
 

 

Authors Juni Khyat                                                           ISSN: 2278-4632 

(UGC Care Group I Listed Journal)           Vol-10 Issue-1 January 2020  

Page | 636                                                         Copyright @ 2020 Authors 
 

 

Statistical model, sample size, and sample 

composition 

 
 

 

1.Mr. Gorekh Prasad Nayak 2.Soubhagini Mohapatra 

Nalanda Institute of Technology, Bhubaneswar 

Dept. of Basic Science & Humanities 
E-mail ID: gorekhprasad@thenalanda.com 

             SoubhaginiMohapatra@thenalanda.onmicrosoft.com 

 
 

             ABSTRACT: 

For a subjectivist, a single event describes a "fact," which is something that takes 
place in a specific location at a specific time and is preceded, surrounded, and 
followed by facts that are fundamentally distinct from one another because they take 
place in various locations or at other times. For instance, the phrase "Mr. Tito Rossi, 
born and lived in Milan in Ronchiano square 25, has obtained white hair" refers to a 
particular event. If our Mr. Rossi has white hair or not will determine whether this 
assertion is accurate or incorrect. These kinds of statements provide the most details 
on a person and a modality. a collection of related claims for each member of a 
population, often known as individual vectors. 

             INTRODUCTION:  

In a previous paper [Costantini, D., Garibaldi, U. and Monari, P. (1998)] we have 
given some conditions that allow to transform single events in statistical or generic 
ones. It is impossible to do statis- tics limiting attention to single events. 
Neglecting information about individuals while collecting information about the 
population the indi- 

viduals belong to, single events are transformed into statistical ones. This 
transformation ensues from the formal conditions discussed in the paper quoted above. 
These conditions essentially determine the invari- ance of probability with respect to 
certain descriptive changes. Thus statistical events refer to individuals only as 
belonging to a popula- tion. By using the term statistical unit we intend to speak 
about such individuals. At the basis of the analysis of the concept of statistical event 
lies the conviction that this notion can be usefully applied in order to give a 
satisfactory foundation of statistical inferences able to overcome the dilemma between 
orthodox (frequentist) and Bayesian statistics. 

This is the first reason why we want to work out the present pa- per. The 
second one is that in modern Physics, namely in quantum mechanics,  there  are  
fundamental  laws,  such  as  the  Schödinger  equa- tion, referring to single statistical 

mailto:gorekhprasad@thenalanda.com
mailto:SoubhaginiMohapatra@thenalanda.onmicrosoft.com


 

 

Authors Juni Khyat                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)            ol-10 Issue-1 January 2020  

Page | 637                                                         Copyright @ 2020 Authors 
 

 
 

= = = = 

+ 
= 

units. May be the best example is the one given by Dirac: “Some time before the 
discovery of quantum mechanics people realized that the connection between light 
waves and photons must be of a statistical character. What they did not clearly realize, 
however, was that the wave function gives information about the probability of one 
photon being in a particular place and not the probable number of photons in that 
place” [Dirac, P. A. M. (1931), p. 9]. 

On the basis of our previous analyses, which we will take as known, the present 
paper shall discuss a new interpretation of proba- bility, essentially Popper’s notion of 
propensity. This interpretation is very close to the probability interpretation used 
naively by physicists, whereas it seems to be quite unknown to statisticians. Secondly, 
we shall try to interpret the notion of statistical model making reference to the 
probability of statistical units. 
 

 
1. PREDICTIVE ALgORITHM 

 

In what we are doing predictive probabilities are crucial. This term, at least in the 
Italian literature, is normally used in a very narrow sense. In order to avoid this 
restricted use, we prefer talking about predictive algorithm. First of all, we shall hence 
see what this means. We consider a sequence 
 

 We call predictive algorithm all procedures that, staring from suitable con- ditions 
aim at determine the value of the probability distribution . 
Moreover by using the term predictive algorithm we intend also to refer to all 
deductions that starting from try to characterize more com- plex probability 
distributions, for instance the ESF (Ewens Sampling Formula) [Costantini, D. and 
Garibaldi, U.]. We shall call the con- ditional probability  an 1-predictive law. 
Obviously, when n      
is to be understood as an absolute probability, that is Pr X1 x . 
 Moreover we shall call m-predictive law the joint distribution 

 It goes without saying that, once  for each n is known, the observation 

stochastic process — as suitably Daboni and Wedlin.  
From an abstract point of view, is neither bound to one nor to the other 

probability interpretation. Therefore we want to point out that (2) may be interpreted 

both subjectively, as a degree of belief in the occurrence of the event Xn+1   x , and 
as the probability that at time 
n 1 a physical system is in the state x. To avoid any misunderstanding, 
let us add that we prefer the second interpretation, because, at least since the first 
probabilistic explanation of the Brownian motion carried out by Einstein almost one 
century ago, it is known how well stochastic processes describe the (probability) 
dynamics of physical systems. This shows, beyond any doubt, how well the predictive 
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algorithm adapts itself to the treatment of physical problems. This kind of 
problems are certainly not linked to the mind of any human being nor to its 
degree of belief but simply to how things are. 

Hence, predictive algorithm has nothing to do with the subjective philosophy of 
probability, namely not with the extreme subjectivism, 

very near to the solipsism, worked out by de Finetti. This philosophy permeated and 
stirred many fundamental discussions taking place when the predictive algorithm was 
developed. For obvious reasons of space in the present paper we cannot dwell on 
the reasons which clearly support this statement. We will confine ourselves to remind 
the reader the following: 

One the one hand, the determination of  is possible after having introduced clear 
(probability) conditions stating the role of the indi- vidual vector X

n
    x

n
 upon the 

probability of the random variable Xn 1. On the other hand, we have been able, by 
using , to lay both the probabilistic foundations of elementary particles statistics and 
to give a probability representation for the dynamics of a gas of parti- cles. Interested 
readers are asked to consider our analyses [Costantini, 

D. and Garibaldi, U. (1997); Costantini, D. and Garibaldi, U. (1998); Costantini, D. 
and Garibaldi, U. (2000)]. 
 

 

2. ENsEMBLE AND saMPLINg dIsTRIBUTION 
 

Taken for granted the possibility to speak of statistical events in the sense 
specified in [Costantini, D., Garibaldi, U. and Monari, P. (1998)], we have to interpret 
these events. In order to do this, it is necessary to discuss the propensity 
interpretation of probability. This is the last, in order of time, interpretation of this 
notion which has been taken into account. But before this we have to face a firm 
conviction widely spread among orthodox statisticians. It is about what we could call 
the frequency prejudice, i.e. the belief according to which the probabilities which do 
not refer to collectives are meaningless; in other words, the belief according to 
which probabilities are always tied to frequencies. As a consequence, of this 
prejudice the reference to a statistical unit compels probability to be subjective. Hence 
the probability that a statistical unit bears an attribute cannot be used in scientific 
researches. The frequency prejudice rest on two points: the notion of collective refers 
to an infinite sequence of observations [von Mises, R. (1961)] or to a hypothetical 
infinite population [Fisher, R. 

A. (1950)]; the notion of probability refers to relative frequencies. As a matter of 
fact, this way of seeing probabilities and the frequentist prejudice can be dated as they 
reflect an approach to the statistical- probability disciplines linked to the debates, 
which took place in the first half of the last century. If fact, the more shrewd 
modern literature 
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on statistical inference has abandoned both that interpretation and the frequency 
prejudice. But this has taken place in silence, without really facing the questions it 
raises. On the contrary, we intend to discuss frankly about the implications of the 
above renounce. 

It is enough to glance through a few books on modern physics to realize 
when probability referring to statistical units are used. This causes the rise of the 
propensity interpretation of probability of K. Pop- per. This author puts forward “a 
new physical hypothesis (or perhaps a metaphysical hypothesis) analogous to the 
hypothesis of Newtonian forces. It is the hypothesis that every experimental 
arrangement (and therefore every state of a system) generates physical propensities 
which can be tested by frequencies” [Popper, K. R. (1959)], consequently “I propose [ 

. . .  ] to look upon probability statements as statements about frequencies in virtual 
(infinite) sequences of well characterized experiments” [Popper, K. R. (1967)] and 
therefore “we can look upon probability as a real physical property of the single 
physical experiment or, more precisely, of the experimental conditions laid down 
by the rule that defines the conditions for the (virtual) repetition of the ex- periment” 
[Popper, K. R. (1967)]. 

In order to fully understand this interpretation, it is necessary to consider it in the 
context of the researches of quantum mechanics. Let us return to Dirac’s light 
waves and photons by considering a beam of linearly polarized light going through a 

Polariod filter whose polarization plane is oriented at 45◦ with respect to the light 
[Ghirardi, 
G. C. (1997)].   As we know from experience, if we measure the 
intensity of the beam emerging from the filter, we find, according to Malus’ law that 
tied the transmitted intensity to the incident one, that the intensity is reduced by a 

factor cos
2
 θ being θ the angle between the polarization planes. Everything is quite 

clear, if light is understood, as it happened in the 19 th century, as a classical 
electromagnetic field and hence as a continuous quantity. The situation becomes 
unclear, however, if, according to quantum mechanics, the beam is understood as a 
population of indistinguishable photons which cannot be subdivide into parts. 

If the assertion put forward by quantum mechanics regards the whole population, 
it would be possible to maintain that half of the photons get absorbed by the filter 
while the other half continues on its way without being disturbed. But this theory 
does not make any statement for the population. It answer the question: what 
happens to a single photon that runs into the filter? The reason is that it is 
 

possible to launch such a weak beam of photons at the filter that each photon has 
enough time to be absorbed or to go through the filter before another one cuts it. 

The answer of quantum mechanics is that each photons has a probability 1/2 to pass 
through the filter. 

Physicists refer to the probability of a particle. This gives rise to a 
probability notion objective but not frequentist. This is the no- tion of propensity. 



 

 

Authors Juni Khyat                                                           ISSN: 2278-4632 

(UGC Care Group I Listed Journal)           Vol-10 Issue-1 January 2020  

Page | 640                                                         Copyright @ 2020 Authors 
 

= 

On the other hand we know that from Maxwell to Boltzmann, from Gibbs to 
Tolman everyone taking an interest in statistical mechanics maintains that probability 
is (the limit of) a rel- ative frequency. It seems to be unnecessary to discuss about 
this if it is clearly known what relative frequency refers to. The answer seems easy but 
it is not. The temptation to give simple answers has caused a great number of 
misunderstandings and on top of the list is the frequency prejudice. We are 
convinced that the best way of dealing with the question is to reflect upon Fisher’s 
sample space or, better, upon the ideas of Gibbs. What we are about to say has a 
double pur- pose. Firstly, to show that relative frequency is a very sophisticated 
notion, that cannot be reduced to a fractional number of individuals. Second, that both 
in orthodox statistics and in statistical mechanics the 1-predictive laws play a 
fundamental role. 

While introducing the notion of sample space, Fisher states “If the individual 
values of any sample of data are regarded as co-ordinates in hyperspace, then any 
sample may be represented by a single point, and the frequency distribution of an 
infinite number of random samples is represented by a density distribution in 
hyperspace” [Fisher, R. 
A. (1950)]. Therefore, according to this author, the distribution of (relative) 
frequencies is represented by a density function linked to an infinite number of 
random samples. But which is the nature of this collective (of samples)? The best 
way of answering this question is to directly refer to the ensemble of Gibbs, i.e. 
to the notion which Fisher and all statisticians after him have adopted by calling it 
sampling distribution. 

For disciplines, like statistical inference, which refer to density on a sample 
space, the interpretation of a macroscopical physical system as a population of 
particles is not important. As a consequence statis- ticians do not look out to the 
structure of the collectives of statistical mechanincs. This caused problems of 
interpretation, in fact in statis- tical mechanics a collective is not a population of 
particles, a system as physicists say, but the whole set of diverse dynamic 
configurations that the system, globally interpreted, is suppose to be able to 
assume. 
 

Thus Gibbs frequency interpretation does not depend upon the size of the 
considered system, that could perfectly well been made up of only one particles. 
This is an extremely important acknowledgment on which most of what we are 
going to say will be based. Therefore, it is necessary to justify it in depth. 

At the basis of mechanics lies to notion of microscopical state. This state 
has traditionally been understood as a point in a space of an F -dimensional space, 

the phase space Г, a point denoting the configuration of the physical system of interest. 
If the system is a monoatomic gas the dimension of the phase space will be F 6N , 
where N is the number of gas atoms and 6 are the degree of freedom of each atom, 
three for the coordinates and three for the momenta. According to Tolman [Tolman, R. 
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C. (1979)], statistical mechanics “can be employed when we need to treat the 
behaviour of a system concerning whose condition we have some knowledge but not 
enough for a complete specification of precise state. For this purpose we shall wish to 
consider the average behaviour of a collection of systems of the same structure as 
the one of actual interest but distributed over a range of different possible states. Using 
the original terminology of Gibbs we may speak of such a collection as an 

ensemble of systems [.. . ] The istantaneous state of any system in the ensemble can 
then be regarded as specified by the position of a representative point in the phase 
space, and the condition of the ensemble as a whole can be regarded as 
described by a “cloud” of such representative points, one for each system in the 
ensemble.” furthermore “the condition of an ensemble at any time can be regarded 

as appropriately specified by the density ρ with which representative points are 

distributed over the phase space.” This means: if for each state α of Г, M(α) is the 

number of the systems in the state α, then when M grows beyond any 

limit, what happens to the fraction 
M(α) identifies the density ρ on Г. 

If, as usually happens in statistical mechanics, the considered sys- tem is a 
population with a finite number of particles, the ensemble can be imagined as an 
infinite (super)population whose units are population (finite ones) of particles where 
the dynamic characteristics, the position and the momentum of each particle, are 
perfectly defined. It follows that “By the probability of finding the system in any 
given condition, we mean the fractional number of times it would actually be found in 
that condition on repeated trials of the same experiment” [Tolman, R. 

C. (1979)]. Therefore, to (probabilistically) treat the physical system of interest, we 
think of it as surrounded by an imaginary — Popper 
 

would say virtual — population of systems having the same structure but distributed 
over the whole of all initial states compatible with the constraints of the system. 
Hence in statistical mechanics probability is seen as a (fractional) frequency resulting 
from the repetition of the same trial and not the (fractional) number of individuals 
bearing an attribute. Furthermore the density on the phase space is an 1-predictive law 
applied to a statistical unit denoting the considered physical sys- tem. The latter is a 
population of N particles that we suppose to have randomly drawn from a virtual 
(super)population. The distribu- tion of this virtual (super)population is given by the 

above density ρ. It is worth noting, and here we shall anticipate what we are going 
to say, that a similar hypothesis amount to the fundamental postulate of statistical 
sampling. 

Now, if we consider the density ρ on the phase space and remind that the 
considered system is a population with  6N degrees of freedom, it becomes clear that 

the density ρ(x1 ,. ..  , xF ) is completely similar to the sampling distribution of a 
sample whose size is F . Fisher’s sample space is the statistical transliteration of 
Gibb’s phase space. The relative frequency specifies the condition of the sample 
space, i.e. the density with which the samples are distributed in the sample space. The 
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sampling distribution is the fractional number of times a given sample would be 
found if the same trial was repeated a very large number of times. In fact, it has to 
be noted that the “repeated trials” do not have to carried out, it is only supposed 
that they could be carried out. The collective is not real but virtual. 
 

 

3. THE VIRTUAL NATURE OF THE COLLECTIVE 
 

The propensity interpretation of probability does not remove the notion of 
collective but subordinates it to the conditions defining the probabilistic features of the 
experimental arrangement generating the outcomes. We have already reminded the 
reader that most of modern statisticians are persuaded that the reference to a sequence 
cannot be based on anything else than on the notion of virtual infinite sequences of 
experiments. But, and this is the point, none of these statisticians has spent much 
time on making clear how the above reference can be realized. The statistical impact 
of the passage from von Mises’ and Fisher’s frequency interpretation to sequences of 
experiments has been analyzed only rarely, to use an euphemistic expression. It 
would have 
 

been worth doing so, though, considering that the consequences are important. We 
will discuss this topic later. But to analyze this passage we have to refer once more 
to von Mises as he is one of the very few authors, may be the only one, who has 
dealt with this difficult problem. He has done so with great intellectual honesty. 
Hence, instead of referring to more recent authors, we must consult this one despite 
the fact that he worked in the first half of the past century. 

Let us follow von Mises in a comment to an example linked to the theory of 
dispersion put forward by Lexis: “The German economist, 
W. Lexis, has enriched statistics with an idea which leads to a very convenient method 
of comparing an observed statistical sequence of figures with a collective. I will 
explain Lexis’s Theory by means of a small statistical investigation” [von Mises, R. 
(1961)]. von Mises considers the recurrence of the letter “a” throughout the first 2000 
letters of De bello gallico. Note that it is likely that the research does not relate to 
the letters of De bello gallico but at least to all writings of Julius Cesar. Thus the first 
collective include all those letters. Having identified the data, von Mises firstly 
subdivides, according to Lexis, the observed sequence into 20 groups of 100 letters 
each and calculates the frequency of the letter he is interested in for each group. 
In this way von Mises considers the initial part of a second collective whose terms are 
groups of 100 Latin letters. The categories that interest von Mises in this 
collective is the frequency of the “a”s. Once the frequency distribution of the letter 
has been determined through the 20 groups, he calculates the average of the “a”s per 
group, which is equal to

 
, nd then the variance, that come out to be 7,01. By doing 

this von Mises considered a third collective whose elements are made up of 20 groups 
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of 100 letters while the attributes are the variances. Before going on, it is worth noting 
that while the available terms of the first collective are 2000, there are 20 terms of the 
second one and only one term of the third collective. 

Having defined the collective, von Mises imagines the distribution he would 
obtain if he put a great number of marbles with the 25 Latin letters into an urn — the 
proportion of marbles with the letter “a” is supposed to be equal to 0,087 — 
carrying out groups of 100 draws. The collective obtained in this way, the second 
one, would be made up of groups of 100 draws from the hypothetical urn. Finally a 
third collective is supposed to be make up in order to calculate the variance that we 
would obtain if we had to draw sequences of 20 terms of 100 drawn from the second 
collective.   
 

After having considered in the details the test of significance de- vised by Lexis 
and clarified by von Mises, it is worth reflecting upon its crucial points. In the first 
place we have to point out the prolif- eration of collectives von Mises recurs to in 
order to safeguard the frequency interpretation of probability. Secondly it is 
important to note the features of the collective that allows evaluating the hypothet- 
ical probabilities of the observed sample, namely the attributes of the members of the 
collective. These are functions — statistics or, much better, summaries — whose 
argument are the 2000 observed letters. The terms of the collective are made up 
on the basis of the 2000 let- ters that have been taken into account. The attributes are 
all possible variances calculated the way we have seen. Therefore the final collec- tive 
is an infinite sequence of groups of observation of 2000 letters, where each is, so to 
say, labelled by the respective variance. Finally note that this collective does not 
really exists, as nobody would dream of laying down the urn and the corresponding 
marbles with the Latin letters. Nor would it occur to anyone to carry out the 
above groups of draws. Therefore, it follows that: the collective that we have taken 
into account is not real but virtual; the collective has nothing to do neither with the 
size of the population nor with the one of the sample; finally, the comparison is 
carried out as if the observed sample had been drawn at random from the virtual 
collective. Not even von Mises was able to interpret the probabilities involved in a 
test of significance as effective (relative) frequencies. 

Now that the statistical consequences of a coherent use of the notion of relative 
frequency in a collective is clear, we can think of the consequences of such an 
use in the case of Dirac’s photons. If, as we know from experience, the relative 
frequency of photons that have been observed by a Polaroid filter was very close 
to 1/2, at the very most we could conclude that this could be the probability of a 
photon as far as the experimental arrangement is concerned. What has just been said 
would have to be based on a hypothesis stating that the photons, not only the ones 
taken in account in the experiment, are considered as independent and identically 
distributed random variables. All probabilities involved would appear as relative 
frequencies if the 
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sole experiment having really carried out were indefinitely repeated. The notion of 
propensity is the acknowledgment of the change that has been taken place in the way 
of understanding probability when pass- ing from statistical mechanics to quantum 
mechanics. It also means accepting the impossibility to apply the frequency 
interpretation of probability to quantum mechanics. Therefore, in order to avoid ex- 
cluding the notion of probability from the more advanced scientific discipline, it was 
necessary to accept a notion of probability not fre- quentist but objective. This is 
what Popper tried to do by suggesting the notion of propensity. 

This is the historical and scientific background of propensity, at least from our 
point of view. But we immediately want to add that Popper’s proposal is not 
completely convincing, as it does not take into account the achievements of the last 
century’s statistical method- ology. This means that — by characterizing each time, 
through suitable probability distributions expressed by the sampling and the statistical 
model, the probabilistic features of the experimental arrangement — it will be 
possible to identify what Popper would call the propensity of the experimental 
arrangement. 

But this has led us to the points we want to discuss in the next two sections. 
Before concluding the present section, though, it is worth stressing that from what 
we have said ensues that 1-predictive laws can be objectively interpreted. 
 

4. SaMPLINg 

There are still two problems we have to deal with: the sampling and the 
statistical model. We dedicate this section to the first of these subjects. Let us take 
Popper’s explanation of why he leaved the fre- quency intepretation as a starting 
point: “The frequency interpretation always takes probability as relative to a sequence 
which is assumed as given; and it works on the assumption that a probability is a 

property of some given sequence. But [ . . .  ] the sequence in its turn is defined by its 
set of generating conditions; and in such a way that probability may now be said to 
be a property of generating conditions” [Popper, K. 
R. (1959)]. It is clear that there is quite a difference between this and the 
viewpoints of von Mises and Fisher. If probability is a property of generating 
conditions, then it can be considered as well defined ev- ery time that such 
conditions are specified, that is every time that an 

experimental arrangement is carried out. von Mises and Fisher do not accept that a 
probability can be assigned to anything different from a sequence. These authors do 
not accept that a probability can be related to experimental arrangements. But this is 
the only way to allot probabilities to statistical units. We sall see that, as a 
consequence of this refusal, they shut out the possibility of giving an objective 
interpretation to the notion of statistical model. 

It is known to everyone who has reflected upon the function of sampling in 
statistical inference that there are two ways of justifying random sampling: one that 



 

 

Authors Juni Khyat                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)            ol-10 Issue-1 January 2020  

Page | 645                                                         Copyright @ 2020 Authors 
 

does not take the parent population into account; and another one, which tries to take 
into consideration this population. On the whole, the latter approves of extremely 
confused positions. 

The first justification basically refers to Popper’s notion of ex- perimental 
arrangement. This arrangement can be identified in the device used in order to 
identify the statistical unit to be drawn. To this regard, let us remind the 
explanation of Herzel, a scholar who has worked out very useful analyses of these 
problems. This expla- nation shows the substantial identification of the sampling with 
the experimental arrangement. “Si ricorre a tali strumenti [tavole di nu- meri casuali o 
simili] per evitare le operazioni piuttosto onerose che sarebbero richieste per effettuare 
delle vere e proprie estrazioni da urne, come vengono eseguite nelle lotterie” (The 
reason for recurring to such kind of instruments [random numbers or similar] is to 
avoid the rather complicated operations that would be required to carry out real 
draws from urns as it happens in lotteries) [Herzel, A. (1994)]. 

Let us now go on to the second way of justifying random sam- pling that has, 
as we pointed out, lead to questionable if not con- tradictory assumptions.   This is 
the justification chosen by Kendall e Stuard [Kendall, M. G. and Stuard, A. (1963)] 
who, when talking about the population from which the sample is drawn, divide them 
into the following three classes: finite and real ones, infinite and real ones 

— let us leave it to the authors of this classification to find similar populations — and 
infinite and hypothetical ones. When it became clear that the terms “infinite” and 
“real” were contradictory [Stuard, 
A. and Ord, J. K. (1987)], the sampling from infinite and real pop- ulation was 
substituted, without any justification, by the “sampling” from a distribution. Anyone 
can clearly see that the above passage does not resolve the contradiction. As a 
matter of fact: either the distribution concerns actual frequencies and hence there 
has to be a 

finite population to which the distribution can be attributed to, which means returning 
to the previous case, or it is a distribution function, hence a mathematical function, 
from which it seems really difficult to draw anything. 

In our opinion it seems much easier to keep for population the meaning a whole 
set of statistical units and to consider the sample as resulting from a suitable 
experimental arrangement generating se- quences of those units. If the sample is 
understood this way, then the size of the population is no longer influential. The size 
of the popula- tion has nothing to do with the possibility to perform infinitely many 
repetitions and hence with the (virtual) collective of which the sample is supposed to 
be the initial parts. The objectivity of the sampling distribution is guaranteed by the 
experimental arrangement generating the sample. It would be this arrangement that 
would generate the col- lective in the case in which the draw would be indefinitely 
repeated. The generating conditions are reflected in each draw, that is in each term of 
the collective and not by the collective as a whole. 



 

 

Authors Juni Khyat                                                           ISSN: 2278-4632 

(UGC Care Group I Listed Journal)           Vol-10 Issue-1 January 2020  

Page | 646                                                         Copyright @ 2020 Authors 
 

But for our purpose this is not the most important aspect. We are fully aware of 
the fact that the above statement represents a substan- tial return to the classical 
definition of probability seen in the light of the failure of the orthodox frequency 
interpretation. The classical definition can and maybe has to be understood as a 
kind of postu- late linking the (relative) frequency of the statistical units bearing an 
attribute to the probability of drawing a statistical unit bearing that attribute. This 
is question we will discuss soon. For the time being we note the existence of a 
frequency of marbles of a given color in the urn; the existence of a frequency of 
individuals bearing an attribute in a finite population; the existence of a (limit of the 
relative) frequency in the collective; and such a frequency exists, too, in a hypothetical 
infinite population. The experimental arrangement generates sequences of statistical 
units hence frequencies, and the probability of each sta- tistical unit is given by the 1-
predictive law expressing the generating conditions. Coming back to Herzel, in the 
case of orthodox statistical 

inferences the experimental set up “e` la presenza di un ben definito 
piano di campionamento che assegni una probabilita` ad ogni campione appartenente 

ad un certo insieme [ . . . ] che può  anche essere costituito da tutti i campioni 
possibili” (is a well defined sampling plane allot- ting a probability to each sample 

belonging to a certain class [ . . .  ] that can also be made up of all possible samples). 
Therefore, if the sampling plane is the device determining the choice of the 
statistical 

unit, then this plane is tantamount to the conditions which generate the sequence. 
At this point probability comes in if, as Herzel states little later, we let “c il singolo 
campione: un piano di campionamento probabilistico consiste dei numeri non negativi 

p(c), rappresentanti la probabilita` di osservare il campione c” (c denote the single 

sample: a probabilistic sampling plane consists in the non negative numbers p(c) that 
represent the probability of observing the sample c) [Herzel, A. (1994)]. It follows 
that the probability of a sample can be understood as (the limit of) the relative 
frequency in the collective of the (virtual) infinite repetitions of the draw. The 
objectivity of the sampling distri- bution, whose (density of) probability regards 
statistical events — as a matter of fact they are single draws of samples from a 
population 

—, is ensured by the sampling plane, the statistical counterpart of the experimental 
arrangement. These considerations have lead us to the statistical model, i.e. the 
second point we want to discuss. 
 

 
5. STATIsTICAL MODEL 

As we have seen, the necessity to speak about the probability of a particle has 
compelled Popper to work out an objective concept of probability that does not need 
to be referred to real collectives. Quite on the contrary, in statistics things have 
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gone another way. Following de Finetti, both repetitions and objectivity have been 
abandoned. In the first half of last century many statisticians, urged by the ideas 
of de Finetti, leaned towards a subjectivism rooted in the irrationalism of the Italian 
relativism of the beginning of the 20th century. It has to be added that the choice 
of this direction was favored by the kind of applications that were characteristic of 
the Italian school of statistics. In fact if, as it happens in Italy, statistical inferences 
are mainly atten- tive to social and economical studies, it is very easy that the 
criticism to the frequency dogmatism ends into the subjectivism. 

As all prejudice, the frequency prejudice too, did not mince the matters. Orthodox 
statisticians maintained that probability was a rela- tive frequency in an hypothetical 
infinite population, but they did not take the trouble to analyze the consequences of 
their statements. They did not notice that the notion of relative frequency looses 
meaning pre- cisely at one of the key points of their inferences, i.e. as regards the 
fundamental hypotheses inference is based on: the notion of statistical model. 

There are several ways of working out statistical assumptions but the most 
common one, for sure, consists in specifying the statistical model. As Edwards states 
in a celebrated book devoted to the concept of likelihood, “A sufficient framework for 
drawing of inductive infer- ences is provided by the concepts of a statistical model and a 
statistical hypothesis. Jointly the two concepts provide a description, in proba- bility 
terms, of the process by which it is supposed the observations were generated. By 
model we mean that part of the description which is not at present in question, and 
may be regarded as given, and by statistical hypothesis we mean the attribution of 
particular values to the unknown parameters of the model” [Edward, A. W. 
(1972)]. For our purpose the distinction between model and statistical hypothesis is 
not important. Therefore speaking of statistical model we refer to statistical model 
together wit the statistical hypothesis. 

First of all, we note that Edwards’s point of view is the same as that of 
Popper as the process of Edwards is the same notion as that of experimental 
arrangement. Furthermore, the statistical model is the probabilistic description of the 
experimental arrangement. This is also our position. 

Let us then go on to the statistical model and its probabilistic status. Edwards 
[Edward, A. W. (1972)] exemplifying the calculation of a likelihood says: “In section 
1.2 it was suggested that a Normal distribution of error might be adopted as the 
probability model when the refractive index of a crystal was being investigated 

experimen- tally. That is, if µ be the true value and σ 2 the theoretical variance of the 
distribution of error, the probability of a single observation lying 

in the interval (x,x + dx) . 

 In agreement with most statisticians — mainly with Fisher who said “Problems of 
specification are those in which it is required to specify the mathematical form of the 
distribution of the hypothetical population from which the sample is to be regarded as 
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= 
+ 

drawn.” [Fisher, 
 

R. A. (1950)] — we think that statistical models refer to the popu- lations or, better, to 
their statistical descriptions. Thus we must first consider the description of the 
population which we refer to or, better, an idealized description as neither infinite 
populations nor modalities with infinitely many attributes exist. Furthermore, the 
description may refer to a real population but it can also be a null hypothesis that has 
been put forward in order to be falsified. Obviously this is the most interesting case. 
Nevertheless, as Edwards clearly notes saying that (4) is the probability of a “single 
observation”, the model is in not way the description of a population. 

Formula (4) is the probability that a statistical unit, say X, bears an attribute of 

the interval (x, x   dx) or, neglecting the differential, it is the (density of) 
probability of X x . This is not a relative frequency. Justify (4) is tantamount to 
justify the leap that is performed by passing from the description of the population to 
the statistical model. As we have seen, physicists know quite well that they talk 
about the probability of a statistical unit, and they are well aware of the difficulties 
posed by this. The same cannot be said about statisticians, however, maybe because 
the consequences of the duality population- individual is really very far away from the 
one physicists have had to face or, maybe, because statisticians seem to have evaded 
the dilemma by withdrawing to subjectivism. 

On the basis of what we have discussed in the above sections we shall find a way 
to avoid this withdrawal. This means that, once the existence of experimental 
arrangements is taken for granted, the link between the population, considered as a 
sequence of statistical units, and the statistical model can be established by 
postulating: 

C. if in the sequence generated by the experimental arrangement, the relative 
frequency (density) of the statistical units bearing an at- tribute x of a modality is 

equal to f (x), then the (density of) probabil- ity of drawing from the sequence a 

statistical unit bearing the attribute x is equal to f (x). 
We believe that the validity of this postulate is implicitly assumed at the beginning of 
every statistical inference, both orthodox and Bayesian. We are also aware of not 
having discovered anything new, as the condition C is essentially an extension of the 
classical definition of probability to which it becomes formally identical when, as 
every statisticians does, “random drawing” is understood as a drawing ruled by 
uniform distribution. 

Having established the relationship between population and model 
 

we can proceed with Edwards’ example. He says [Edward, A. W. (1972)]: “hence the 

probability of obtaining a sequence of n observa- tions in  the interval  (x1, x1 + dx1; 

x2, x2 + dx2; . . .  xn, xn + dxn) . 

(once more the numbering of the formula is ours). This is the first step towards 
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= 

the determination of the sampling distribution, and we can stop here to follow 
Edwards. 

At this point some comments are required. First of all, the den- sity is a 1-
predictive law. It is the initial 1-predictive law in which no index appears due to the 
assumption of the identical distribution of all observations. This law, together with 
independence, allows to determine . This is an initial n-predictive law, that is a 
distribution like , more exactly the particular case of that law when n 0. Hence the 
predictive algorithm is at the basis of the determination of the likelihood. This is 
true both for orthodox and Bayesian inferences. There is only one difference between 
both approaches, which is very important, beyond doubt. For Bayesian the condition 
C, and thus the related 1-predictive law, ensues from a personal judgement. This 
can be based of factual knowledge but also on knowledge gained, so to say,  during  
sleep  [Fürst,  D.  (1978)].  For  an  orthodox  statistician  con- dition C cannot be 
explicitly accepted. As we have seen, it is very difficult to justify  by referring to 
collectives. This notwithstanding without such a 1-predictive law the test cannot start. 
The problems of specification come from this. On the contrary, taking for granted the 
propensity interpretation of probability, the justification of condition C is very 
natural. The 1-predictive law makes probabilistically explicit the conditions 
generating the sample. 
 

6. CONCLUsIONs 

The thesis put forward by followers of the frequency interpretation states that it is 
non allowed to speak about probability without referring to a collective. von Mises 
very clearly claims: “First the collective then the probability” [von Mises, R. 
(1961)]. Now, we think that this essentially dogmatic restriction can be dropped 
without giving way to subjectivism. Basically the use of collectives, and hence of 
relative 
 

frequencies, has to be considered with respect to tests of significance, 
i.e. to the procedure adopted in order to falsify statistical hypotheses. But we cannot 
expect each probability statement to be necessary given in terms of relative 
frequencies. 

What we have done is the starting point for going away from the frequency prejudice 
without abandoning objectivism. In this way of setting out and dealing with the 
question there are two key moments. In the first place, the frank acknowledgment 
that an objectivist inter- pretation of sampling distributions must refer to relative 
frequencies. Nevertheless, it is of utmost importance to state that the reference has 
to avoid confusing the (finite) relative frequency, which describes the considered 
population, with the relative frequency of the virtual infinite repetitions. In the second 
place, the sampling distribution is arrived at by using a 1-predictive law. This law 
gives a description in probability terms of the experimental conditions in which draws 



 

 

Authors Juni Khyat                                                           ISSN: 2278-4632 

(UGC Care Group I Listed Journal)           Vol-10 Issue-1 January 2020  

Page | 650                                                         Copyright @ 2020 Authors 
 

are performed. The objectivity of this law is warranted by the generat- ing 
condition of an experimental arrangement. The objectivity of the sampling 
distribution ensues from the (virtual) possibility of drawing an infinite number of 
samples from the population. The size of the population is not influential at all. 

Even though it is possible to repeat infinitely many times the draw of a sample, the 
acceptance of a statistical model as a description of an actual population is assured 
by experience. This is the key idea at the basis of every test of significance. Its 
justification is tantamount to the justification of experimental science. 

To conclude, we are well aware that what we have done does neither include 
orthodox nor Bayesian estimation. The problem of the objectivity of estimation is 
much more complex. But although we acknowledge the great importance of statistical 
estimations, it was not the task we set ourselves. 
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