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Abstract— By taking advantage of the inherent interference at shared resources like the 

last-level cache (LLC) and coherence directories, cross-core cache attacks are able to gather 

sensitive data. Cross-core cache attacks will fail in the absence of any interference. To achieve 

this, we suggest a secretive cache hierarchy that uses cache-privatization on demand to 

ensure non-interference while having no storage overhead and only a slight increase in on-

chip traffic. The block is back-filled into the victim core's private cache following a cross-core 

eviction by an attacking core at the LLC. Cross-core conflict-based LLC and coherence 

directory-based assaults are lessened by our back-fill method. By contrasting it with current 

cache hierarchies, we demonstrate the seclusive cache hierarchy's effectiveness. 

 

I. INTRODUCTION 

Multi-level cache hierarchies are indispensable for high- performance computer architectures. 

They alleviate long la- tency main-memory requests by storing frequently used data near the 

processor. However, from the perspective of security, caches have become an active attack surface 

to extract critical information, including private keys, keyboard strokes, and websites visited. This 

attack is made possible by observing the time difference between a hit and a miss, which is often 

related to an application’s data access pattern. 

The advent of practical and robust cache attacks [1], [2] has created an essential need for the 

research community to look for active defenses. The primary focus is on Last-Level Caches 

(LLCs), as most practical attacks target LLCs shared between different cores [3]. These LLC 

attacks fall into two categories: 

(i) Conflict-based attacks [4], where the attacker tries to learn the victim’s access pattern by 

carefully orchestrating their data- accesses and observing conflicts, and (ii) Flush-based attacks [5], 

where the attacker tries to attack memory locations shared with the victim. 

Flush-based attacks are the easiest to mount since it relies on shared data. The attacker uses 

clflush [5] instruction to evict a set of data blocks from the cache and observe the victim’s accesses 

to those blocks. Although very practical, with broad applications in many prominent attacks such as 

Spectre [1], flush-based attacks have severe limitations as it depends on the clflush instruction. 

Many cloud platforms turn off clflush support, thus disabling this attack altogether [6]. On the other 

hand, conflict-based attacks are an important class of attacks that rely on the fundamental 

interference property of caches (i.e.) caches have a finite capacity and different addresses conflict 

for the same cache set. This property makes conflict-based attacks harder to mitigate, and we 

focus on defense for this class of attacks in our work. 

In many commodity processors, multi-level cache hierarchies are often inclusive, i.e., all lower 

levels of the cache hierarchy are a super-set of its higher levels. This inclusive property is 

maintained by the back-invalidation operation, which ensures that a data-eviction from a lower-

level cache (shared LLC) mandates an eviction of that data from all higher-level private caches. 

Thus, an attacker can efficiently orchestrate conflicts in the shared LLC, invalidating the 

sensitive data from all private caches and use that to extract sensitive information from the victim. 

A natural solution is to use non-inclusive caches that do not let shared cache accesses affect 

private cache states. However, recent research suggests that the cache coherence directories that 

hold information of all these non- inclusive private caches are inclusive, making directories the 
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new attack surface [6]. Besides, it is also possible to attack high-speed interconnects in non-

inclusive caches using Invali- date+Transfer [7]. Thus, conflict-based cache attacks are here to 

stay, requiring a fundamental solution to mitigate them. 

Existing efforts that try to seal these timing attacks in the LLC largely fall into three categories 

viz. cache partitioning [8]–[13], cache randomization [9], [14]–[16] and secure poli- cies for 

caches [17], [18]. However, existing efforts are limited and are often impractical to implement 

(high performance overhead, dependency on Instruction Set Architecture (ISA), runtime system, 

or Operating System (OS)). In this work, we propose a fundamental change to cache 

hierarchies that seal conflict-based cache and coherence directory attacks with minimal overheads. 

We propose seclusive caches, a secure cache hierarchy, that breaks the fundamental LLC 

interference between the attacker and the victim by privatizing the victim cache line upon an 

eviction. We make an important observation that practical conflict-based attacks are made possible 

due to cross-core evictions, where the attacker and the victim reside on different cores. The critical 

approach in our proposed hierarchy consists of a back-fill strategy, where any cross-core eviction 

of a cache line detected at LLC is filled back to the private L2 cache of the victim core. This 

simple back-fill breaks the interference between the attacker and the victim, rendering conflict-

based, coherence directory-based, and interconnect-based attacks in- valid. 

Prior solutions propose strict constraints on the cache hard- 

ware (e.g. partitioning) to break the existing side-channel, whereas we provide privatization on-

demand. To the best of our knowledge, this is the first paper that proposes an effective solution 

towards securing multiple attack surfaces like LLC, coherence directory, and interconnect. We 

experimentally show that a seclusive cache hierarchy seals conflict based LLC side- channel attacks 

and evaluate our proposal using Champsim [19], a micro-architectural simulator, to experimentally 

show the performance trade-offs over the existing multi-level cache hierarchies. 

In summary, our key contributions are as follows: 

• We propose seclusive caches, a secure multi-level cache hierarchy that prevents cross-core 

conflict-based LLC and coherence directory attacks. (Section III) 

• We show the efficacy of our proposed seclusive cache hierarchy by comparing its performance 

and security trade-offs with the currently existing multi-level cache hierarchies and other secure 

cache hierarchy proposals in the literature. (Section IV) 

II. BACKGROUND 

A. Multi-level Cache Hierarchies 

Due to the ever-growing memory wall, multi-level cache hierarchies were implemented to 

reduce the latency gap. How- ever, these hierarchies open up a novel design space in which they 

can be designed in many different ways depending on where and how data flows between these 

caches. Some of the existing hierarchies that dictate the flow are as follows: 

Inclusive cache hierarchy. As the name suggests, in inclu- sive cache hierarchy all the lower 

levels of the memory (L2, LLC, etc.) are a super-set of their higher levels. A miss in a higher 

level of the cache hierarchy permeates to its lower levels sequentially, until the block is found at 

any of the lower- levels of the cache hierarchy. In case it misses in all the levels, it is fetched from 

the main-memory and filled to all the cache levels to maintain inclusivity. In addition, this inclusive 

property mandates that whenever a block is evicted from any cache, the same block is evicted 

from all the higher levels of the cache-hierarchy, terned as back-invalidation. Inclusive caches are 

widely used because maintaining cache coherence is simple. However, the inclusive nature of the 

shared caches makes it a target for information leakage through side-channels. 

Exclusive cache hierarchy. In this hierarchy, unlike the inclusive counterpart, the lower levels of 

caches are not a super- set of their higher levels i.e. each cache level has a unique set of data, and 

hence, exclusive cache hierarchy has higher effective cache capacity. Upon a miss from all the 

cache levels in an exclusive hierarchy, the block is fetched and populated only to the private caches 

present in the highest-level. The cache block marches down the hierarchy (L2 & LLC) as and when 
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it is evicted from an upper-level cache. 

Non-Inclusive cache hierarchy. It is a hybrid of both inclusive and exclusive cache hierarchies 

(neither inclusive nor exclusive). In this hierarchy, whenever there is a cache miss from all the 

cache levels, the fetched block is populated to all the levels (similar to inclusive cache 

hierarchies). However,whenever there is an eviction in the lower-level cache, the higher levels are 

not back-invalidated (similar to exclusive cache hierarchies). Hence, non-inclusive caches preserve 

the best of both inclusive and exclusive cache hierarchies. 

B. Cache Timing Attacks 

Typically, in a cross-core timing channel attack, the attacker exploits shared structures like LLC, 

cache coherence directory, and shared interconnect to leak information. These attacks can be 

broadly classified into two buckets: 

Conflict based attacks. One of the popular conflict based attacks is PRIME+PROBE [4]. It 

works by forming an eviction set, where the attacker finds W cache lines that fills a W-way cache 

set. Upon victim’s access to that set, one of the attacker’s W cache lines is replaced. By measuring 

the access time for reaccessing these W cache lines, the attacker gets information about the 

victim’s accesses. These victim accesses are often a function of the data (e.g., accessing indexes 

based on a secret key in cryptographic algorithms), and hence these access informations can be 

used to steal critical data. 

Flush based attacks. These attacks work by sharing some part of memory space with the victim 

process (e.g., shared library such as glibc). The attacker flushes a shared block (often using 

clflush), and then waits for victim access. Then the attacker reloads the flushed block, and the 

access latency of that load reveals whether the victim has accessed that block or not. An example 

of such an attack is Flush+Reload [5]. 

Cross-core timing channel attacks at the LLC are more powerful than intra-core attacks at the 

private cache because LLC is shared between all the cores. Cross-core cache attacks are possible 

only at the LLC. For intra-core attacks, private caches are used because they are less susceptible to 

noise and give better accuracy. But, in a server environment, it is easier to get the attacker and 

victim process to share an LLC than a private cache. This paper focuses on preventing cross-core 

attacks because they require the least assumptions. 

C. Coherence Directory and Interconnect based Attack 

A non-inclusive cache hierarchy makes cross-core LLC based attacks difficult as there is no 

back-invalidation to private caches. For invalidating the blocks from private caches, the attacker 

exploits the cache coherence directory [6] because of its inclusive property. For a directory 

structure such as the one present in Skylake-X server [6], there is a traditional directory that tracks 

the cache lines present in the LLC and an extended directory that tracks the cache lines present in 

the private caches. 

This directory is inclusive in nature because it has to track all the blocks present in different 

levels of cache. The attacker creates contention in the extended directory (PRIME phase), which 

evicts the victim’s block from its private L2 cache to the LLC. If the victim re-accesses that 

block, then it causes another contention in the extended directory, evicting one of the attacker’s 

block to the LLC, which can be detected by the attacker during its PROBE phase, thereby leaking 

information. Thus, directories are the new inclusive attack surface in non- inclusive cache 

hierarchies. 
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Fig. 1. Eviction based attack on the Seclusive cache hierarchy. For 

simplicity, the L1 cache is not shown. 

 

Another cross-core attack [7] that works with non-inclusive cache hierarchy use high speed 

interconnect like AMD’s Hyper- Transport [20], Intel QuickPath [3] to leak secret information. The 

attack exploits the timing difference between accessing a block from a remote core’s private 

cache and DRAM. The attacker invalidates the blocks from the victim’s cache. Whenever the 

victim accesses that block, it gets filled in the victim’s private cache. When attacker accesses that 

block again, it gets less latency as compared to bringing that block from DRAM due to high speed 

interconnect. 

III. SECLUSIVE CACHE HIERARCHY: DESIGN PRINCIPLES The goal of a secure cache-

hierarchy is to fundamentally seal 

side-channels using a lightweight solution (in terms of cost and area) with minimal performance 

degradation. The impending challenges in achieving this goal are threefold: (i) the design 

complexity of the solution, (ii) performance vs. security trade- off, and (iii) implications to cache 

coherence and directory- based attacks. In this section, we discuss our proposal called the 

seclusive cache hierarchy in detail and explain how it overcomes the aforementioned design 

challenges. 

 

A. Working of Seclusive caches 

Consider a three-level cache hierarchy with a multi-core system, having a shared LLC and private 

L1 and L2 caches. Let’s assume there is a load request from a core for a cache block, which is not 

present in the entire cache hierarchy i.e. an LLC miss. The block is fetched from the DRAM and is 

filled into the LLC and requesting core’s private caches. If the target LLC set is full, an existing 

block in the set has to be evicted based on the cache replacement policy. Two types of evictions are 

possible in this scenario: (i). The evicting and the evicted cache blocks are from the same core, 

and (ii). The evicting and the evicted cache blocks are from different cores (cross- core eviction). 

In seclusive caches, the same core evictions are handled similar to a non-inclusive LLC. However, 

on a cross- core eviction, the evicted block is back-filled to the private cache (L2) of the core of 

evicted block. This back-fill strategy privatizes the cache block and breaks the existing side 

channel. The cache coherence directory and additionally the presence of owner-bits in some 

implementation, can be used to detect cross-core evictions and the core to back-fill.In case the 

evicted block is dirty, the dirty block is made clean by writing into the DRAM and subsequently 

the cleaned block is then back-filled to L2, with its dirty bit reset. In case the evicted block is 

shared between multiple cores, for instance with multi-threaded applications, the block gets back-

filled to one of the sharers. If other threads require that block, then it can easily be serviced by a 

high speed interconnect. If it is not needed by any thread, then it can be safely evicted by that core, 

incurring minimum overhead. 

B. Effect of Seclusive cache hierarchy on Cross-Core Conflict based Cache Attacks 

In an inclusive cache hierarchy, with a PRIME+PROBE attack, the attacker evicts victim’s 
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block at LLC by filling that cache set with its own data (PRIME phase). When the victim’s block 

is evicted from the LLC, it is also evicted from its private caches due to back-invalidation. When 

the victim accesses that block again, it evicts an attacker’s block at LLC, thereby leaking 

information to the attacker, during its PROBE phase. 

Figure 1 shows the effect of cross-core conflict based attack with seclusive cache hierarchy. ( 1 ) 

The attacker evicts victim’s block from the LLC. Since, this is a cross-core eviction ( 2 ), the block 

is back-filled to victim’s cache. When the victim accesses the block ( 3 ), it gets a hit in its 

private L2, and does not accesses the LLC. When the attacker re-accesses its block, it gets hits all 

the time ( 4 ), giving an impression to the attacker that victim has never accessed its block. The 

attack is thus mitigated because the attacker does not get the true latency information of whether 

the victim has accessed its block or not since there is no observable interference at the LLC. 

C. Effect of Seclusive cache hierarchy on coherence directory and Interconnect based attacks 

In non-inclusive LLCs there is no back-invalidation oper- ation, making conflict based cache 

attacks harder to mount. However, as discussed in section II-C the inclusive coherence directory 

becomes the new attack surface. 

In a seclusive cache hierarchy, whenever the attacker tries to evict the victim’s block using 

cross-core eviction in the extended directory, it back-fills the block to the victim’s private cache, 

and we track that block in the traditional directory. When the victim re-accesses that block, it gets 

hit in its private L2, 

TABLE I 

PARAMETERS  OF  THE  SIMULATED  SYSTEM. 
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TABLE II 

No victim access Victim access 

P
ro

b
a
b
il
it

y
 

Processor 2/4/8 cores, 4 GHz, out of order 

L1D, L1I 48 KB (12 way), 32 KB (8 way), LRU 

Cache line size 64 B in L1, L2 and L3 

DRAM controller 1/2/4  controllers  for  2/4/8-cores,   64 
read/write queues, FR-FCFS 

DRAM 3200 MHz (11-11-11) 
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CACHE  HIERARCHY  CONFIGURATION 

Fig. 2. Probability distribution of attacker probe time (in cycles) in accessing the 

eviction set. 

TABLE III 

REPRESENTATI

VE  

WORKLOAD  

MIX  TYPES. 

 

Micro-Architecture L2 Size LLC Size 

Intel Ice-Lake [24] 512 KB (8 way) 2 MB (16 way) 

Intel Broadwell-EP [25] 256 KB (8 way) 2.5 MB (20 way) 

Intel Cascade Lake-SP [25] 1024 KB (16 way) 1.375 MB (11 way) 

 

Mixes Description 

Mix 1 Same thrashing benchmark on all cores 

Mix 2 - Mix 4 Different thrashing benchmark on all cores 

Mix 5 - Mix 10 Mix of different fitting and thrashing benchmark 

Mix 11 Same fitting benchmark on all cores 

Mix 12 - Mix 14 Different fitting benchmark on all cores 
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which breaks the reverse interference, which was the cause for the eviction of attacker’s block. 

This breaks the side channel, as now attacker’s accesses always result in a hit irrespective of the 

victim’s accesses. 

Interconnect based attacks work by evicting the victim’s block from private caches and then 

measuring timing difference between remote core access and DRAM access, as mentioned in 

section II-C. In a seclusive cache hierarchy, when the attacker evicts victim’s block using cross-core 

eviction, it back-fills the block to victim’s private cache. Now, irrespective of the victim’s accesses, 

the attacker always gets an access latency similar to the latency of remote core’s access latency, 

breaking the side channel. 

IV. EVALUATION 

Design Methodology: We evaluate seclusive cache hierar- chy
1
on a cycle-accurate, trace-based 

micro-architectural simu- lator, ChampSim [19], that models an out of order processor with multi-

level caches and DRAM. It has been recently used for evaluating LLC replacement policies at 

Cache Replacement Championship (CRC-2) [21], ISCA’17, data prefetchers at Third Data 

Prefetching Championship (DPC-3) [22], ISCA’19 and instruction prefetchers at First Instruction 

Prefetching Championship (IPC-1) [23], ISCA’20. The parameters for the simulated system are 

given in Table I. We model different L2- LLC cache sizes based on different Intel micro-

architectures given in Table II. 32KB of L1I and 48KB of L1D is constant in all three systems. 

A. Security Analysis 

We analyse the security of different cache hierarchies with cross-core eviction based cache 

attacks. PRIME + PROBE attack, which has minimum assumptions, is chosen for our analysis. We 

run GnuPG 1.4.13 [26] as our victim application which uses a private key to decrypt a message. In 

ChampSim, we pin the victim application to one core. Victim accesses the secret key dependent 

critical LLC sets containing square and multiply functions used in decrypting the message. The 

attacker is running on another core, implementing the PRIME+PROBE attack on these critical LLC 

sets to recover the victim’s private key. 

1For the benefit of the community, we will share the source code of seclusive cache hierarchy. 

Figure 2 show the probability distribution of attacker probe cycles when the victim accesses and 

does not access that critical cache set. For an inclusive cache hierarchy, when the victim does not 

access the critical LLC set, attacker observes a probe time of around 700 to 1100 cycles, whereas 

when victim accessed that critical LLC set, the probe time ranges from 700 to 2300 cycles, with 

80% of probe time above 1100 cycles. This is because the attacker is able to evict victim’s block 

due to back invalidation. When victim reloads that block, the attacker gets an LLC miss for some 

of its blocks during its PROBE phase. Setting a threshold of 1100 cycles helps the attacker in 

differentiating between these accesses, thereby leaking the secret. 

For the seclusive cache hierarchy, the attacker is not able to differentiate whether a victim has 

accessed a critical set or not. The probe time in both these cases is between 700 to 1100 cycles. 

This is because, upon a cross-core eviction from the attacker, the seclusive cache hierarchy back-

fills the victim’s block to the victim’s private cache. When victim accesses that block, it gets hit 

in its private cache, and no effect on the LLC (victim does not evict the attacker’s blocks). 

Hence, upon an attacker’s PROBE on that LLC set, it gets all LLC hits. No threshold can be 

set to differentiate between the two cases effectively, thereby preventing the attack altogether. We 

observe similar latency distribution for cache coherence directory-based attacks with seclusive 

cache hierarchy. 

 

B. Performance Analysis 

The effect on performance with the use of seclusive cache hierarchy is compared with inclusive 

and non-inclusive cache hierarchies for 2, 4, and 8 core systems. Workloads used for simulation 

are SPEC CPU 2017 benchmarks [22], [27] and multi-threaded Client/Server traces from IPC-1 

[23]. The traces are divided into LLC fitting and LLC thrashing applications, according to LLC 
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Misses per Kilo Instructions (MPKI). Bench- marks having LLC MPKI greater than five are 

considered as thrashing applications and benchmark having LLC MPKI less than one are 

considered as fitting applications. 
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Fig. 3. Performance improvement in SPEC 2017 mixes in an 8-core system with 

different L2-LLC cache sizes.(higher the better). 
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Fig. 4. Performance improvement in multi-threaded server traces in an 8-core system with 

different L2-LLC cache sizes.(higher the better). 
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Fig. 6. Bandwidth requirement in multi-threaded server traces for an 8-core system with 

different L2-LLC cache sizes.(lower the better). 

 

Evaluation is done on mixing these different benchmarks for different core counts. 14 mixes 

are generated with dif- ferent properties. Table III describes the representative mixes used for 

evaluating performance of different cache hierarchies. Weighted speedup [28] is used as a 

metric for evaluating 

performance in multi-core simulations.   WeightedSpeedup = 

C. On-Chip Traffic Analysis 

 

 

Modern processors have a banked LLC to improve band- width. Each bank is associated with a 

core, and all are con- nected to high speed interconnect. For an 8 core system, the 

ΣN−1 IPCtogether 

 
  

where 

together 

is the IPC of core 

 
LLC is 8 way banked and connected to an interconnect running 

when it is running with other N-1 application. IPC
alone

 is the 

IPC of core i when it is running alone in an N core system. 

 

Figure 3 and Figure 4 show the performance (in terms of weighted speedup) of non-inclusive and 

seclusive normalized to inclusive cache hierarchy for SPEC and multi-threaded server traces. Figure 

3 and Figure 4 show that for seclusive cache hierarchy, there is no performance degradation as 

compared to the non-inclusive cache hierarchy. Due to space limitations, we are not showing the 

performance of seclusive directories, but it performs similarly to the seclusive cache hierarchy. 

at 4 GHz with a data bus of 256bits. The bandwidth between 

LLC and interconnect comes out to be 1 TB/s (256 bits per 

cycle cycles per second   LLC bank count). Similarly, for 2 core and 4 core systems, the 
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bandwidth is 256 GB/s and 512 GB/s, respectively. 

Figure 5 and Figure 6 show the additional bandwidth re- quired by seclusive cache hierarchy 

normalized to an inclusive cache hierarchy for SPEC and multi-threaded server traces. For an 8 

core system, the effective bandwidth required with seclusive cache hierarchy is less than 5% for 

most of the cases. In general, a thrashing application demands more bandwidth as compared to a 

fitting application. 

D. Storage Overhead Analysis 

Seclusive cache hierarchy has zero hardware storage over- head as it utilizes the coherence 

directory already present in modern multi-core systems. These directories store the informa- tion 

about which core is the owner of each cache block. During a cross-core eviction at the LLC, the 

back-fill mechanism uses this information to fill the victim cache block back to the owner core’s 

private cache. 

E. Comparison with Relaxed Inclusion Cache 

Relaxed Inclusion Cache (RIC) [18] was proposed as a secure cache hierarchy against LLC 

side-channel attacks, but it does not mitigate cross-core coherence directory and inter- connect 

attacks. It works by relaxing the inclusive property of cache-hierarchy to prevent back-invalidation 

of private caches. It requires OS support to identify read-only and thread private pages and 

requires a bit per cache block to track these relaxed blocks, which increase the overhead 

tremendously for large LLCs. It also requires flushing of cache blocks when a thread is migrated 

or a page is swapped out, incurring a delay in the critical path. Our proposal does not require 

any additional storage or support from OS, runtime system, ISA, or compiler. The high-

performance numbers reported in RIC are because RIC has used a small LLC (2MB) for large 

core count (8 cores), whereas the industry standard is 2MB/per core. The performance of RIC is 

below the non-inclusive cache hierarchy, and it decreases more when we increase LLC size with 

respect to the L2 cache size. This observation is also made in one of the recent works [29]. In 

comparison, the seclusive cache hierarchy performs on the same scale and sometimes better than 

non- inclusive cache hierarchy, and does not degrade performance 

with different L2:LLC caches. 

 

TABLE IV 

CROSS-CORE  ATTACKS  WITH  DIFFERENT  CACHE  HIERARCHIES. 

 

Cache 

Hierarchy 

Eviction 

based 

LLC 

Attacks 

Coherence Directory 

and Inter- 

connect Attacks 

Inclusive Possible Possible 

Non-

Inclusive 

Not 

Possible 

Possible 

Relaxed 

Inclusion 

Not 

Possible 

Possible 

Seclusive Not 

Possible 

Not Possible 

 

Table IV summarizes whether cross-core eviction based LLC and coherence directory attacks are 

possible with different cache hierarchies. 

V. RELATED WORK 

Solutions like Cache Partitioning [8]–[13] separate the vic- tim’s cache partition from the 

attacker’s cache partition by either partitioning the way, line, or set, or locking the line with a 

protected bit. This enables non-interference between the two processes and breaks the side-
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channel. However, the effective cache capacity is reduced, and it may even degrade the 

performance. In contrast, seclusive cache hierarchy break the side-channel without reducing the 

effective cache-capacity or impacting performance. 

Randomization based solutions [9], [14]–[16] achieve non- interference by randomizing the 

address space by either having 

permutation tables or fetching/evicting random lines or by encrypting the address and changing 

the key periodically. However, having permutation tables are not practical in a large LLC cache, 

and the encrypted caches protect from only conflict based attacks and not other attacks like 

coherence directory or interconnect based attacks. In contrast, we propose a very practical solution 

that provides protection in different attack vectors like LLC, coherence directory, and 

interconnect. 

Secure hierarchy aware replacement policy (SHARP) [17] is a proposal for mitigating cache-

based attacks. It does so by changing the replacement policy to give priority to intra-core eviction 

and then if no choice is left, it goes for random cross- core eviction. The SHARP policy has a lot 

of loopholes and is not secure, as discussed in recent work [30]. 

VI. CONCLUSION 

In this paper, we introduced the Seclusive cache hierarchy, a low overhead solution for 

mitigating cross-core last-level cache and coherence directory-based attacks. The performance is at 

par with non-inclusive cache hierarchy. The security guarantees are stronger than both inclusive 

and non-inclusive cache hierarchy as it prevents not only cross-core LLC attacks but also 

coherence directory, and interconnect-based attacks. 
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