
Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 290 Copyright @ 2020 Authors

CROSS-CORE CACHE AND COHERENCE DIRECTORY ATTACKS ARE REDUCED BY

USING A SECRET CACHE HIERARCHY

Mr.Gyana Prakash Bhuyan
1
*, Mrs.Pragyan Paramita Panda

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

 gyanprakash@thenalanda.com*, pragyanparamita@thenalanda.com

Abstract— By taking advantage of the inherent interference at shared resources like the

last-level cache (LLC) and coherence directories, cross-core cache attacks are able to gather

sensitive data. Cross-core cache attacks will fail in the absence of any interference. To achieve

this, we suggest a secretive cache hierarchy that uses cache-privatization on demand to

ensure non-interference while having no storage overhead and only a slight increase in on-

chip traffic. The block is back-filled into the victim core's private cache following a cross-core

eviction by an attacking core at the LLC. Cross-core conflict-based LLC and coherence

directory-based assaults are lessened by our back-fill method. By contrasting it with current

cache hierarchies, we demonstrate the seclusive cache hierarchy's effectiveness.

I. INTRODUCTION

Multi-level cache hierarchies are indispensable for high- performance computer architectures.

They alleviate long la- tency main-memory requests by storing frequently used data near the

processor. However, from the perspective of security, caches have become an active attack surface

to extract critical information, including private keys, keyboard strokes, and websites visited. This

attack is made possible by observing the time difference between a hit and a miss, which is often

related to an application’s data access pattern.

The advent of practical and robust cache attacks [1], [2] has created an essential need for the

research community to look for active defenses. The primary focus is on Last-Level Caches

(LLCs), as most practical attacks target LLCs shared between different cores [3]. These LLC

attacks fall into two categories:

(i) Conflict-based attacks [4], where the attacker tries to learn the victim’s access pattern by

carefully orchestrating their data- accesses and observing conflicts, and (ii) Flush-based attacks [5],

where the attacker tries to attack memory locations shared with the victim.

Flush-based attacks are the easiest to mount since it relies on shared data. The attacker uses

clflush [5] instruction to evict a set of data blocks from the cache and observe the victim’s accesses

to those blocks. Although very practical, with broad applications in many prominent attacks such as

Spectre [1], flush-based attacks have severe limitations as it depends on the clflush instruction.

Many cloud platforms turn off clflush support, thus disabling this attack altogether [6]. On the other

hand, conflict-based attacks are an important class of attacks that rely on the fundamental

interference property of caches (i.e.) caches have a finite capacity and different addresses conflict

for the same cache set. This property makes conflict-based attacks harder to mitigate, and we

focus on defense for this class of attacks in our work.

In many commodity processors, multi-level cache hierarchies are often inclusive, i.e., all lower

levels of the cache hierarchy are a super-set of its higher levels. This inclusive property is

maintained by the back-invalidation operation, which ensures that a data-eviction from a lower-

level cache (shared LLC) mandates an eviction of that data from all higher-level private caches.

Thus, an attacker can efficiently orchestrate conflicts in the shared LLC, invalidating the

sensitive data from all private caches and use that to extract sensitive information from the victim.

A natural solution is to use non-inclusive caches that do not let shared cache accesses affect

private cache states. However, recent research suggests that the cache coherence directories that

hold information of all these non- inclusive private caches are inclusive, making directories the

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 291 Copyright @ 2020 Authors

new attack surface [6]. Besides, it is also possible to attack high-speed interconnects in non-

inclusive caches using Invali- date+Transfer [7]. Thus, conflict-based cache attacks are here to

stay, requiring a fundamental solution to mitigate them.

Existing efforts that try to seal these timing attacks in the LLC largely fall into three categories

viz. cache partitioning [8]–[13], cache randomization [9], [14]–[16] and secure poli- cies for

caches [17], [18]. However, existing efforts are limited and are often impractical to implement

(high performance overhead, dependency on Instruction Set Architecture (ISA), runtime system,

or Operating System (OS)). In this work, we propose a fundamental change to cache

hierarchies that seal conflict-based cache and coherence directory attacks with minimal overheads.

We propose seclusive caches, a secure cache hierarchy, that breaks the fundamental LLC

interference between the attacker and the victim by privatizing the victim cache line upon an

eviction. We make an important observation that practical conflict-based attacks are made possible

due to cross-core evictions, where the attacker and the victim reside on different cores. The critical

approach in our proposed hierarchy consists of a back-fill strategy, where any cross-core eviction

of a cache line detected at LLC is filled back to the private L2 cache of the victim core. This

simple back-fill breaks the interference between the attacker and the victim, rendering conflict-

based, coherence directory-based, and interconnect-based attacks in- valid.

Prior solutions propose strict constraints on the cache hard-

ware (e.g. partitioning) to break the existing side-channel, whereas we provide privatization on-

demand. To the best of our knowledge, this is the first paper that proposes an effective solution

towards securing multiple attack surfaces like LLC, coherence directory, and interconnect. We

experimentally show that a seclusive cache hierarchy seals conflict based LLC side- channel attacks

and evaluate our proposal using Champsim [19], a micro-architectural simulator, to experimentally

show the performance trade-offs over the existing multi-level cache hierarchies.

In summary, our key contributions are as follows:

• We propose seclusive caches, a secure multi-level cache hierarchy that prevents cross-core

conflict-based LLC and coherence directory attacks. (Section III)

• We show the efficacy of our proposed seclusive cache hierarchy by comparing its performance

and security trade-offs with the currently existing multi-level cache hierarchies and other secure

cache hierarchy proposals in the literature. (Section IV)

II. BACKGROUND

A. Multi-level Cache Hierarchies

Due to the ever-growing memory wall, multi-level cache hierarchies were implemented to

reduce the latency gap. How- ever, these hierarchies open up a novel design space in which they

can be designed in many different ways depending on where and how data flows between these

caches. Some of the existing hierarchies that dictate the flow are as follows:

Inclusive cache hierarchy. As the name suggests, in inclu- sive cache hierarchy all the lower

levels of the memory (L2, LLC, etc.) are a super-set of their higher levels. A miss in a higher

level of the cache hierarchy permeates to its lower levels sequentially, until the block is found at

any of the lower- levels of the cache hierarchy. In case it misses in all the levels, it is fetched from

the main-memory and filled to all the cache levels to maintain inclusivity. In addition, this inclusive

property mandates that whenever a block is evicted from any cache, the same block is evicted

from all the higher levels of the cache-hierarchy, terned as back-invalidation. Inclusive caches are

widely used because maintaining cache coherence is simple. However, the inclusive nature of the

shared caches makes it a target for information leakage through side-channels.

Exclusive cache hierarchy. In this hierarchy, unlike the inclusive counterpart, the lower levels of

caches are not a super- set of their higher levels i.e. each cache level has a unique set of data, and

hence, exclusive cache hierarchy has higher effective cache capacity. Upon a miss from all the

cache levels in an exclusive hierarchy, the block is fetched and populated only to the private caches

present in the highest-level. The cache block marches down the hierarchy (L2 & LLC) as and when

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 292 Copyright @ 2020 Authors

it is evicted from an upper-level cache.

Non-Inclusive cache hierarchy. It is a hybrid of both inclusive and exclusive cache hierarchies

(neither inclusive nor exclusive). In this hierarchy, whenever there is a cache miss from all the

cache levels, the fetched block is populated to all the levels (similar to inclusive cache

hierarchies). However,whenever there is an eviction in the lower-level cache, the higher levels are

not back-invalidated (similar to exclusive cache hierarchies). Hence, non-inclusive caches preserve

the best of both inclusive and exclusive cache hierarchies.

B. Cache Timing Attacks

Typically, in a cross-core timing channel attack, the attacker exploits shared structures like LLC,

cache coherence directory, and shared interconnect to leak information. These attacks can be

broadly classified into two buckets:

Conflict based attacks. One of the popular conflict based attacks is PRIME+PROBE [4]. It

works by forming an eviction set, where the attacker finds W cache lines that fills a W-way cache

set. Upon victim’s access to that set, one of the attacker’s W cache lines is replaced. By measuring

the access time for reaccessing these W cache lines, the attacker gets information about the

victim’s accesses. These victim accesses are often a function of the data (e.g., accessing indexes

based on a secret key in cryptographic algorithms), and hence these access informations can be

used to steal critical data.

Flush based attacks. These attacks work by sharing some part of memory space with the victim

process (e.g., shared library such as glibc). The attacker flushes a shared block (often using

clflush), and then waits for victim access. Then the attacker reloads the flushed block, and the

access latency of that load reveals whether the victim has accessed that block or not. An example

of such an attack is Flush+Reload [5].

Cross-core timing channel attacks at the LLC are more powerful than intra-core attacks at the

private cache because LLC is shared between all the cores. Cross-core cache attacks are possible

only at the LLC. For intra-core attacks, private caches are used because they are less susceptible to

noise and give better accuracy. But, in a server environment, it is easier to get the attacker and

victim process to share an LLC than a private cache. This paper focuses on preventing cross-core

attacks because they require the least assumptions.

C. Coherence Directory and Interconnect based Attack

A non-inclusive cache hierarchy makes cross-core LLC based attacks difficult as there is no

back-invalidation to private caches. For invalidating the blocks from private caches, the attacker

exploits the cache coherence directory [6] because of its inclusive property. For a directory

structure such as the one present in Skylake-X server [6], there is a traditional directory that tracks

the cache lines present in the LLC and an extended directory that tracks the cache lines present in

the private caches.

This directory is inclusive in nature because it has to track all the blocks present in different

levels of cache. The attacker creates contention in the extended directory (PRIME phase), which

evicts the victim’s block from its private L2 cache to the LLC. If the victim re-accesses that

block, then it causes another contention in the extended directory, evicting one of the attacker’s

block to the LLC, which can be detected by the attacker during its PROBE phase, thereby leaking

information. Thus, directories are the new inclusive attack surface in non- inclusive cache

hierarchies.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 293 Copyright @ 2020 Authors

Fig. 1. Eviction based attack on the Seclusive cache hierarchy. For

simplicity, the L1 cache is not shown.

Another cross-core attack [7] that works with non-inclusive cache hierarchy use high speed

interconnect like AMD’s Hyper- Transport [20], Intel QuickPath [3] to leak secret information. The

attack exploits the timing difference between accessing a block from a remote core’s private

cache and DRAM. The attacker invalidates the blocks from the victim’s cache. Whenever the

victim accesses that block, it gets filled in the victim’s private cache. When attacker accesses that

block again, it gets less latency as compared to bringing that block from DRAM due to high speed

interconnect.

III. SECLUSIVE CACHE HIERARCHY: DESIGN PRINCIPLES The goal of a secure cache-

hierarchy is to fundamentally seal

side-channels using a lightweight solution (in terms of cost and area) with minimal performance

degradation. The impending challenges in achieving this goal are threefold: (i) the design

complexity of the solution, (ii) performance vs. security trade- off, and (iii) implications to cache

coherence and directory- based attacks. In this section, we discuss our proposal called the

seclusive cache hierarchy in detail and explain how it overcomes the aforementioned design

challenges.

A. Working of Seclusive caches

Consider a three-level cache hierarchy with a multi-core system, having a shared LLC and private

L1 and L2 caches. Let’s assume there is a load request from a core for a cache block, which is not

present in the entire cache hierarchy i.e. an LLC miss. The block is fetched from the DRAM and is

filled into the LLC and requesting core’s private caches. If the target LLC set is full, an existing

block in the set has to be evicted based on the cache replacement policy. Two types of evictions are

possible in this scenario: (i). The evicting and the evicted cache blocks are from the same core,

and (ii). The evicting and the evicted cache blocks are from different cores (cross- core eviction).

In seclusive caches, the same core evictions are handled similar to a non-inclusive LLC. However,

on a cross- core eviction, the evicted block is back-filled to the private cache (L2) of the core of

evicted block. This back-fill strategy privatizes the cache block and breaks the existing side

channel. The cache coherence directory and additionally the presence of owner-bits in some

implementation, can be used to detect cross-core evictions and the core to back-fill.In case the

evicted block is dirty, the dirty block is made clean by writing into the DRAM and subsequently

the cleaned block is then back-filled to L2, with its dirty bit reset. In case the evicted block is

shared between multiple cores, for instance with multi-threaded applications, the block gets back-

filled to one of the sharers. If other threads require that block, then it can easily be serviced by a

high speed interconnect. If it is not needed by any thread, then it can be safely evicted by that core,

incurring minimum overhead.

B. Effect of Seclusive cache hierarchy on Cross-Core Conflict based Cache Attacks

In an inclusive cache hierarchy, with a PRIME+PROBE attack, the attacker evicts victim’s

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 294 Copyright @ 2020 Authors

Ⓧ

Ⓧ

Ⓧ

Ⓧ

block at LLC by filling that cache set with its own data (PRIME phase). When the victim’s block

is evicted from the LLC, it is also evicted from its private caches due to back-invalidation. When

the victim accesses that block again, it evicts an attacker’s block at LLC, thereby leaking

information to the attacker, during its PROBE phase.

Figure 1 shows the effect of cross-core conflict based attack with seclusive cache hierarchy. (1)

The attacker evicts victim’s block from the LLC. Since, this is a cross-core eviction (2), the block

is back-filled to victim’s cache. When the victim accesses the block (3), it gets a hit in its

private L2, and does not accesses the LLC. When the attacker re-accesses its block, it gets hits all

the time (4), giving an impression to the attacker that victim has never accessed its block. The

attack is thus mitigated because the attacker does not get the true latency information of whether

the victim has accessed its block or not since there is no observable interference at the LLC.

C. Effect of Seclusive cache hierarchy on coherence directory and Interconnect based attacks

In non-inclusive LLCs there is no back-invalidation oper- ation, making conflict based cache

attacks harder to mount. However, as discussed in section II-C the inclusive coherence directory

becomes the new attack surface.

In a seclusive cache hierarchy, whenever the attacker tries to evict the victim’s block using

cross-core eviction in the extended directory, it back-fills the block to the victim’s private cache,

and we track that block in the traditional directory. When the victim re-accesses that block, it gets

hit in its private L2,

TABLE I

PARAMETERS OF THE SIMULATED SYSTEM.

1

0.8

0.5

0.2

0

700

1100 1500 1900 2300

Access Latency

(a) Inclusive

700 1100 1500 1900 2300

Access Latency

(b) Seclusive

TABLE II

No victim access Victim access

P
ro

b
a
b
il
it

y

Processor 2/4/8 cores, 4 GHz, out of order

L1D, L1I 48 KB (12 way), 32 KB (8 way), LRU

Cache line size 64 B in L1, L2 and L3

DRAM controller 1/2/4 controllers for 2/4/8-cores, 64
read/write queues, FR-FCFS

DRAM 3200 MHz (11-11-11)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 295 Copyright @ 2020 Authors

CACHE HIERARCHY CONFIGURATION

Fig. 2. Probability distribution of attacker probe time (in cycles) in accessing the

eviction set.

TABLE III

REPRESENTATI

VE

WORKLOAD

MIX TYPES.

Micro-Architecture L2 Size LLC Size

Intel Ice-Lake [24] 512 KB (8 way) 2 MB (16 way)

Intel Broadwell-EP [25] 256 KB (8 way) 2.5 MB (20 way)

Intel Cascade Lake-SP [25] 1024 KB (16 way) 1.375 MB (11 way)

Mixes Description

Mix 1 Same thrashing benchmark on all cores

Mix 2 - Mix 4 Different thrashing benchmark on all cores

Mix 5 - Mix 10 Mix of different fitting and thrashing benchmark

Mix 11 Same fitting benchmark on all cores

Mix 12 - Mix 14 Different fitting benchmark on all cores

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 296 Copyright @ 2020 Authors

which breaks the reverse interference, which was the cause for the eviction of attacker’s block.

This breaks the side channel, as now attacker’s accesses always result in a hit irrespective of the

victim’s accesses.

Interconnect based attacks work by evicting the victim’s block from private caches and then

measuring timing difference between remote core access and DRAM access, as mentioned in

section II-C. In a seclusive cache hierarchy, when the attacker evicts victim’s block using cross-core

eviction, it back-fills the block to victim’s private cache. Now, irrespective of the victim’s accesses,

the attacker always gets an access latency similar to the latency of remote core’s access latency,

breaking the side channel.

IV. EVALUATION

Design Methodology: We evaluate seclusive cache hierar- chy
1
on a cycle-accurate, trace-based

micro-architectural simu- lator, ChampSim [19], that models an out of order processor with multi-

level caches and DRAM. It has been recently used for evaluating LLC replacement policies at

Cache Replacement Championship (CRC-2) [21], ISCA’17, data prefetchers at Third Data

Prefetching Championship (DPC-3) [22], ISCA’19 and instruction prefetchers at First Instruction

Prefetching Championship (IPC-1) [23], ISCA’20. The parameters for the simulated system are

given in Table I. We model different L2- LLC cache sizes based on different Intel micro-

architectures given in Table II. 32KB of L1I and 48KB of L1D is constant in all three systems.

A. Security Analysis

We analyse the security of different cache hierarchies with cross-core eviction based cache

attacks. PRIME + PROBE attack, which has minimum assumptions, is chosen for our analysis. We

run GnuPG 1.4.13 [26] as our victim application which uses a private key to decrypt a message. In

ChampSim, we pin the victim application to one core. Victim accesses the secret key dependent

critical LLC sets containing square and multiply functions used in decrypting the message. The

attacker is running on another core, implementing the PRIME+PROBE attack on these critical LLC

sets to recover the victim’s private key.

1For the benefit of the community, we will share the source code of seclusive cache hierarchy.

Figure 2 show the probability distribution of attacker probe cycles when the victim accesses and

does not access that critical cache set. For an inclusive cache hierarchy, when the victim does not

access the critical LLC set, attacker observes a probe time of around 700 to 1100 cycles, whereas

when victim accessed that critical LLC set, the probe time ranges from 700 to 2300 cycles, with

80% of probe time above 1100 cycles. This is because the attacker is able to evict victim’s block

due to back invalidation. When victim reloads that block, the attacker gets an LLC miss for some

of its blocks during its PROBE phase. Setting a threshold of 1100 cycles helps the attacker in

differentiating between these accesses, thereby leaking the secret.

For the seclusive cache hierarchy, the attacker is not able to differentiate whether a victim has

accessed a critical set or not. The probe time in both these cases is between 700 to 1100 cycles.

This is because, upon a cross-core eviction from the attacker, the seclusive cache hierarchy back-

fills the victim’s block to the victim’s private cache. When victim accesses that block, it gets hit

in its private cache, and no effect on the LLC (victim does not evict the attacker’s blocks).

Hence, upon an attacker’s PROBE on that LLC set, it gets all LLC hits. No threshold can be

set to differentiate between the two cases effectively, thereby preventing the attack altogether. We

observe similar latency distribution for cache coherence directory-based attacks with seclusive

cache hierarchy.

B. Performance Analysis

The effect on performance with the use of seclusive cache hierarchy is compared with inclusive

and non-inclusive cache hierarchies for 2, 4, and 8 core systems. Workloads used for simulation

are SPEC CPU 2017 benchmarks [22], [27] and multi-threaded Client/Server traces from IPC-1

[23]. The traces are divided into LLC fitting and LLC thrashing applications, according to LLC

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 297 Copyright @ 2020 Authors

Misses per Kilo Instructions (MPKI). Bench- marks having LLC MPKI greater than five are

considered as thrashing applications and benchmark having LLC MPKI less than one are

considered as fitting applications.

1.20

1.10

1

1.20

1.10

1

Non Inclusive Seclusive

1.20

1.10

1

(a) 512KB - 2MB

(b) 256KB - 2.5MB

(c) 1MB - 1.375MB

Fig. 3. Performance improvement in SPEC 2017 mixes in an 8-core system with

different L2-LLC cache sizes.(higher the better).

1.20

1.10

1

1.20

1.10

1

Non Inclusive Seclusive

1.20

1.10

1

(a) 512KB - 2MB

(b) 256KB - 2.5MB

(c) 1MB - 1.375MB

S
p
e
e
d
u
p
 o

v
e
r

In
c
lu

s
iv

e

S
p
e
e
d
u
p
 o

v
e
r

In
c
lu

s
iv

e

tr
a
c
e
 1

tr
a
c
e
 2

tr
a
c
e
 3

tr
a
c
e
 4

tr
a
c
e
 5

tr
a
c
e
 6

tr
a
c
e
 7

tr
a
c
e
 8

tr
a
c
e
 9

tr
a
c
e
 1

0

tr
a
c
e
 1

1

tr
a
c
e
 1

2

tr
a
c
e
 1

3

tr
a
c
e
 1

4

g
e
o
m

e
a
n

m
ix

 1

m
ix

 2

m
ix

 3

m
ix

 4

m
ix

 5

m
ix

 6

m
ix

 7

m
ix

 8

m
ix

 9

m
ix

 1
0

m
ix

 1
1

m
ix

 1
2

m
ix

 1
3

m
ix

 1
4

g
e
o
m

e
a
n

tr
a
c
e
 1

tr
a
c
e
 2

tr
a
c
e
 3

tr
a
c
e
 4

tr
a
c
e
 5

tr
a
c
e
 6

tr
a
c
e
 7

tr
a
c
e
 8

tr
a
c
e
 9

tr
a
c
e
 1

0

tr
a
c
e
 1

1

tr
a
c
e
 1

2

tr
a
c
e
 1

3

tr
a
c
e
 1

4

g
e
o
m

e
a
n

m
ix

 1

m
ix

 2

m
ix

 3

m
ix

 4

m
ix

 5

m
ix

 6

m
ix

 7

m
ix

 8

m
ix

 9

m
ix

 1
0

m
ix

 1
1

m
ix

 1
2

m
ix

 1
3

m
ix

 1
4

g
e
o
m

e
a
n

tr
a
c
e
 1

tr
a
c
e
 2

tr
a
c
e
 3

tr
a
c
e
 4

tr
a
c
e
 5

tr
a
c
e
 6

tr
a
c
e
 7

tr
a
c
e
 8

tr
a
c
e
 9

tr
a
c
e
 1

0

tr
a
c
e
 1

1

tr
a
c
e
 1

2

tr
a
c
e
 1

3

tr
a
c
e
 1

4

g
e
o
m

e
a
n

m
ix

 1

m
ix

 2

m
ix

 3

m
ix

 4

m
ix

 5

m
ix

 6

m
ix

 7

m
ix

 8

m
ix

 9

m
ix

 1
0

m
ix

 1
1

m
ix

 1
2

m
ix

 1
3

m
ix

 1
4

g
e
o
m

e
a
n

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 298 Copyright @ 2020 Authors

× ×

i
IPCalone

IPCi

Fig. 4. Performance improvement in multi-threaded server traces in an 8-core system with

different L2-LLC cache sizes.(higher the better).

1.11.11

1 1 1a) 512KB - 2MB

(b) 256KB - 2.5MB

(c) 1MB - 1.375MB

Fig. 5. Bandwidth requirement in SPEC traces in an 8-core system with

different L2-LLC cache sizes.(lower the better).1.1

1.1

 1 1

(a) 512KB - 2MB

(b) 256KB - 2.5MB

(c) 1MB - 1.375MB

Fig. 6. Bandwidth requirement in multi-threaded server traces for an 8-core system with

different L2-LLC cache sizes.(lower the better).

Evaluation is done on mixing these different benchmarks for different core counts. 14 mixes

are generated with dif- ferent properties. Table III describes the representative mixes used for

evaluating performance of different cache hierarchies. Weighted speedup [28] is used as a

metric for evaluating

performance in multi-core simulations. WeightedSpeedup =

C. On-Chip Traffic Analysis

Modern processors have a banked LLC to improve band- width. Each bank is associated with a

core, and all are con- nected to high speed interconnect. For an 8 core system, the

ΣN−1 IPCtogether

where

together

is the IPC of core

LLC is 8 way banked and connected to an interconnect running

when it is running with other N-1 application. IPC
alone

 is the

IPC of core i when it is running alone in an N core system.

Figure 3 and Figure 4 show the performance (in terms of weighted speedup) of non-inclusive and

seclusive normalized to inclusive cache hierarchy for SPEC and multi-threaded server traces. Figure

3 and Figure 4 show that for seclusive cache hierarchy, there is no performance degradation as

compared to the non-inclusive cache hierarchy. Due to space limitations, we are not showing the

performance of seclusive directories, but it performs similarly to the seclusive cache hierarchy.

at 4 GHz with a data bus of 256bits. The bandwidth between

LLC and interconnect comes out to be 1 TB/s (256 bits per

cycle cycles per second LLC bank count). Similarly, for 2 core and 4 core systems, the

i

i
i=0

B
a
n
d
w

id
th

 r
e
q
u
ir

e
d

o
v
e
r

In
c
lu

s
iv

e
 B

a
n
d
w

id
th

 r
e
q
u
ir

e
d

o
v
e
r

In
c
lu

s
iv

e

tr
a
c
e
 1

tr
a
c
e
 2

tr
a
c
e
 3

tr
a
c
e
 4

tr
a
c
e
 5

tr
a
c
e
 6

tr
a
c
e
 7

tr
a
c
e
 8

tr
a
c
e
 9

tr
a
c
e
 1

0

tr
a
c
e
 1

1

tr
a
c
e
 1

2

tr
a
c
e
 1

3

tr
a
c
e
 1

4

g
e
o
m

e
a
n

m
ix

 1

m
ix

 2

m
ix

 3

m
ix

 4

m
ix

 5

m
ix

 6

m
ix

 7

m
ix

 8

m
ix

 9

m
ix

 1
0

m
ix

 1
1

m
ix

 1
2

m
ix

 1
3

m
ix

 1
4

g
e
o
m

e
a
n

tr
a
c
e
 1

tr
a
c
e
 2

tr
a
c
e
 3

tr
a
c
e
 4

tr
a
c
e
 5

tr
a
c
e
 6

tr
a
c
e
 7

tr
a
c
e
 8

tr
a
c
e
 9

tr
a
c
e
 1

0

tr
a
c
e
 1

1

tr
a
c
e
 1

2

tr
a
c
e
 1

3

tr
a
c
e
 1

4

g
e
o
m

e
a
n

m
ix

 1

m
ix

 2

m
ix

 3

m
ix

 4

m
ix

 5

m
ix

 6

m
ix

 7

m
ix

 8

m
ix

 9

m
ix

 1
0

m
ix

 1
1

m
ix

 1
2

m
ix

 1
3

m
ix

 1
4

g
e
o
m

e
a
n

tr
a
c
e
 1

tr
a
c
e
 2

tr
a
c
e
 3

tr
a
c
e
 4

tr
a
c
e
 5

tr
a
c
e
 6

tr
a
c
e
 7

tr
a
c
e
 8

tr
a
c
e
 9

tr
a
c
e
 1

0

tr
a
c
e
 1

1

tr
a
c
e
 1

2

tr
a
c
e
 1

3

tr
a
c
e
 1

4

g
e
o
m

e
a
n

m
ix

 1

m
ix

 2

m
ix

 3

m
ix

 4

m
ix

 5

m
ix

 6

m
ix

 7

m
ix

 8

m
ix

 9

m
ix

 1
0

m
ix

 1
1

m
ix

 1
2

m
ix

 1
3

m
ix

 1
4

g
e
o
m

e
a
n

i

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 299 Copyright @ 2020 Authors

bandwidth is 256 GB/s and 512 GB/s, respectively.

Figure 5 and Figure 6 show the additional bandwidth re- quired by seclusive cache hierarchy

normalized to an inclusive cache hierarchy for SPEC and multi-threaded server traces. For an 8

core system, the effective bandwidth required with seclusive cache hierarchy is less than 5% for

most of the cases. In general, a thrashing application demands more bandwidth as compared to a

fitting application.

D. Storage Overhead Analysis

Seclusive cache hierarchy has zero hardware storage over- head as it utilizes the coherence

directory already present in modern multi-core systems. These directories store the informa- tion

about which core is the owner of each cache block. During a cross-core eviction at the LLC, the

back-fill mechanism uses this information to fill the victim cache block back to the owner core’s

private cache.

E. Comparison with Relaxed Inclusion Cache

Relaxed Inclusion Cache (RIC) [18] was proposed as a secure cache hierarchy against LLC

side-channel attacks, but it does not mitigate cross-core coherence directory and inter- connect

attacks. It works by relaxing the inclusive property of cache-hierarchy to prevent back-invalidation

of private caches. It requires OS support to identify read-only and thread private pages and

requires a bit per cache block to track these relaxed blocks, which increase the overhead

tremendously for large LLCs. It also requires flushing of cache blocks when a thread is migrated

or a page is swapped out, incurring a delay in the critical path. Our proposal does not require

any additional storage or support from OS, runtime system, ISA, or compiler. The high-

performance numbers reported in RIC are because RIC has used a small LLC (2MB) for large

core count (8 cores), whereas the industry standard is 2MB/per core. The performance of RIC is

below the non-inclusive cache hierarchy, and it decreases more when we increase LLC size with

respect to the L2 cache size. This observation is also made in one of the recent works [29]. In

comparison, the seclusive cache hierarchy performs on the same scale and sometimes better than

non- inclusive cache hierarchy, and does not degrade performance

with different L2:LLC caches.

TABLE IV

CROSS-CORE ATTACKS WITH DIFFERENT CACHE HIERARCHIES.

Cache

Hierarchy

Eviction

based

LLC

Attacks

Coherence Directory

and Inter-

connect Attacks

Inclusive Possible Possible

Non-

Inclusive

Not

Possible

Possible

Relaxed

Inclusion

Not

Possible

Possible

Seclusive Not

Possible

Not Possible

Table IV summarizes whether cross-core eviction based LLC and coherence directory attacks are

possible with different cache hierarchies.

V. RELATED WORK

Solutions like Cache Partitioning [8]–[13] separate the vic- tim’s cache partition from the

attacker’s cache partition by either partitioning the way, line, or set, or locking the line with a

protected bit. This enables non-interference between the two processes and breaks the side-

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 300 Copyright @ 2020 Authors

{ } { }

channel. However, the effective cache capacity is reduced, and it may even degrade the

performance. In contrast, seclusive cache hierarchy break the side-channel without reducing the

effective cache-capacity or impacting performance.

Randomization based solutions [9], [14]–[16] achieve non- interference by randomizing the

address space by either having

permutation tables or fetching/evicting random lines or by encrypting the address and changing

the key periodically. However, having permutation tables are not practical in a large LLC cache,

and the encrypted caches protect from only conflict based attacks and not other attacks like

coherence directory or interconnect based attacks. In contrast, we propose a very practical solution

that provides protection in different attack vectors like LLC, coherence directory, and

interconnect.

Secure hierarchy aware replacement policy (SHARP) [17] is a proposal for mitigating cache-

based attacks. It does so by changing the replacement policy to give priority to intra-core eviction

and then if no choice is left, it goes for random cross- core eviction. The SHARP policy has a lot

of loopholes and is not secure, as discussed in recent work [30].

VI. CONCLUSION

In this paper, we introduced the Seclusive cache hierarchy, a low overhead solution for

mitigating cross-core last-level cache and coherence directory-based attacks. The performance is at

par with non-inclusive cache hierarchy. The security guarantees are stronger than both inclusive

and non-inclusive cache hierarchy as it prevents not only cross-core LLC attacks but also

coherence directory, and interconnect-based attacks.

VII. ACKNOWLEDGEMENTS

We would like to thank all the anonymous reviewers for their helpful comments and

suggestions. We would also like to thank members of CAR3S research group for their feedback

on the initial draft. This work is supported by the SRC grant SRC-2853.001.

REFERENCES

[1] Kocher et al., “Spectre attacks: Exploiting speculative execution,” arXiv preprint

arXiv:1801.01203, 2018.

[2] Lipp et al., “Meltdown: Reading kernel memory from user space,” in 27th USENIX Security

Symposium (USENIX Security 18), pp. 973–990, 2018.

[3] An introduction to the QuickPath Interconnect. http://www.intel.com

/content/dam/doc/white-paper/quick-path-interconnect-introduction- paper.pdf.

[4] Liu et al., “Last-level cache side-channel attacks are practical,” in IEEE S&P ’15.

[5] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise, l3 cache side-channel

attack,” in USENIX Security ’14.

[6] Yan et al., “Attack directories, not caches: Side channel attacks in a non- inclusive world,”

IEEE S&P’19.

[7] Irazoqui et al., “Cross processor cache attacks,” in ASIA CCS ’16.

[8] Osvik et al., “Cache attacks and countermeasures: The case of aes,” in

CT-RSA ’06.

[9] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based side

channel attacks,” ACM SIGARCH CAN ’07.

[10] Domnitser et al., “Non-monopolizable caches: Low-complexity mitiga- tion of cache side

channel attacks,” ACM TACO ’12.

[11] Kim et al., “STEALTHMEM: System-level protection against cache- based side channel

attacks in the cloud,” in USENIX Security ’12.

[12] Zhou et al., “A software approach to defeating side channels in last-level caches,” in ACM

SIGSAC CCS’16.

[13] Kiriansky et al., “DAWG: A defense against cache timing attacks in speculative execution

processors,” in MICRO ’18.

http://www.intel.com/

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-3 No.01 March 2020

 Page | 301 Copyright @ 2020 Authors

[14] Liu et al., “Newcache: Secure cache architecture thwarting cache side- channel attacks,”

MICRO ’16.

[15] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via encrypted-address and

remapping,” in MICRO ’18.

[16] M. K. Qureshi, “New attacks and defense for encrypted-address cache,” in ISCA ’19.

[17] Yan et al., “Secure hierarchy-aware

cache replacement policy SHARP:

Defending against cache-based side

channel attacks,” in ISCA ’17.

[18] Kayaalp et al., “RIC: relaxed inclusion

caches for mitigating LLC side-

channel attacks,” in ACM/EDAC/IEEE

DAC ’17.

[19] Champsim. https://github.com/ChampSim/ChampSim.

[20] HyperTransport Technology white paper. http://www.hypertransport

.org/docs/wp/ht system design.pdf.

[21] Second Cache Replacement Championship. https://crc2.ece.tamu.edu/.

[22] Third Data Prefetching

 Championship.

https://dpc3.compas.cs.stonybrook.edu/

.

[23] First Instruction Prefetching

 Championship.

https://research.ece.ncsu.edu/ipc/.

[24] Intel Ice Lake microarchitecture,

 https://en.wikipedia.org/wiki/ Ice Lake

(microprocessor).

[25] C. L. Alappat et al.

[26] GnuPG 1.4.13, https://gnupg.org/ftp/gcrypt/gnupg/.

[27] Bucek et al., “SPEC CPU2017: Next-generation compute benchmark,” in

ACM/SPEC ICPE ’18.

[28] A. Snavely and D. M. Tullsen,

“Symbiotic jobscheduling for a

simulta- neous multithreaded

processor,” in ASPLOS ’09.

[29] B. Panda, “Fooling the sense of cross-

core last-level cache eviction based

attacker by prefetching common

sense,” in PACT ’19.

[30] Kumar et al., “How sharp is SHARP

?,” in WOOT@USENIX Security ’19.

