at a processor at the home node; “marker” messages not shown for simplicity). The writes are

serialized at the directory, each is forwarded to the “current” owner and immediately changes the

directory to reflect the new owner. The early request race mech- anism delays forwarded requests (on Q1)

that reach their targets early. As each requester gets its reply (on Q2), the data ripples from one owner to

the next without involving any further action from the

 Reply-2 t7

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 315 Copyright @ 2020 Authors

(Q2)

R1 R2

Reply-3 t8

(Q2)

R3

can be satisfied by the interconnect. These techniques can however be employed in scalable design

that are hierarchical. While a scal- able interconnect may be used among nodes, it is possible to use

switches with more ordering guarantees within each node (thus en- abling optimizations for intra-node

coherence, as in Piranha).

Reply-1FwdRdEx-2 RdEx-2

RdEx-1 (Q0)

t1

(Q2)

t6

(Q1)

t3

H

(Q0)

t2

FwdRdEx-3 (Q1)

t5

RdEx-3 (Q0)

t4

4 Efficient Implementation of Consistency Models

This section describes the innovative techniques used in the Al-

Figure 3: Protocol behavior with multiple writers to the same line.

directory. In such pathological cases, our protocol is much more ef- ficient than protocols (e.g., SGI Origin

[27]) that resort to blocking at the directory or NAKing/retrying to deal with races.

3.4 Applicability of Protocol Optimizations to Other Designs

A number of the techniques used in the AlphaServer GS320 pro- tocol design are applicable to larger-

scale directory designs, while a few of the techniques exploit interconnect ordering properties that are

more feasible in small-to-medium scale designs. The ideas ex- plored in the AlphaServer GS320 have

already influenced several more recent designs within Compaq: the Alpha 21364 [3, 6] (next- generation

Alpha processor with glueless scalable multiprocessing support), Piranha [5] (research prototype that

explores scalable chip-multiprocessing), and Shasta [29, 30, 31] (a software DSM system). These three

systems provide scalable designs with no spe- cial constraints on network ordering; the Alpha 21364 and

Piranha designs do not even depend on point-to-point order.

Scalable directory designs can benefit from elimination of NAKs/retries and blocking at the directory,

and the use of more than two virtual lanes to avoid protocol deadlocks (used in both Al- pha 21364 and

Piranha). First, all protocols can benefit from the simple and elegant solution to livelock and starvation

problems. Second, our solution to the late request race is applicable to many designs (used in Piranha).

However, our early request race solu- tion is more specific to our design choices. For protocols that do

not support dirty-sharing, it is feasible to buffer the early request on the side (as done in Piranha) instead

of stalling the request path. Finally, efficient 3-hop write transactions (with a single visit to the home) are

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 316 Copyright @ 2020 Authors

possible in protocols where the mechanisms for dealing with early and late races do not depend on

revisiting the home node in the common case (holds for Piranha). However, protocols that do not support

dirty-sharing (e.g., Piranha, Alpha 21364) can not benefit from lower message count and occupancy for

3-hop reads because of the presence of a “sharing-writeback” message to home.

Software shared-memory protocols such as Shasta are quite dif- ferent from hardware protocols. Since

software protocols can use main memory for extensive buffering purposes, multiple network lanes are

not needed for avoiding resource deadlocks. Extensive buffers also allow support for dirty-sharing, with

early requests buf- fered on the side. Finally, given that main memory (backed up by virtual memory) on

each node acts as a software-controlled cache, late request races are not possible since there are no forced

write- backs or replacements. The Shasta protocol was heavily influenced by the AlphaServer GS320

design, and is the only other protocol we are aware of that supports efficient 3-hop transactions for both

reads and writes through altering the directory state immediately and requiring at most a single visit to

the home.

Our other optimizations, such as eliminating invalidation- acknowledgements and exploiting the

multicast feature of our switch for efficiency, are clearly more applicable to small- and medium-scale

designs where the appropriate ordering properties

phaServer GS320 that extend previous approaches for efficiently implementing memory consistency

models. Section 4.1 reviews the early invalidation acknowledgement technique which is already used in

many designs. This review makes it simpler to understand the two new optimizations used in the

AlphaServer GS320, which are described in Sections 4.2 and 4.3. Finally, Section 4.4 discusses the

applicability of these optimizations to other designs.

 Early Acknowledgement of Invalidation Re- quests

To reduce the latency of invalidations, a common optimization is to acknowledge an invalidation

request as soon as the request is placed in a target destination's (e.g., a cache hierarchy) incoming queue

before all stale copies are actually eliminated. However, na- ive uses of this optimization can lead to

incorrect behavior since the acknowledgement no longer signifies the completion of the write with

respect to the target processor. The following is a brief sum- mary of the material in Section 5.4 of

Gharachorloo's thesis [13] which describes a couple of implementation techniques that enable the safe use

of early acknowledgements.

Consider a write operation with multiple completion events with respect to each processor in a

system. For each write, we also define a commit event with respect to each processor. The commit event

corresponds to the time when the invalidations caused by the write are either explicitly or implicitly

acknowledged, and precedes the completion event with respect to a processor in cases involving an early

acknowledgement. In designs which exploit early acknow- ledgements, the program order between a

write W and a following operation Y is enforced by only waiting for W to commit with re- spect to every

processor before issuing Y (there is no longer an explicit message that signals the completion of the

write).

Figure 4 shows an example to illustrate the issues related to early acknowledgements. For simplicity,

assume a sequentially consistent (SC) [25] invalidation-based protocol. Consider the pro- gram segment

in Figure 4(a) with all locations initialized to zero. The outcome (u,v)=(1,0) is disallowed under SC.

Assume P1 ini- tially caches both locations and P2 caches location A. Without early acknowledgements,

P1 issues the write to A, waits for it to com- plete, and proceeds to issue the write to B. Therefore, the

stale copy of A at P2 is eliminated before P1 even issues its second write. As long as P2 ensures its reads

complete in program order, the outcome (u,v)=(1,0) will indeed be disallowed.

Now consider the scenario with early invalidation acknow- ledgements. P1's write to A sends an

invalidation to P2. This inval- idation is queued at P2 and an acknowledgement reply is generated. At this

point, the write of A is committed but has yet to complete with respect to P2 (i.e., P2 can still read the

old value of A). While the invalidation remains queued, P1 can proceed to issue its write to B, and P2

can issue its read to B. Figure 4(b) captures the state of P2's incoming buffer at this point, with both the

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 317 Copyright @ 2020 Authors

P1

Interconnection Network

read rpl B (1)

inval A

A: 0

B: 0 1

A: 0 1

invalidation re- quest for A and the read reply for B (return value of 1) queued. A key issue is that

allowing the read reply to bypass the invalidation request in the buffer, which is desirable for

performance reasons, will violate SC because P2 can proceed to read the stale value for A out of its

cache after obtaining the new value for B.

P1 P2

data/response

a1:

A = 1; a2: u = B;

b1:

B = 1;

(a)

b2:

v = A;

P2

inbound reply

Figure 5: Separation of inbound reply to commit and data/response components.

Cache

Incoming Buffer

)

Cache

Incoming Buffer

involving remote transactions. Both cases lead to long inbound paths to the processor. The

second solution described in the previ- ous section is impractical due to the overhead of

flushing the long inbound path on every memory barrier. At the same time, using the first

solution can delay time-critical replies behind inbound in- validate requests on the long

inbound path to the processor. This section describes a simple yet powerful technique that we

devised to alleviate the undesirable trade-off described above.

In most coherence protocols, processor requests are satisfied

Figure 4: Example illustrating early invalidation acknowledge- ments.

There are two known solutions to the above problem [13]. The first solution imposes ordering

constraints among incoming mes- sages with respect to previously committed invalidations. Referring

back to the example, this solution would disallow the read reply from bypassing the invalidation request,

which forces the commit- ted write to A to complete with respect to P2 before the read of B completes.

While FIFO ordering among all incoming messages from the commit point will work, it is sufficient to

only maintain the queue order from an incoming reply (data or acknowledgement) to any previous

incoming invalidates (allows for a lot of reordering on the inbound path for performance reasons) [13].

commit

inval B

inval A

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 318 Copyright @ 2020 Authors

The second solution does not impose any ordering constraints among incoming messages. Instead, it

requires previously committed invalidations to be serviced any time program order is enforced. In the

example, this latter solution would allow the read reply to bypass the incom- ing invalidation, but would

force the invalidation request to be ser- viced (e.g., by flushing the incoming queue) as part of enforcing

the program order from the read of B to the read of A. Thus, both solutions correctly disallow the

outcome (u,v)=(1,0).

The relative efficiency of the above two solutions heavily de- pends on the underlying memory

consistency model. The first solution is better suited for strict models such as SC where en- forcing

program orders occurs much more frequently than cache misses; the second solution is better suited for

more relaxed models where enforcing program orders occurs less frequently. Further- more, for more

relaxed models, the second solution may provide faster servicing of incoming replies (data or

acknowledgement) by allowing them to bypass previous invalidate requests. However, the second

solution can become inefficient in designs with deep inbound queues (e.g., due to a deep cache

hierarchy); even though flushing of the incoming queues may be infrequent, the overhead of doing so can

be quite high. The only known partial remedy to the above trade-off is a hybrid design that employs the

first solution at the lower (farther) levels and the second solution at the higher levels of the logical

inbound queue (or cache hierarchy) [13].

 Separation of Incoming Replies into Commit and Data/Response Components

The AlphaServer GS320 supports the Alpha memory model which requires the use of explicit memory

barrier instructions to impose memory ordering [33]. In addition, the commit point in our design is at the

arbitration point within a node for accesses satisfied loc- ally or at the arbitration point for the global

switch for accessesgh a single reply message. For example, a read or read- exclusive request receives a

data reply, while an exclusive request (caused by a write to a clean copy) may receive a success or fail-

ure response. Our approach separates the reply message into its two logical components when the

message arrives at the inbound path: (i) the data or response component that is needed to service the

request, and (ii) a commit component which is solely used for

ordering purposes.3 This separation is illustrated in Figure 5. We allow the time-critical

data/response component to bypass other in- bound (Q1) messages on its path to the processor (e.g., by

using a separate lane such as Q2). To achieve correctness, the commit component is used as an ordering

marker by placing it on the same path as other inbound messages and enforcing the required partial

ordering with respect to other messages. For example, given the early invalidation acknowledgement

optimization described in the previous section, a commit component cannot bypass any previous inbound

invalidations. This approach is superior to either of the two solutions described in the previous section;

we allow time-critical replies to bypass other inbound messages, and yet we do not require an explicit

flush of the inbound path at memory barriers.

For the above scheme to work correctly and efficiently, support from the processor is needed to (i)

expect two reply components instead of a single one, and (ii) appropriately account for the com- mit

components. The Alpha 21264 maintains a count of pending requests. This count is incremented on

every request issued to the system, and decremented each time a commit event is received. Re- ceiving

the data/response component does not affect the count, and in fact there is no requirement for the

data/response component to arrive before the commit component for achieving correct ordering. At a

memory barrier, the processor waits for the count to reach zero before proceeding with other memory

requests. Our design piggy- backs the commit components on other inbound Q1 messages with an

additional 1-bit field; a null message is inserted if no messages are available for the piggyback. The next

section describes our second optimization which allows us to generate the commit com- ponent for read

and read-exclusive requests well before the actual data component is formulated.

 Early Commit for Read and Read-Exclusive Requests

The AlphaServer GS320 architecture extends the idea of early com- mits to encompass all types of

processor requests instead of only read-exclusive (or exclusive) requests to a clean line with sharers

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 319 Copyright @ 2020 Authors

P1

Cache

{ t2}
{ t10}

Interconnection Network

inval A

commit/RdB

A: 0

commit/InvalA

read B

B: 0

A: 0 1 { t8}

(i.e., early invalidation commits described in Section 4.1). This op-

3 Optimized coherence protocols (e.g., DASH [28] or our protocol) support eager exclusive replies

for writes to clean shared data. An eager reply is sent to the requester early on, with a follow-on message

that signals the committing of invalidations at all sharers. These two messages cleanly map to the

separation we require.

timization can reduce the delay whenever a processor must wait for its pending requests to complete for

ordering purposes (e.g., at a

 P1 P2

memory barrier). As we will discuss in the next section, the impact of this technique can be far-reaching

since it is adds a fundamental

a1:

A = 1;{ t7}

a2:

u = B; { t1}

optimization to the bag-of-tricks designers can use to correctly and

b1:

MB;

b2:

MB;

{ t4}

efficiently implement memory consistency models.

In our design, early commits are generated for any read or read-exclusive request that is forwarded to

be serviced by another cache's dirty or dirty-shared copy (includes forwards to a cache copy within the

same node). This approach can be easily general-

c1: B = 1;

(a)

c2:

v = A; { t5}

ized to requests serviced by memory as well. However, this is not beneficial in our design because the

commit can not be generated much in advance of the data reply from memory. Similar to early commits

for invalidations, the early commit message is generated when a forwarded read or read-exclusive request

arrives at the com- mit point (defined in the previous section). A separate data reply message is sent back

once the forwarded request is serviced by the target cache. As with early invalidation commits, a processor

is al- lowed to go past an ordering point (e.g., memory barrier) as long as all previous requests have

received their commit replies, even if the actual data replies have not yet been received. Theoretically, the

above optimization allows a processor to proceed beyond ordering points before the actual return values

for its pending requests are bound. As would be expected, naive use of this optimization can

(b)

P2 (reads A:0) { t6}

Cache

(consumed before t4)

{ t9}

lead to incorrect behavior.

Figure 6 shows an example to illustrate the issues related to early commits for read and read-

{ t3}

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 320 Copyright @ 2020 Authors

exclusive requests. Consider the program segment in Figure 6(a) with all locations initialized to zero

(“MB” is a memory barrier in Alpha). The outcome (u,v)=(1,0) is disallowed under the Alpha memory

model (and also under se- quential consistency). Assume P1 initially caches both locations (with dirty

copy of B) and P2 caches location A. The figure shows a given order of events in time represented by

t1::t10. Assume P2 issues read B, with the read request queued at P1. The com- mit message for

the read is generated once the request is queued at P1, and is sent back to P2 (shown queued at P2 at time

t3). Once this commit event is received by P2, P2 can go past the ordering point represented by the MB

and read the value 0 for A (i.e., v=0). Note that we are allowing P2 to complete the read of A before the

return value for the read of B (currently waiting to be serviced in P1's incoming queue) is even bound!

Now assume P1 issues its write to A, which generates an invalidate to P2 and a correspond- ing

invalidate-acknowledgement (early commit for the invalidate) to P1. Figure 6(b) shows the state of the

incoming queues at this point (with the commit for read B already consumed).

We can now illustrate the potential for incorrect behavior for the scenario in Figure 6. Consider the

commit event for the inval- idation to A (commit/InvalA) bypassing the read request to B (read B) on the

inbound path to P1. This reordering is allowed under the sufficient requirement for early invalidation

acknowledgements since the only order that is required to be maintained is from com- mits to previous

invalidation requests. Therefore, P1 can receive this commit, go through its memory barrier, and issue

the write of B which would change its cache copy to have the value of 1. At this point, when the read of B

(still in the inbound path) gets serviced, it will return the value of 1 (i.e., u=1). The scenario above

violates the Alpha memory model since we have allowed (u,v)=(1,0).4

As with early invalidation acknowledgements, there are two

4 The Alpha 21264 processor does not actually proceed past a memory barrier until both the commit

and the data reply components for its previously pending requests are back (i.e., it is more conservative

than the design assumed above). Furthermore, the 21264 has a small internal probe queue for incoming

requests, allows replies to bypass this queue, and flushes the queue at memory barriers. Constructing the

anomalous behavior is more involved in this case. Referring to Figure 6, assume the exact same order of

events except that P2 (now a 21264) does not go past its memory barrier until it receives both the commit

and the data reply for read B (assume u=1 as before). The anomalous behavior can still occur because the

invalidate of A to P2 can be in the inbound path external to the 21264 chip and neither the data reply

for B (which is allowed to bypass inbound messages) nor the commit (which is ahead of invalidate)

force the invalidate into the 21264's internal probe queue. Therefore, P2 can still proceed past its MB to

read the old value of A. The solutions described in the next paragraph also eliminate the possibility of

incorrect behaviors with the Alpha 21264.

Figure 6: Example illustrating early commit for read requests.

solutions for guaranteeing correctness. The first solution involves imposing further order among

inbound messages: a commit mes- sage cannot bypass any previous requests (read, read-exclusive or

invalidation). This solution disallows the commit/InvalA message from bypassing the read B request in

the scenario shown in Fig- ure 6. Therefore, the read B request is guaranteed to be serviced before P1 is

allowed to change the value of B (P1 cannot go past its MB before it receives commit/InvalA), hence

ensuring that read B returns the value 0 to P2 (i.e., u=0 leading to (u,v)=(0,0) which is an allowed

outcome). The dynamics of how correctness is en- sured with the early commit optimization is quite

interesting since we effectively force the return value for read B to be bound be- fore P1 is allowed to

change the value for B. The second solution (also reminiscent of the second solution in Section 4.1 but

slightly stricter) does not impose any ordering among inbound messages, but requires any request

messages in the inbound path (read, read- exclusive, or invalidation) to be serviced any time a processor

en- forces program order (e.g., at a memory barrier). Again, before P1 is allowed to complete its MB, it

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 321 Copyright @ 2020 Authors

is required to service the inbound read B which will lead to the correct behavior. The AlphaServer

GS320 design uses the first solution above because it naturally and synergistically merges with the

optimization described in Sec- tion 4.2: the commit comes earlier for ordering purposes, the time- critical

data reply which typically arrives later is allowed to bypass other inbound messages, and there is no

requirement to flush the inbound path at memory barriers.

The early commit optimization described here depends on a guarantee that the read or read-exclusive

request will be serviced by the target node or processor once a commit reply is generated for it. Therefore,

protocols that do not make such a guarantee (e.g., due to NAKs/retries) cannot use this optimization.

There are a few other subtle issues that arise in the AlphaServer GS320 design (even for simple early

invalidation acknowledgements) due to the presence of a commit point within a node (arbitration point

for local switch) and a commit point external to the node (arbitration point for global switch), and the fact

that some requests are satisfied solely by the local commit point. For example, due to the fact that we

sup- port eager exclusive replies, it is possible for a request generated at the home node to be locally

satisfied while remote invalidations caused by a previous operation have still not been committed at the

external switch. To avoid correctness issues, the transactions-in- transit table (TTT) detects such cases

and forces the commit event for the latter operation to loop to the external switch and back in

a1: r1 = A;

b1: B = 1;

Local Switch (5 chips)

c1:r2 = C; (hit)

d1: r3 = D[r2];Global Port

(for 8P systems)

e1: E = 1; (hit)

f1: r4 = F;

Processor/Memory Modules

g1: r5 = G[r4];

Broadcast Bus

IOP (3 chips)

Figure 7: Early commits in a snoopy design.

order to inherit the previous operation's commit event and pull in any requests on the inbound path.

 Applicability of Consistency Model Tech- niques to Other Designs

The two optimization techniques presented in Sections 4.2 and

4.3 can be used for implementing any memory consistency model, ranging from sequential consistency

to aggressive relaxed memory models. The optimization of separating the commit and data/response

components (Section 4.2) is primarily useful for implementation of more relaxed models where allowing

the data/response to reach the processor earlier (before a memory or- dering point is encountered) is

beneficial. Furthermore, the tech- nique applies to any implementation that exploits early commits,

including early invalidation acknowledgements, and is superior compared to previously known solutions

for enforcing correctness.

The performance benefits of the second optimization (Sec- tion 4.3) are higher for stricter memory

models since a processor can continue past the frequent memory ordering points to issue new requests as

soon as it receives the early commit for a previous re- quest. However, the benefits can be significant in

M2 M1

rd D[r2]

P2 P3 P1

rd F

rd A rdex B

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 322 Copyright @ 2020 Authors

relaxed models as well due to the reduction of delays at memory ordering points; for example, memory

barrier latencies in Alpha multiprocessors constitute a significant fraction of the execution time for

import- ant critical section routines in database applications. With respect to applicability to different

implementations, the early commit op- timization is better suited to designs where the separation in time

between generating the early commit and the actual reply is sig- nificant enough to justify generating two

messages. In addition to less scalable designs with ordered networks (e.g., buses, crossbars, rings), this

approach can also be beneficial in more hierarchical scalable designs where ordering is not maintained at

the external interconnect but can be enforced within a node (i.e., commit point can be set at entry to

node).

To illustrate the true potential of the early commit optimization, Figure 7 shows an example snoopy

design supporting sequential consistency. In such a design, the commit point for a cache miss is when it is

scheduled on the bus, and a processor must only await this commit event (i.e., does not need to wait for

the actual reply) before issuing its next reference in order to satisfy sequential con- sistency; this of

course assumes that the appropriate inbound mes- sage order is maintained as specified in the previous

section. Given the example in the figure, P1 first issues the read of A (gets queued at P2). Given this read

is committed, P1 can safely continue to is- sue the write to B on the bus. Once this write is scheduled on

the bus (and queued at P3), P1 safely completes the read to C which is a cache hit. The value from this

read is used to calculate the ad- dress of the next read, which is also issued on the bus. Next, P1 can safely

complete its write to E which is a cache hit. Finally, P1 is- sues the read to F, and cannot proceed to issue

the last read (G[r4])TAG

(4 chips)

Figure 8: Quad building block (QBB) motherboard (4-processor system).

since its address is not yet known. Note that at this point, P1 has 4 outstanding memory operations (one

of them a read-exclusive) that are awaiting their data replies without violating sequential consist- ency!

Furthermore, P1 was allowed to consume the value of a read

(C) and complete a write (E) in the middle of its miss stream. Sim- ilarly, the pending data replies can

return and be consumed in any order. And it is also perfectly safe for P1 to make its writes (e.g., to E)

visible to other processors even though it is awaiting data replies for previous operations. Finally, unlike

speculative techniques pro- posed for implementing consistency models [14], the above ap- proach does

not depend on any form of rollback; once an operation is committed, it is considered complete as far as

ordering is con- cerned. However, as we will discuss in Section 7, there is potential synergy in

combining the early commit technique with speculative techniques that depend on rollback [14].

5 AlphaServer GS320 Implementation

The AlphaServer GS320 is designed and packaged for modularity and easy upgradability from 4 to 32

processors. The basic build- ing blocks are: single-CPU boards, memory boards, PCI-bus inter- faces,

and two types of backplanes. A 4-processor quad-building block (QBB) occupies a single rack, as does

a PCI IO subsystem. Each QBB supports up to 2 IO subsystems. A cabinet supports up to 4 QBBs or 16

processors. Thus, a 32-processor system consists of two cabinets for processors and additional cabinets for

IO.

Figure 8 shows the motherboard for a 4-processor QBB, with the local switch, DTAG, and IO

interface on the board. The global port chips reside on the motherboard for 8-processor systems (two 4-

processor systems connected back-to-back), but become part of a plug-in module for larger systems.

Other components are also attached as plug-in modules to the motherboard. For systems lar- ger than 8

processors, the QBB motherboard is mounted vertically, with one 4-processor rack facing the front and

the other facing the rear. Figure 9(a) shows the placement of the plug-in modules on the rear side. Figure

9(b) depicts the rear side of the two cabinets used for a 32-processor system. Each quadrant is an 8-

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 323 Copyright @ 2020 Authors

processor rack. The global switch is mounted on a folding panel as shown. Ribbon cables connect the

global ports to the global switch.

The complete system consists of 16 unique ASIC designs with a total of 7 million gates. There are 5

major address-path ASICs which constitute the core functionality of the system, and 4 data- path ASICs

which are significantly simpler. The remaining ASICs perform simple glue logic tasks. The technology

is circa 1997- 98, with about 500K useable gates on the large ASICs. The design and simulation

environment included about 300 AlphaServer CPUs

Rear View of 8P Complex Showing Four Processors; Other Four Processors Appear in Front View

Table 1: Effective memory latencies for the AlphaServer GS320 with 731MHz 21264

processors.

AUXILIARY REGULATOR

MAIN

PSM

PU 0

CPU 2

CLOCK SPLITTER

REGULATOR

MEMORY 1

MEMORY 3

GLOBAL PORT FRONT

Table 2: Impact of system load on L2 cache hit latency on three Alpha 21264-based systems.

CPU 1

CPU 3 DIRECTORY

MEMORY 0 MEMORY 2 GLOBAL PORT REAR

Global Switch

Backplane

Two 4-P Racks

(One faces front,

other faces rear)

Cables Connecting Global Ports

to Global Switch

Case Back-to-Back

Dependent Reads

Pipelined

Independent Reads

L2 Cache Hit 23ns 7ns
Local, Clean 327ns 61ns

Local, Dirty 564ns 75ns
2-hop, Clean 960ns 136ns

3-hop, Dirty 1324-1708ns 196-310ns

 525Mhz

GS140

500MHz

ES40

731MHz

GS320

L2 Hit Latency (P1-P3 idle) 35ns 41ns 23ns
L2 Hit Latency (P1-P3 active) 68ns 113ns 23ns

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 324 Copyright @ 2020 Authors

Figure 9: Rear view of (a) an 8-processor system and (b) 32- processor complex with global switch.

(about 40 clustered GS140 servers), equipped with a total of 500GB of memory and 4.5TB of disk.

Systems of 100-200 million gates were simulated for a large number of cycles. Consequently, sys- tems

booted with first-pass ASICs; the various configurations (4P, 8P, 32P) booted VMS and Unix within 2

weeks of assembly.

The AlphaServer GS320 design supports a number of RAS (re- liability, availability, serviceability)

features. The system supports up to 8 hardware partitions at the QBB granularity, with hardware firewalls

between partitions. Both Unix TruClusters and VMS Galaxy operating systems support such

partitioning, with Galaxy aggressively exploiting dynamic software partitioning as well. The system also

supports online removal, repair, and upgrade of QBBs, I/O subsystem, and individual CPUs. This

approach permits hard- ware test and burn-in prior to reinsertion into a running system. Finally, the

Tru64 Unix and VMS operating systems have been ex- tended to deal with the NUMA nature of the

AlphaServer GS320 for both scheduling and memory management purposes.

6 Performance Measurements on the Al- phaServer GS320

This section presents results to characterize the basic latency and bandwidth parameters of the

AlphaServer GS320 and to evaluate the impact of some of the optimizations described in Sections 3 and

4. In addition, we report results on a few industry-standard bench- marks to illustrate the competitive

performance of AlphaServer GS320 on both technical and commercial workloads.

Table 1 presents measured latencies for servicing a read request at various levels in the memory

hierarchy. We report two sets of latencies in each case: (i) latency for back-to-back dependent reads

(representative of pointer-chasing), and (ii) effective latency for pipelined independent reads

(representative of array accesses). The “3-hop” case shows a range of latencies because it includes “2.5-

hop” cases where the owner or the reader processor are at the home node. One of the main reasons for the

relatively high back-to-back latencies is the use of an older ASIC technology (circa 1997-98, 9.6ns cycle

time) in our current implementation. The results in the table show while some of the remote latencies are

high, the Alpha 21364's out-of-order issue capability and its support for multiple outstanding requests

can substantially reduce the effective laten- cies (by approximately 5-7 times) in the case of independent

read misses. These pipelined latencies can also be used to calculate sus- tained bandwidths (e.g., 64-bytes

per 61ns for 1.05GB/s bandwidth to local memory).

We next compare the AlphaServer GS320 to two other 21264- based AlphaServer designs. The

GS140 is a previous-generation bus-based snoopy design which supports up to 14 processors. The ES40

is a switch-based snoopy design which supports up to 4 pro- cessors. We use 4-processor configurations

for all three systems (processor frequencies are different). Table 2 shows the dependent read latency for

L2 cache hits as measured from one processor. We consider two cases: (i) the other three processors are

idle, and (ii) the other three processors are actively issuing misses. As the table shows, activity by the

other three processors can lead to a major degradation in the L2 hit latency (2-3 times longer) as

observed by the fourth processor in snoopy-based designs. The primary reason for this is that all system

transactions must be snooped by the L2 caches, causing the L2 to be busy more often (especially in the

ES40 which does not use duplicate tags). The AlphaServer GS320 does not suffer from this because it

uses a directory-based protocol which significantly reduces the number of requests that are forwar- ded to

each L2. Given the importance of L2 hit latencies in com- mercial workloads such as transaction

processing [4], the use of ef- ficient directory-based protocols (instead of snooping) can provide benefits

even for systems with a small number of processors.

Table 3 presents effective latencies for write (read-exclusive) operations while varying whether the

home is local or remote and

Table 3: Effective latency for write operations.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 325 Copyright @ 2020 Authors

Case Pipelin

ed

Writes

Writes

Separated

by Memory

Barriers

Local Home, No

Sharers

58ns 387ns

Local Home, Remote

Sharers

66ns 851ns

Remote Home, No

Sharers

135ns 1192ns

Remote Home,

Remote Sharers

148ns 1257ns

Table 4: Serialization latency for conflicting writes to the same line.

Case Serialization

Latency

1 QBB, 4

procs

138ns

8 QBBs, 1

proc/QBB

564ns

whether there are any sharers. We report two sets of latencies in each case: (i) effective latency for

pipelined writes, and (ii) latency for writes ordered through memory barriers (includes memory bar- rier

latency: 24ns minimum). The pipelined latencies for the local home and remote home are close to the

pipelined local and 2-hop read latencies in Table 1. The latency impact of sending invalida- tions (due to

presence of sharers) is small since our protocol does not use invalidation acknowledgements.

Furthermore, these laten- cies are independent of the number of sharers since our protocol uses multicast.

The latencies for writes separated by memory bar- riers are slightly larger than the local and 2-hop

dependent read latencies, partly due to the cost of the memory barrier being in- cluded in this latency.

Local home writes with remote sharers take substantially longer than with no sharers because the memory

bar- rier must wait for the commit event to come back from the global switch (Section 4). Finally, the

sending of invalidates for remote home writes leads to little increase in the latency (again due to the lack

of invalidation acknowledgements which would incur 3-hop latencies).

We next consider the impact of our low occupancy protocol design for handling conflicting writes to

the same line. Figure 3 in Section 3 illustrates the behavior of our protocol for write serializa- tion. Table 4

shows the serialization latency for two scenarios. Our experiments have each processor in a tight loop

doing a write fol- lowed by a memory barrier (latencies include memory barrier over- head). In steady state,

our protocol continuously forwards writes to the current owner with no blocking/retrying at the directory

and the forwarded writes are delayed at their target caches until the early request race is resolved.

Therefore, we expect the serializ- ation of the writes to be approximately equal to a 1-hop latency in our

system. The first scenario involves 4 processors on a single quad node. In this case, 4 processors are

insufficient to generate sufficient throughput in the steady state to always steal the line from the previous

owner as soon as it receives it. Therefore, our measured serialization latency includes some cache hits,

making it smaller than the 1-hop intra-node latency (approx. 180-200ns) that we expected. The second

scenario consists of 8 processors on separate QBBs. The 8 processors lead to the expected steady state

behavior and the measured serialization latency of 564ns is indeed approximately half of our 2-hop write

latency (from Table 3). In comparison, protocols that depend on the use of NAKs/retries to resolve such

races [24, 27, 28] would have a best case serialization latency of 2-hops (with higher possible latencies

based on the tim- ing of retries), and lead to substantially more traffic and resource occupancies due to

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 326 Copyright @ 2020 Authors

the large number of in-flight NAK and retry messages.

Finally, Table 5 presents some measurements to illustrate the impact of separating the commit

component and generating early commits. The back-to-back dependent read latency measures the time it

takes for the data reply component to reach the processor, while the latency with memory barriers

measures the time for the commit component. The intrinsic overhead of a memory barrier is 25-50ns

and is included in the latter measurement. The 2-hop measurements clearly illustrate the benefit of

separating the com-

Table 5: Impact of separating the commit component and generat- ing early commits.

Case Back-to-

Back

Dependent

Reads

Reads

Separated

by Memory

Barriers

2-hop,

Clean

960ns 1215ns

3-hop,

Dirty

1478ns 1529ns

mit component from the data reply component. The difference in the latency for the two components is

205-230ns (adjusted for the memory barrier overhead), and keeping the data and commit com- ponents

together would cause this extra latency to be incurred by all read misses. Furthermore, this extra latency

could increase if the inbound path for the commit is occupied by other forwarded requests. The 3-hop

measurements illustrate the benefit of generat- ing early commits in our design (the 2-hop case does not

generate an early commit in our design). We see the difference in latency for the data reply and commit

components in the 3-hop case is ap- proximately 0-25ns (adjusted for memory barrier overhead), which is

much smaller than the 205-230ns separation (of the 2-hop case) we would likely observe without early

commits. In fact, the early commit is likely to arrive at the processor before the data reply component in

the 3-hop case, but the Alpha 21264 waits for both components to arrive before proceeding past a

memory barrier.

The AlphaServer GS320 system provides leadership perform- ance on many technical workloads.

The result on Linpack is 30 GFlops/s on a 32-CPU system. The McCalpin STREAM (COPY)

bandwidth is 18.4 GB/s with 32 CPUs. The AlphaServer GS320 also provides competitive performance

on commercial workloads. Our system supports 2720 users (1.9s response time) on the SAP R4 two-tier

client/server benchmark (audited result [21]). In com- parison, the IBM RS/6000 S80 24-CPU system

supports only 1708 users (1.98s response time). On the TPC-H benchmark (300GB database), the

AlphaServer GS320 reports audited results of 4952 QphH [22]. This compares to a 64-CPU IBM

NUMA-Q system at 7334 QphH and a 32-CPU HP9000 V2500 system at 3714 QphH. Our early audited

result for TPC-C of 122K tpmC with 32 pro- cessors [37] is in between the IBM RS/6000 S80 (24-CPU)

result of 135K tpmC and the Sun Enterprise 10000 (64-CPU) result of 115K tpmC [36]. However, this result

has been withdrawn in anticipa- tion of a better result after further tuning. Finally, the AlphaServer

GS320 achieves a user count of 11,200 on the single system Or- acle Applications standard benchmark,

compared to 14,000 users for the IBM RS/6000 S80.

7 Discussion and Related Work

The AlphaServer GS320 architecture incorporates an interesting mix of techniques for improving

directory-based protocols and in- corporates a couple of novel optimizations for efficiently imple-

menting consistency models. Even though cache coherence and consistency have been extremely active

areas of investigation for the past decade, by far the majority of this work has focused on large-scale

designs. However, there is very little market demand for such large systems, primarily due to the lack of

scalable soft- ware and fault-containment mechanisms. Virtually all the tech- niques used in the

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 327 Copyright @ 2020 Authors

AlphaServer GS320 were initially inspired by targeting medium-scale designs and the desire to exploit

their lim- ited size. As it turns out however, several of these techniques are directly applicable to larger-

scale directory-based and smaller-scale snoopy-based designs (see Sections 3 and 4). Much of the related

work has already been referenced in earlier sections. This section presents a brief comparison with a

couple of contemporary designs, and discusses other previous work pertinent to coherence protocols and

consistency model implementations.

We briefly compare the AlphaServer GS320 to the Sun Enter- prise 10000 [10, 34] and the SGI

Origin 2000 [27], which rep-

resent the current state-of-the-art in snoopy-based and directory- based designs respectively. Hristea and

Lenoski [20] provide de- tailed latency and bandwidth measurements on the Sun and SGI systems. The

sustained bandwidth per processor is 195MB/s for Sun and 554MB/s for SGI, compared to over 1GB/s

in our sys- tem. The peak bisection bandwidths for 32-CPU configurations are: about 6GB/s for Sun

(10.6GB/s for 64-CPUs) [10], 6.2GB/s (12.5GB/s with Xpress links or with 64-CPUs) [32], and

12.8GB/s for our design. The local memory latencies (back-to-back depend- ent reads) are 560ns and

472ns for Sun and SGI, compared to 327ns in our design. Local dirty latencies are 742ns and 1036ns for

Sun and SGI, compared to 564ns in the AlphaServer GS320. Our 2-hop and 3-hop read latencies are

comparable to the SGI for a similar size system (results provided in [20] are for 4-6 CPU SGI config-

urations). However, our design shines with respect to pipelined independent reads.

As mentioned earlier, there has been little work on efficient pro- tocol designs for medium-scale

systems. Bilir et al. [7] propose the idea of selectively using multicast snooping within a directory- based

protocol as a possible mechanism for reducing 3-hop transac- tion latencies. However, the combination of

snooping within a dir- ectory scheme can lead to a complex protocol with higher message counts and

resource occupancies. Hagersten and Koster [17] de- scribe the implementation of the Sun Wildfire

prototype which con- nects up to four large snoopy-based SMP nodes using a directory- based protocol.

Given the limit of four nodes, the designers opt for simplifying the protocol at the cost of efficiency and

performance. Their protocol uses extra messages, along with blocking at the dir- ectory, to eliminate the

possibility of all races: (i) writebacks use a three-phase protocol to first get permission from the home

node before sending the data (eliminates late request race), and (ii) three- hop transactions are augmented

with extra messages to inform the home when the requester receives its reply (eliminates early request

race). The above design choice leads to higher occupancy and mes- sage counts compared to typical

directory protocols. Finally, the prototype incurs high memory latencies: 1762ns for a 2-hop clean read

and 2150ns for a 3-hop read.

While some of the techniques used in our protocol are not novel and have been previously used in other

protocols, we believe that our protocol embodies a unique combination of these techniques that leads to

an efficient low-occupancy design. For example, the Scalable Coherent Interface (SCI) protocol [16]

also does not re- sort to NAKs and retries. However, its uses a strict request-reply protocol which incurs

an extra hop for dirty remote misses. Further- more, its linked list directory structure leads to substantial

design complexity and can also result in long invalidation latencies. In contrast, our protocol uses a

centralized directory, and exploits an extra network lane (i.e., total of 3 lanes) to avoid using a strict

request-reply scheme.

There has been much work on more efficient implementation of consistency models. The technique of

hardware prefetching from the instruction window [14] issues non-binding prefetches for memory

operations whose addresses are known, and yet are blocked due to consistency constraints. Speculative

load execu- tion [14] increases the benefits of prefetching by allowing the re- turn value of the load to be

consumed early. The latter technique requires hardware support for detecting violations of ordering re-

quirements due to early consumption of values and for recovering from such violations. Violations are

detected by monitoring coher- ence requests (and cache replacements) for the lines accessed by

outstanding speculative loads. The recovery mechanism is similar to that used for branch mispredictions

and exceptions. Both of the above techniques are implemented in a number of commercial mi-

croprocessors (e.g., MIPS R10000, and various implementations of HP PA-RISC and Intel Pentium

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 328 Copyright @ 2020 Authors

processors). More recently, Gniady et al. [15] have proposed to extend the speculative load technique to

apply to stores as well. However, this idea leads to a number of complexities arising from the need to

perform speculative stores in the cache hierarchy without making them visible to other pro- cessors and to

roll back such stores in case a violation is detected.

The early commit technique implemented in the AlphaServer GS320 applies to both loads and stores,

does not depend on any mechanisms for detecting violations and rolling back, and is com- plementary to

the above speculative techniques. In fact, there is po- tential for synergy from combining these

techniques. For example, the size of speculative resources (e.g., the speculative load buf- fer [14]) may

be reduced since an operation can be considered non- speculative as soon as the early commits for

previous memory op- erations are received (i.e., instead of waiting for the longer latency data replies).

The early acknowledgement of invalidations (Section 4.1) is re- lated to to Afek et al.'s lazy caching

[1, 2], Dubois et al.'s delayed consistency [11], and Landin et al.'s race-free network [26] ideas.

However, these ideas had various limitations with respect to applic- ability to a wide range of designs,

efficiency of implementation, and (in some cases) correctness. Gharachorloo's thesis (Sections 5.4-5.5)

[13] provides a generalization of this technique that allevi- ates the above limitations.

Finally, it would be interesting to further isolate the perform- ance effects of the various coherence and

consistency optimizations used in the AlphaServer GS320. Unfortunately, using the hardware

implementation for this purpose is extremely difficult since we do not have the ability to selectively turn

on and off various optimiza- tions.

8 Concluding Remarks

While much of the shared-memory multiprocessor research in the past decade has focused on large-scale

systems, the high-end server market is primarily characterized by systems with at most 32 to 64

processors. Even though building systems with more processors is quite feasible from a hardware

standpoint, the market demand for such systems is extremely limited due to the lack of scalable ap-

plications and operating systems and compelling fault-containment solutions.

This paper described the architecture of the AlphaServer GS320 which is targeted at medium-scale

multiprocessing with 32 to 64 processors. Our design incorporates a number of innovative tech- niques

for improving directory-based protocols and efficiently im- plementing consistency models. Our

coherence protocol exhibits lower occupancy and lower message counts compared to previous designs,

and naturally lends itself to elegant solutions for deadlock, livelock, starvation, and fairness. Our design

also includes a couple of novel techniques for efficiently supporting memory ordering. These techniques

allow a memory operation to be considered com- plete from an ordering perspective well before its data

reply is formulated, and also allow for quicker delivery of the data reply on the inbound path to the

requesting processor. The above tech- niques were all initially inspired by eliminating the requirement

for scalability in our design, allowing us to consider solutions which may have otherwise been

overlooked [12]. As it turns out however, several of these techniques are directly applicable to larger-

scale directory-based and smaller-scale snoopy-based designs.

Technology has changed quite dramatically in the past four years since we began the design of the

AlphaServer GS320. The next-generation AlphaServer is based on the Alpha 21364 which integrates a

1GHz 21264 core, two levels of caches, memory con- trollers, coherence hardware, and network routers

all on a single die [3, 6]. Aggressive chip-level integration is also being employed in designs based on

single chip multiprocessors (CMP) [5, 18]. The protocol design ideas explored in the AlphaServer

GS320 have already influenced our more recent designs within Compaq, including the Alpha 21364 [3]

and Piranha [5]. Furthermore, the memory consistency implementation techniques developed for the

AlphaServer GS320 are especially well-suited for future CMP designs given the tight-coupling among on-

chip processors and the hierarchical nature of systems built from CMP nodes.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 329 Copyright @ 2020 Authors

Acknowledgments

The AlphaServer GS320 project would not have been possible without the participation of hundreds of

Compaq employees whom we would like to thank for their contributions. Of special note was the

leadership and vision of Dave Fenwick, the system architect. Early in the design, many issues were

resolved between the sys- tem and microprocessor teams through the ”EV6 Systems Partners Forum” and

especially through contributions by Jim Keller and Bob Stewart. We would like to thank participants in

several internal re- views of the protocol, and in particular contributions by Dick Sites, Chuck Thacker,

and Raj Ramanujan. A significant amount of work was also done by the formal protocol verification team

led by Leslie Lamport with contributions by Yuan Yu and Mark Tuttle. Finally, we thank the anonymous

reviewers for their comments.

References

[1] Y. Afek, G. Brown, and M. Merritt. A lazy cache algorithm. In Symposium on Parallel Algorithms

and Architectures, pages 209–222, June 1989.

[2] Y. Afek, G. Brown, and M. Merritt. Lazy caching. ACM Transac- tions on Programming Languages

and Systems, 15(1):182–205, Janu- ary 1993.

[3] P. Bannon. Alpha 21364: A Scalable Single-Chip SMP. In Microprocessor Forum '98, October

1998. (also available at http://www.digital.com/alpha-oem/microprocessorforum.htm).

[4] L. A. Barroso, K. Gharachorloo, and E. D. Bugnion. Memory System Characterization of

Commercial Workloads. In Proceedings of the 25th International Symposium on Computer

Architecture, June 1998.

[5] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,

S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: A Scalable Architecture Based on

Single-Chip Multiprocessing. In Proceedings of the 27th International Symposium on Computer Ar-

chitecture, June 2000.

[6] L. A. Barroso, K. Gharachorloo, A. Nowatzyk, and B. Verghese. Im- pact of Chip-Level Integration

on Performance of OLTP Workloads. In Proceedings of the 6th International Symposium on High

Perform- ance Computer Architecture, January 2000.

[7] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, M. D. Hill, and D. A. Wood. Multicast

Snooping: A New Coherence Method Using a Multicast Address Network. In Proceedings of the 26th

Inter- national Symposium on Computer Architecture, May 1999.

[8] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running Com- modity Operating Systems on

Scalable Multiprocessors. In Proceed- ings of the 16th ACM Symposium on Operating Systems

Principles, Oct. 1997.

[9] L. M. Censier and P. Feautrier. A new solution to coherence prob- lems in multicache systems. IEEE

Transactions on Computers, C- 27(12):1112–1118, December 1978.

[10] A. Charlesworth. STARFIRE: Extending the SMP Envelope. Micro, pages 39–49, January/February

1998.

[11] M. Dubois, J. Wang, L. Barroso, K. Lee, and Y. Chen. Delayed con- sistency and its effects on the

miss rate of parallel programs. In Pro- ceedings of Supercomputing '91, pages 197–206, 1991.

[12] J. Emer. Relaxing Constraints: Thoughts on the Evolution of Computer Architecture. Keynote

Speech at the 6th International Symposium on High Performance Computer Architecture, Toulouse,

France. January 10, 2000.

[13] K. Gharachorloo. Memory Consistency Models for Shared-Memory Multiprocessors. PhD thesis,

Stanford University, December 1995.

[14] K. Gharachorloo, A. Gupta, and J. Hennessy. Two techniques to en- hance the performance of

memory consistency models. In Proceed- ings of the 1991 International Conference on Parallel

Processing, pages I:355–364, August 1991.

[15] C. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC? In Proceedings of the 26th

International Symposium on Computer Ar- chitecture, May 1999.

http://www.digital.com/alpha-oem/microprocessorforum.htm)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 330 Copyright @ 2020 Authors

[16] D. B. Gustavson and Q. Li. The scalable coherent interface (sci). IEEE Communications Magazine,

pages 52–63, August 1996.

[17] E. Hagersten and M. Koster. WildFire: A Scalable Path for SMPs. In Proceedingsof the 5th

International Symposium on High Performance Computer Architecture, January 1999.

[18] L. Hammond, B. Nayfeh, and K. Olukotun. A Single-Chip Multipro- cessor. Computer, 30(9):79–85,

September 1997.

[19] J. Hennessy. The Future of Systems Research. Computer, 32(8):27– 33, August 1999.

[20] C. Hristea, D. Lenoski, and J. Keen. Measuring memory hierarchy performance of cache-coherent

multiprocessors using micro bench- marks. In Proceedings of Supercomputing '97, 1997.

[21] http://www.ideasinternational.com/benchmark/sap/sap2tcs.html.

[22] http://www.ideasinternational.com/benchmark/tpc/tpch.html.

[23] R. E. Kessler. The Alpha 21264 Microprocessor. Micro, pages 24–36, March/April 1999.

[24] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara- chorloo, J. Chapin, D. Nakahira,

J. Baxter, M. Horowitz, A. Gupta,

M. Rosenblum, and J. Hennessy. The Stanford FLASH multipro- cessor. In Proceedings of the 21st

International Symposium on Com- puter Architecture, pages 302–313, April 1994.

[25] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.

IEEE Transactions on Computers, C-28(9):690–691, September 1979.

[26] A. Landin, E. Hagersten, and S. Haridi. Race-free interconnectionnet- works and multiprocessor

consistency. In Proceedingsof the 18th An- nual International Symposium on Computer Architecture,

pages 27– 30, May 1991.

[27] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scal- able Server. In Proceedings of

the 24rd International Symposium on Computer Architecture, June 1997.

[28] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. L. Hen- nessy. The directory-based cache

coherence protocol for the DASH multiprocessor. In Proceedings of the 17th Annual International

Sym- posium on Computer Architecture, pages 94–105, May 1990.

[29] D. J. Scales and K. Gharachorloo. Design and Performance of the Shasta Distributed Shared

Memory Protocol. In Proceedings of the 11th ACM International Conference on Supercomputing,

July 1997.

[30] D. J. Scales and K. Gharachorloo. Towards Transparent and Effi- cient Software Distributed Shared

Memory. In Proceedings of the 16th ACM Symposium on Operating Systems Principles, Oct. 1997.

[31] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A Low- Overhead Software-Only

Approach to Fine-Grain Shared Memory. In Proceedings of the Seventh International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 174–185, Oct.

1996.

[32] http://www.sgi.com/Products/PDF/2500.pdf.

[33] R. L. Sites and R. T. Witek, editors. Alpha Architecture Reference Manual. Digital Press, 1998.

Third Edition.

[34] Sun Microsystems. Sun Enterprise 10000 Server - Technical White Paper.

http://www.sun.com/servers/white-papers/E10000.pdf.

[35] D. Teodosiu, J. Baxter, K. Govil, J. Chapin, M. Rosenblum, and

M. Horowitz. Hardware fault containment in scalable shared-memory multiprocessors. In

Proceedings of the 24th Annual International Symposium on Computer Architecture, June 1997.

[36] http://www.tpc.org.

[37] http://www.tpc.org/new result/c-withdrawn-results.idc.

[38] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating system support for improving data

locality on CC-NUMA computer servers. In Proceedings of the Seventh International Conference

on Architectural Support for Programming Languagesand Operating Sys tems, pages 279–289,

October 1996.

http://www.ideasinternational.com/benchmark/sap/sap2tcs.html
http://www.ideasinternational.com/benchmark/tpc/tpch.html
http://www.sgi.com/Products/PDF/2500.pdf
http://www.sun.com/servers/white-papers/E10000.pdf
http://www.tpc.org/
http://www.tpc.org/new

