

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 431 Copyright @ 2020 Authors

COMPLETE HARDWARE COHERENCE ON TILED CMPS CAN BE REPLACED BY

AN OS-BASED APPROACH

Dr. B.Purna Satyanarayana

1
*, Ms. Priyadarshni Samal

2

1
* Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

bpurnasatyanarayana@thenalanda.com*, priyadarsini@thenalanda.com

ABSTRACT

The present chip-multiprocessors' (CMPs') shared bus or crossbar connectivity technologies are anticipated to become a bottleneck

that prohibits these architectures from scaling to more cores. By combining relatively straightforward cores with a lightweight point-

to-point link, tiled CMPs provide better scalability. Yet, because of these interconnections, spying is problematic, necessitating

alternative methods to store coherence..

This research suggests a novel, economical method that does not rely on hardware-maintained cache coherence to allow shared-

memory concurrent applications. The suggested mechanism is based on the fundamental assumptions that hardware enables remote

cache accesses and that mapping of lines to physical caches occurs at the page level with OS support. It just requires a minimal

amount of controlled data migration and replication and offers enough mapping flexibility thanks to an additional layer of indirection

between virtual pages and real tiles. We compare the proposed tiled CMP architecture to one with private caches and a distributed

directory cache coherence mechanism using the Splash-2 scientific benchmarks and ALPBench multimedia benchmarks. According

to experimental findings, the performance deterioration between the cache coherent architecture and the architecture with 16 and 32

processors is between 0% and 16% on average.

1 INTRODUCTION

Chip-multiprocessors (CMPs) have now replaced very wide-issue out-of-order superscalar processors as they pro- vide higher

aggregate computational power, multiple clock domains, better power efficiency and simpler design through replicated building blocks.

Current CMPs are commonly built around a relatively small number of cores (2 to 8),

∗This work was supported in part by EPSRC under grant GR/S79572/01 and by the EC under grants IP 27648 (FP6) and HiPEAC IST-004408.

each with its own L1, and possibly L2, cache, connected through an on-chip interconnect that is either a shared bus or

crossbar. Supporting shared-memory, parallel applications requires cache coherence, which is greatly facilitated by the use of

buses and crossbars in current CMPs. Such intercon- nects allow for straightforward hardware cache coherence mechanisms

based on snooping [26] and directories [14, 17]. However, such types of interconnect are expected to be- come a bottleneck as

the number of cores increases [20]. Ei- ther access latencies have to be significantly stretched or the area required by the

interconnects has to be increased to the point of becoming impractical. Tiled CMPs [4, 6, 19, 28, 29] have been advocated as a

possible alternative. Such sys-

tems are built from a relatively large number (≥ 32) of rela- tively simple cores plus a tightly integrated and lightweight

point-to-point interconnect. Unfortunately, such scalable in- terconnects complicate the implementation of snooping and

directory protocols. In fact, the existing hardware solution to cache coherence on such interconnects is to use fully dis-

tributed directory coherence protocols [22], which are noto- riously hard to implement and verify (e.g., [1]).

In this paper, we propose an alternative, cost-effective software/hardware mechanism to support shared-memory parallel

applications that forgoes hardware maintained cache coherence. The mechanism is based on the key ideas that mapping of

lines to physical caches is done at the page level with OS support and that the hardware efficiently supports remote cache

accesses. An extension of the basic scheme only allows some controlled migration and replication of data. Data is migrated

by refreshing the page mappings at barriers. Read-only sharing is done with the help of the ex- isting write-protection

mechanism in the TLB/OS. Overall, the mechanisms allow a sufficient degree of flexibility in the mapping and sharing. This

paper also addresses in depth some issues that arise from the implementation of the tech- nique, such as the implementation

of memory locks.

By moving the key coherence handling and decision mak- ing to software (in our case the OS), the proposed scheme, like

software-managed coherence mechanisms [8, 21], bene- fits from the possibility of modifying the protocol after hard-

ware shipping, which may allow for customizing the proto- col to application behavior and for more easily fixing bugs. Like other

recent attempts to divide coherence labor between OS/software and hardware [33, 34], the mechanism is likely to be more cost-effective

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 432 Copyright @ 2020 Authors

and easier to verify and validate than distributed directory schemes. Unlike such previous trap-based schemes, however, the small

hardware extensions to support an extra level of indirection between virtual pages and tiles, as well as to support remote cache accesses,

mini- mizes the need for OS and trap handler activity. In the pro- posed scheme, only the processor’s first load or store to data in a page

requires trap handler intervention and only the sys- tem’s first load or store to data in a page requires full OS intervention. Also, unlike

recent hardware-only schemes for co-operative distributed caching [2, 9, 16, 35] the proposed scheme does not rely on broadcasts,

centralized tag stores or large redundant tag stores in order to map, locate and access data cached remotely.

We evaluate the proposed tiled CMP architecture on benchmarks from two very different domains – the Splash-2 scientific

benchmarks and the ALPBench multimedia bench- marks. We compare the system against one with an SGI Ori- gin like distributed

directory cache coherence mechanism. Experimental results show that the proposed scheme per- forms very close to this system with

a performance gap as close as 0% (no gap), and 16% on average, across all bench- marks for 16 and 32 processors.

The rest of the paper is organized as follows: Section 2 describes the tiled CMP architecture that we assume; Sec- tion 3 describes

our proposed scheme to support shared- memory parallel programs; Section 4 describes our simu- lation infrastructure and our

evaluation methodology; Sec- tion 5 presents the experimental results; Section 6 discusses related work; and Section 7 concludes the

paper.

2 TILED ARCHITECTURES
 Current CMPs and Coherence Mechanisms

Current chip-multiprocessors are currently commonly built around a relatively small number of cores (2 to 8), each with its own L1,

and possibly L2, cache, and are connected through an on-chip interconnect to a lower level shared cache. So far, the choice of on-chip

interconnect has fol- lowed those of multi-chip symmetric multiprocessor (SMP) systems: shared bus fabrics and crossbars. The main

reason for this choice is that such interconnects allow a straight- forward implementation of coherence via snooping (bus) or directory

at the shared cache level (crossbar). Unfortunately, as pointed out in [20], future technology scaling will lead to on-chip interconnects

having different sets of tradeoffs and design issues than traditional off-chip interconnects. In particular, wire widths and the area

required by connectors

do not scale down at the same rate as other features shrink, which means that either the delay or the area overheads, or both,

of buses and crossbars increase as process scales. In fact, the detailed study in [20] clearly shows that the area and delay

overheads of buses and crossbars will become pro- hibitively high in CMPs with more than 16 cores in 65nm and smaller

processes.

In order to scale the number of cores in a CMP above this barrier, and into the numbers of cores proposed for tiled ar-

chitectures [4, 6, 19, 28, 29], it is necessary to resort to scal- able (i.e., point-to-point) interconnect types. Such intercon- nects

are suitable not only because their peak bandwidth nat- urally scales with the number of cores, but also because, due to the

short-length wires and low radix, their area overhead is a fixed, independent fraction of the number of cores. How- ever, they

do not lend themselves well to the implementation of snooping cache coherence protocols (although recent re- search

attempts to address this limitation [25]). The alterna- tive to continue enforcing cache coherence in such systems is to employ

distributed directory schemes, which have been used in multi-chip multiprocessors in the past (e.g., [1, 22]). These have

proven fairly scalable, reaching up to hundreds of processors. Snooping protocols are already somewhat dif- ficult to

completely debug and verify due to subtle corner cases and state transitions [11]1, and distributed directories, with even more

states, races, and corner cases, are notori- ously even harder to debug and verify (e.g., [1]). Most of this complexity stems

from the fact that requests cannot al- ways be resolved at the home directory, but must in some cases generate further

requests, such as forwarding and in- validation requests, which lead to complex protocols with subtle race conditions and

several pending states. All this complexity is of serious concern and designing and verifying the directory coherence protocol

for each new generation of the CMP architecture may likely become an expensive bot- tleneck.

An alternative to enforce coherence in a distributed mem- ory system is to use the OS’ virtual memory (VM) system to

handle the copies of virtual pages, as was done on soft- ware DSM systems (e.g., [5, 15, 18, 23]). In this scheme, all caches

are private and it is the responsibility of software to maintain coherence. As with distributed directories, such schemes have

only been tested in multi-chip systems and must be adapted to operate on a CMP. A major drawback of directly porting

software DSM schemes to the CMP en- vironment is that such schemes require moving, comparing (“diff”), and copying

data in physical memory pages to en- force coherence. This is because creating multiple physical copies of the same virtual

page is the only way to cope with

1
Further suggestion to the difficulty of complete verification is the re- cent Core 2 Duo Errata AI39: “Cache Data Access Request from One Core Hitting

a Modified Line in the L1 Data Cache of the Other Core May Cause Unpredictable System Behavior” [13].

false sharing and the inability of the hardware to identify which parts of a cache line have been modified. In this way, at

communication points, such as lock transfers and barriers, the individual copies must be compared against the previ- ous stable copy of

the page and the modifications must be merged into a single new stable copy of the page. These operations are likely to be extremely

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 433 Copyright @ 2020 Authors

L 1−I L 1− D L 1−I L 1−D L1−I L1− D

PE RA C PE RA C PE RA C

N C N C

L 1−I L 1− D L 1−I L 1−D L1−I L1− D

PE RA C PE RA C PE RA C

L1−I L1−D

L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D

PE RA C PE RA C PE RA C PE RAC PE RA C PE RA C

N C N C N C N C N C N C

L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D

NC
PE RA C PE RA C PE RA C PE RA C PE RA C

N C N C N C N C N C N C N C N C

L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D

PE RA C PE RA C PE RA C PE RA C PE RA C PE RA C PE RA C PE RA C

N C N C N C N C N C N C N C N C

L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D L 1−I L 1− D

PE RA C PE RA C PE RA C PE RA C PE RA C PE RA C PE RA C PE RA C

N C N C N C N C N C N C N C N C

costly in a CMP, will consume precious off-chip memory bandwidth, and generate much pollution in the relatively small on-chip caches.

Overall, the potentially complex hardware solution of distributed directories and the potentially high-overhead software-only

solution of a VM-based scheme are two ex- tremes in the spectrum of solutions for the cache coherence problem in tiled CMPs. In

Section 3 we describe our alter- native to such cache coherence mechanisms, after we define the baseline tiled architecture in the next

section.

 A Baseline Architecture

In this paper, we are concerned with tiled CMPs consist- ing of 32 or more processors. Such systems are built by replicating

regular building blocks, which are usually sim- ple and small enough that the maximum intra-tile wire delay is small (1 to 2 cycles). As

discussed in the previous sec- tion, snooping cache coherence approaches are unlikely to be suitable at such a scale due to the area

overheads of the

(a) Proposed tiled CMP overview.

broadcast interconnects they require, and the only currently established alternative, namely distributed directory coher- ence,

could prove to be prohibitively complex.

Before we describe our design, we first present the base- line tiled CMP that we assume. We assume a fairly generic tile

that consists of a compute processor (PE) that is a sim- ple single-issue RISC processor with separate and private in- struction

and data caches. These first level caches are virtu- ally indexed and physically tagged.

The on-chip interconnect fabric consists of a point-to- point network with a mesh topology where each tile is con- nected

to its four neighbors. Each tile contains a very simple network controller (NC) that performs simple dimension- ordered

routing. The number of message buffers in the NC is enough to guarantee maximum throughput, which cor- responds to

four non-conflicting transfers per cycle. Fig- ure 1(a) gives a high-level overview of the architecture (the shaded gray

components are explained in Section 3).

3 A HARDWARE/OS SCHEME TO AVOID CACHE INCOHERENCE
As described in Section 2.2, the baseline architecture does not support shared-memory parallel applications because it

suffers from the cache coherence problem. One option is to enforce cache coherence in hardware with a distributed di-

rectory protocol. For this purpose one would add directory tags and a directory controller to each node next to the L1 data

cache in Figure 1(a). In this section, we present an al- ternative solution. The scheme divides the work between the hardware

and the OS and, in reality, does not enforce co- herence across cached copies of data, but rather avoids the possibility of

incoherence by not allowing multiple modifi- able shared copies of data. The key ideas are to map data to tiles at the

granularity of pages under OS control and to support remote cache accesses in hardware.

 Caches and Coherence
This section describes the mechanism we propose to avoid incoherence. The basic idea is to treat all L1s as a sin- gle

logical cache and, thus, avoid replication of data, which can lead to data incoherence. This initial architecture is ex- tended

later in Sections 3.2 and 3.3 to allow some controlled migration and replication.

Communication between tiles

Communication within a tile

3.1.1 Data Placement and Remote Cache Accesses

Instead of trying to keep the L1 caches coherent, the pro- posed scheme avoids duplicate copies of a single cache

line.
(a) Remote cache access mechanism.

v
−
a
d
d
r

v
−
a
d
d
r

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 434 Copyright @ 2020 Authors

Figure 1. Proposed architecture overview.

To achieve this, every memory line can only reside in one L1 cache (the home cache or tile) and processors in

other \tiles must perform remote cache reads and writes to access

the data. Thus, instead of a directory controller we add a remote cache access controller (RAC) to each tile, as shown in Figure 1(a).

To receive and service remote data requests the RAC is given access to the network and it uses the ded- icated ports to the cache’s

data and tag arrays that would be otherwise used by the snooping or directory controller.

The simplest way to place and locate data in the L1 caches whilst enforcing a single copy of each line would be to stat- ically map

lines to L1 caches based on the address. This, however, is too restrictive and takes no account of the data access patterns. At the

other end of the spectrum, each line would be dynamically mapped to any one L1 cache and it would be located through broadcasts,

centralized tag stores, or redundant tag stores, as has been previously pro- posed [2, 9, 16, 35]. What we propose is to map whole mem-

ory pages to L1 caches through extensions to the OS page table and the hardware TLB mechanisms.

We expose the internal chip structure to the OS and ex- tend the traditional page table with a new table that maps virtual pages to

architectural tiles. This is matched with a new TLB-like hardware table that caches these translations and allows for fast identification

of the home L1 cache where data in the page can be found. Each tile is given one of such hardware structures, which we call a MAP.

The default pol- icy for the OS to map virtual pages to tiles is first-touch. Note that the proposed mechanism is different from simply

mapping memory pages to L1 caches based on the physi- cal address and using the virtual-to-physical page translation mechanism to

provide the run-time mapping. The problem with the latter is that physical addresses are bound to specific L1 caches, which limits the OS

flexibility in allocating phys- ical memory and may lead to fragmentation and inefficient use of physical memory. Additionally, it

makes any changes to the mappings much more involved, as the physical pages have to be moved in memory. It is for these reasons

that we decided to add this extra level of indirection.

One important design decision at this point is where to provide virtual-to-physical address translation. Traditional CMPs keep all

the translations of the local processor in the local TLB and ship only physical addresses to access lower level caches. A problem with

using physical addresses for the remote cache accesses in our architecture appears when virtually indexed L1 caches are used, which is

often the case in order to speed up accesses from the local processor. Thus, performing the virtual-to-physical address translations lo-

cally in the case of remote L1 accesses would require some (impractical) inverse translation at the remote tile. Our so- lution is to

keep the virtual-to-physical address translations only in the TLB next to the home L1 cache and to ship vir- tual addresses over the

network for remote cache accesses. Note that this is not intrinsic to our scheme, but a solution in case one wants to use virtually

indexed L1 caches; with physically indexed L1 caches our proposed scheme would

work as usual with physical addresses on the network.

In this scheme a processor request proceeds as follows (Figure 1(b)). Firstly, the virtual address is simultaneously used to

index the local L1 cache, to perform a local TLB lookup to obtain the physical address, and to perform a local MAP lookup to

obtain the identity of the home tile. If the re- sult of the MAP translation points to a remote L1 cache, the local cache access is

aborted. In this case, the result of the local TLB lookup is also ignored, including a possible TLB miss. The virtual address is

then shipped to the RAC in the remote tile over the network. At the remote tile, the virtual address is simultaneously used to

index the L1 cache and to perform a TLB lookup. To avoid delaying local cache re- quests due to remote cache requests we

provide an extra port to the TLBs. Since our L1 caches are virtually indexed, the cache lookup can proceed in parallel with

the TLB lookup and the extra TLB latency due to the extra port is unlikely to have any impact on the overall L1 access

latency. If the TLB lookup succeeds then a tag comparison follows, using the physical tag. A cache or TLB miss is handled as

usual. If the result of the MAP translation points to the local L1 cache then the local cache access proceeds as usual.

The above discussion only applies to data caches. Each tile has its own read-only instruction cache.

 Data Migration

data
send queue

Processing
Element data Tag

Comparison

data
Cache

data
Cache

p−addr p−addr
TLB TLB

tile # T
MAP local?

F
tile #

Network
Controller

send queue
v−addr

RAC queue

Network
Controller

Tag
Comparison

MAP

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 435 Copyright @ 2020 Authors

The proposed first-touch data mapping strategy, com- bined with the fact that mapping is done at the granularity of

pages, may lead to poor performance when data migrates across threads. Mechanisms have been proposed to allow

migration and replication of memory pages in CC-NUMA machines [31]. These are tailored to much larger systems with

larger latencies, and, thus, we borrow some of their ideas but adapt the mechanisms and policies.

We propose a simple mechanism that allows for some de- gree of migration by invalidating the mappings of virtual

memory pages to L1 caches. This is done by invalidating the MAP table in all tiles. After an invalidation, a first-touch policy

is again used for the new mappings. Thus, invali- dating the mappings does not in itself migrate pages, but it creates an

opportunity for this to happen. The invalidation is more easily implemented at a quiescent state where there are no pending

memory requests on chip. A natural point to perform such invalidation is at barriers. In many well- designed applications

barriers are used to signal change in the data access pattern and communication across threads. Thus, barriers are also

naturally good points for re-mapping and migration. Finally, to effect the migration of the data, all dirty lines in the L1 caches

must be written back at a map- ping invalidation such that the modified data may be reach- able after the re-mapping.

The actual invalidation is done in two phases. First, each

processor invalidates the local MAP table just before joining the barrier. This is done with a new instruction that is very similar to the

existing tlbia instruction in the PowerPC IS. At this point, the local cache controller starts writing back dirty cache lines to main

memory with the goal of hiding the write-back overhead with the idle synchronization time.

In the second phase, before releasing the barrier, one pro- cessor invokes a special system call to invalidate the OS’ in- ternal MAP

table. Also at this point (before barrier release) all tiles write back all remaining dirty cache lines. When the writebacks are

completed, the contents of the caches are invalidated and the barrier is released.

 Read Only Data Sharing

The proposed baseline scheme, coupled with the exten- sion to refresh mappings to allow migration, is likely to work well as long as

there is not much sharing of data at the gran- ularity of pages. Whilst full-blown sharing requires line- based hardware coherence,

some degree of sharing can be easily enforced by the OS with minimal hardware support. What we propose is a simple mechanism

that allows shar- ing of pages across multiple readers and a single writer at any given time. The mechanism works as follows. The

first processor to touch a given page for reading obtains a local mapping for it whilst the OS marks the page as read-only in the page

table and in the processor’s TLB and MAP. Other processors touching the same page for reading are allowed to create local mappings

for it, also in read-only mode. At this point, the OS does not need to keep track of which pro-

State in local MAP table:

1 − No Entry

2 − Remote

3 − Local R/W

4 − Local R/O

State in OS MAP table: A − No Entry

B − Shared

Cn− Owned by <n>

Transition serializes in OS

Transition does no serialize in OS

Transition caused by another tile

Figure 2. Sharing protocol for node X. The state of a page depends on its local (numbers) and OS (letters) state. Ac- tions shown in braces

are those taken by some other node Y.

1/A

{r}

w r

1/B

w r

rw 3/C
w r

X 4/B

{w}
2/CY rw

{w}

rw w

r

1/CY 4/CY

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 436 Copyright @ 2020 Authors

T

im
e

cessors are sharing the page. The first write by a processor to a page is intercepted by the OS, which then marks the page as

modified and makes this processor the owner of the page. Subsequent reads by other processors with existing lo- cal mappings

can continue to use these mappings and access local data. However, subsequent writes by other processors when intercepted

by the OS will not be allowed to proceed locally, but will generate a MAP entry (or change it if one al- ready exists) that

points to the owner node. Similarly, reads by processors without a local mapping for the page will gen- erate an entry pointing

to the owner node. Figure 2 shows a state diagram for the complete protocol. Note that most of the state transitions occur

only at the OS level and the hard- ware state machine (corresponding to the MAP state in the figure) is fairly simple.

The mechanism just described allows processors to con- tinue using local mappings and locally cached data even after other

processors write to data in the page. To prevent stale data from being used we assume a release consistency mem- ory model

and invalidate the MAP entries for shared pages on lock acquire operations. This is done by a special instruc- tion that clears

the valid bit of a MAP entry if the shared bit is set. By doing so we guarantee that all accesses to data mod- ified by other

processors will use a new remote mapping and will become remote. Entries that point to non-shared data don’t have to be

invalidated, since no migration happens at lock acquires and, thus, they do not change. It is also nec- essary to extend the

barrier actions used with the migration mechanism of Section 3.2 to include a full cache flush in ad- dition to the writebacks

and the refresh of the mapping. No special action is required on lock releases.

While this mechanism may seem very similar to previous software cache coherence mechanisms (e.g., [18]), it differs from

these in one crucial way. Namely, it does not allow multiple writers, reverts to a single up-to-date copy of every page upon a

write, and enforces remote cache accesses in such cases. The key benefit of this is that in our scheme, no multiple modified

copies of physical pages exist at any time and, thus, there is no need to perform expensive diff operations and copy data in

memory.

 Synchronization

Memory locks have been implemented in the past using either compare&swap-style atomic instructions or load-link

store-conditional (LL-SC) pairs. The latter approach has been favored recently because it is easier to implement in hardware

with cache coherence.

In our proposed architecture, compare&swap-style prim- itives can be more easily implemented than in current mul-

tiprocessors. This is because there is no replication of the lock variable in multiple caches and it is, thus, easier to en- force

the atomicity of the primitive. Implementing this prim-

itive then only requires adding the compare logic to the cache controller and blocking subsequent requests from other pro- cessors until

the swap is performed.

On the other hand, implementing load-link store- conditional pairs in our proposed architecture is more dif-
Tile A

Tile B

ficult than in current multiprocessors with cache coherence. In current CMPs, these are easily implemented by keeping

(a) Lock acquire in a system with cache coherence.

a RESERVE register in the local L1 and relying on the hard-

ware coherence mechanism to detect conflicting stores (Fig- ure 3(a)). Keeping the RESERVE in the local L1 of the re-
ile caching the Locks

LL 0x10 LL 0

LL 0x30

LL 0x10

LL 0

Cache SC 0x10, 1
Coherence

Protocol SC OK

SC FAIL

SC 0x10, 1

LL 0

0x10

clear

0x10

clear

RESERVE RESERVE

LL 0x10

0x10

0x30

0x10

0x30

RESERVE

T
im

e

C
o

m
m

u
n
ic

at
io

n
 w

it
h

 T
il

e
A

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 437 Copyright @ 2020 Authors

Tile caching the Locks

LL 0x10

A LL 0

LL 0x10

questing processor will not work, however, without cache

SC 0x10, 1

L 0

B LL 0

SC 0x10, 1

coherence. Instead, to implement the LL-SC primitive we place the RESERVE register in the home L1, and this regis- ter is then

shared by all processors attempting to obtain any locks that map to this L1 cache. However, now a livelock is possible when

processors attempting to lock different lock
SC FAIL

LL 0x10 LL 0

SC 0x10, 1

SC 0x30, 1 SC FAIL

LL 0x30 LL 0

A SC OK

SC 0x10, 1

B SC OK

LL 0x10

LL 1 C

variables displace each other’s LL from the RESERVE regis- ter (Figure 3(b)). Our solution to this is to change the opera- tion of the

RESERVE register such that once set it cannot be overwritten by LL requests to other lock addresses.

Another problem with this approach is shown in Fig- ure 3(c), where more than one processor obtains the same lock

simultaneously. This can happen when the LL and SC operations of three processors are interleaved in such a way that a second SC

incorrectly succeeds because it is matched with the third LL. Our solution to this problem is to extend
(b) Livelock.

Tile A

(c) Same lock acquired twice.

Tile caching the Locks

the RESERVE register with the ID of the tile that success- fully sets it, and to only consider successful SCs that match the value in the

register and come from the same tile.

The solutions proposed so far lead to another problem when the thread holding the RESERVE register fails to is- sue the matching

SC, either accidentally or maliciously. To handle this, we introduce a timeout mechanism to clear the RESERVE register. To account

for variabilities in latencies in the network, we place this timeout mechanism not in the tile holding the RESERVE, but in the

requesting tile, which is then responsible for sending a special reservation cancel message to the tile holding the lock (Figure 3(d)).

One final side effect of using the mechanism described in Section 3.3 is that the LL instruction has to be treated as a write when it

comes to replication. This guarantees that any updates to the lock variable will become visible to processors issuing LL instructions even

if they previously had a read- only copy of the page.

 Multi Level On Chip Cache Hierarchies

The design proposed so far assumes only a single level of cache per tile and no other level of cache on chip. In some cases, a higher

storage capacity per tile may be required. Our architecture can be extended to work with L2 caches in each tile and our key ideas can

still be applied. In this case, the L2s take the roles of the L1s in the architecture described so

(d) Timeout mechanism to prevent dead- locks.

clear

0x10

clear

0x10

RESERVE

LL 0x10

LL 0

LL cancel

LL 0x10

LL 0

SC 0x10, 1

SC OK

clear

A:0x10

clear

A:0x10

RESERVE

Timeout
Counter

Timeout
Counter

T
im

e

C
o

m
m

u
n
ic

at
io

n
 w

it
h

 T
il

e
B

T
im

e

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 438 Copyright @ 2020 Authors

Figure 3. Problems of locks implemented with load-link

(LL)/store-conditional (SC).

far and constitute a single logical shared cache. Again, map- ping of memory lines to L2 caches is done at the granularity of

pages with both OS and hardware support. The migration and shared-only replication mechanisms can still be applied. The

only requirement is that the L1 caches must only be al- lowed to cache lines that are mapped to the local L2 cache. The RAC

is still connected to the L1. Coherence between the L1 and L2 in the same tile can be easily maintained by making the L1

write-through.

 Cost Comparison with Directory Coherence

Since we are proposing to replace a directory controller and its protocol with our RAC+MAP and a combined hard-

ware/OS protocol, it is relevant to compare both schemes’ area and complexity overheads. In particular, our main goal is to

provide a less complex alternative. A comprehensive comparison between the two competing approaches would require the

full design of the controllers and their circuit im- plementation. This is a highly involved task and, instead, we

attempt to provide some intuition into why we believe our scheme is less complex.

Like a directory controller, the RAC has to handle remote read and write requests. Unlike a directory controller, it does not have to

deal with forwarded transactions and multiple in- validations, which lead to complex protocols with subtle race conditions and several

pending states. The RAC can directly handle requests and generate responses for all transactions in our protocol. Thus, the RAC has

fewer states and a much simpler finite state machine, which means that it has simpler logic than a directory controller does. This means

that the resulting protocol is simpler to verify and validate.

As far as state storage is concerned, there is probably no significant difference. For instance, for a 32 tile system a MAP table with

128 entries, each with 22 bits (15 bits for the virtual address tag, 5 bits for the tile ID, 1 shared bit, and 1 valid bit) would have a total of

352 bytes. A directory for 32Kbytes L1 caches and 32bytes lines would have 34 bits per entry (32 bits for the sharing vector and 2

bits for line state), for a total of about 4Kbytes.

On the negative side, our system requires an additional port to the 4-way associative TLB to handle remote accesses independently

from the CPU. As we mentioned earlier this is unlikely to impact the overall L1 access latency with our virtually indexed caches.

4 EVALUATION SETUP

 Applications

For our performance analysis, we use the Splash-2 bench- marks [32] and three ALPBench benchmarks [24]. The

 Benchmark Input Instr. Lock Barr.

S
p

la
sh

2
 K

er
. cholesky tk29.O 1,234M 72,075 3

FFT 65,536 points 58M 32 7

LU 512x512 matrix
16x16 block

389M 32 67

radix 262,144 keys 54M 406 12

S
p

la
sh

2
 A

p
p

.

barnes 16,384 particles 4,361M 69,360 18

fmm 16,384 particles 2,903M 47,074 34

ocean 258x258 grid 412M 6,656 900

radiosity demo 646M 281,217 19

raytrace car 2,006M 95,528 2

volrend head 1,344M 38,604 20

water-nsq 512 molecules 652M 35,360 19

water-spa 512 molecules 664M 609 19

A
L

P
 facerec ALP Training 2,826M 30 3

mpegdec 525 tens 040.m2v 1,049M 29 41

mpegenc Output of mpegdec 9,477M 29 40

Table 1. Characteristics of the applications used. The num- ber of instructions refers to the total number for a sequential execution of the

benchmark. The number of locks refers to those encountered by all 32/16 tiles (Splash-2/ALPBench) within the application (not library) code.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 439 Copyright @ 2020 Authors

Splash−2

L
1

 D
-c

ac
h

e

size 32K

hit latency 3 cycl.

miss latency 200+16 cycl.

line size 32 bytes

associativity 4-way

writeback buf. 8

T
L

B
/M

A
P

 entries 128

page size 4K

associativity 4-way

hit latency 1 cycl.

miss latency 200 cycl.

RAC input queue 32 entry

Splash-2 benchmarks are representative of scientific and en- gineering workloads and the ALPBench benchmarks are

representative of multimedia workloads. Both benchmark suites use explicit locks and barriers, assume the release con-

sistency memory model, and rely on hardware maintained cache coherence if caches are used. We use the reference in- puts

for the Splash-2 benchmarks except radiosity for which we use a reduced input set to keep simulation time manage- able.

Similarly, we reduced the input for mpegdec to only 20 frames. Because the input sets for the ALPBench bench- marks were

not intended to be used with more than 16 pro- cessors, we do not simulate larger systems for these bench- marks.

Speedups are reported with respect to the execution time of the sequential programs on a single processor after initial-

ization. Table 1 lists the benchmarks we used.

The benchmarks were compiled with gcc 3.4.4 and glibc

2.3.5 for PowerPC. Compiler and library were modified such that they use synchronization primitives that have been adapted

to our architecture.

 Simulation Environment

Remote cache access latency without any congestion:

2 ∗ (h + w) + t + 1, where h is the number of hops, w is the number of words in the message (2 or 3), and t is the access time at the remote cache.

Table 2. Memory system configuration.

We implemented a simulator using the Liberty Simula- tion Environment (LSE) [30]. A tile consists of a PowerPC core,

a network controller, a data cache module, and a pri- vate instruction cache. The single-issue CPU is implemented as an 8-

stage pipeline running at 2GHz and is simulated in detail. The cache has been implemented with the cache module from

SimpleScalar [3]. The details for the mem- ory system are shown in Table 2. We also implemented a detailed wormhole

routed interconnect, where contention is accurately simulated at the network end points as well in- termediate nodes. System

calls and interrupts to the OS are assumed to take 2000 cycles.

 Systems Evaluated

We compare our architecture against a similarly config- ured one where the L1 caches are kept coherent on a cache line

basis through an SGI-Origin-like distributed directory protocol [22]. We note that developing this protocol was
40 20

30 15

20 10

10 5

0
cholesky lu

arnes

ocean

raytrace

w−nsquared

0

facerec

mpegenc

ALPBench

Dir−Coh
NUCA−Dist

SW DSM

S
p

e
e

d
u

p

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 440 Copyright @ 2020 Authors

fft

radix

tylrendw−spatial
mpegdec

Figure 4. Speedups for 32 (Splash-2) and 16 (ALPBench) tiles compared to the execution time of a single tile.

greatly simplified by the use of common simulation artifices and the complexity we found is a far cry from the complex- ity we expect

from a real implementation. For fairness of comparison, we augment the directory scheme with migra- tion of pages at barriers,

which minimizes any negative ef- fects from the first-touch home-allocation policy in the ini- tialization phase. The cost of migration

is the same as in our system: 2000 cycles plus the cost of flushing the caches. For the directory controller, we assume an aggressive

hard- ware implementation that requires only 5 cycles to process each request. We also compare our architecture against one that

maintains cache coherence through a TreadMarks-like software DSM protocol [15]. Our implementation is much simplified in that it

only takes into consideration the over- head of creating diffs and cache pollution by twin and diff creation. To estimate the cost of the

diff we wrote a highly optimized kernel that compares the contents of two physical pages in memory and writes back one of the values

if they differ. The cost was measured to be about 50K cycles.

We refer to the systems as NUCA-Dist for a system that implements our architecture with both re-mapping and read- only sharing of

pages, Dir-Coh for the system with directory coherence, and SW DSM for the system with software DSM coherence.

5 EXPERIMENTAL RESULTS

 Overall Performance

We start by comparing the overall performance of our architecture against the hardware distributed directory sys- tem. Figure 4

presents the speedups for 32 (Splash-2) and 16 (ALPBench) tile systems of Dir-Coh, NUCA-Dist, and SW DSM. We can see that Dir-

Coh scales well for most bench- marks, with an efficiency (speedup divided by number of processors) of 81% on average. These

results are somewhat better than those in [22] mainly due to the lower communi- cation latencies observed in a single chip

multiprocessor.

Looking at the performance of our scheme (NUCA-Dist) we can see that it performs fairly close to the hardware di-

rectory coherence system, with a performance gap for 32 processors ranging from 0% (no gap) to 32% (for radiosity), and

16% on average. Moreover, the performance gap is less than 10% for 6 out of 15 benchmarks, which is an impressive result

considering that the directory coherence system uses a very aggressive hardware implementation and that our ar- chitecture

requires only simple hardware support.

Finally, SW DSM performs, with few exceptions, signifi- cantly worse than the other systems. While the system per-

forms very well on benchmarks that mainly use barriers for synchronization (the good results are possibly due to our

simplifications), the results show that it is not able to pro- vide sufficient scalability for most applications. The gap to our

system is on average 27%, ranging from -57% to 98%. These results are in line with those reported in [12].

 Memory Access Breakdown

To better understand the behavior of the proposed archi- tecture, we track the outcome of each processor memory re- quest.

Figure 5 shows the breakdown of memory requests for each benchmark and for configurations with 32 (Splash-2) and 16

(ALPBench) processors. For each benchmark and configuration, the bar is normalized to the total number of processor

memory requests, which does not vary noticeably across the different systems. The bars are broken down into the following

components: accesses that hit in the local L1 cache (local hits); accesses that hit in a remote L1 cache (re- mote hits); accesses

that go off-chip following a miss in the local cache (local miss); and accesses that go off-chip fol- lowing a miss in a remote

cache (remote miss).

The figure shows that the fraction of off-chip accesses is fairly small in most cases, with the exception being ocean,

where the off-chip accesses for all systems account for about 12% of all requests. Another exception is facerec, where

sequential execution shows only a small number of off-chip

Single tile: 32 tiles:
Dir−Coh N−Dist

Cholesky

FFT

LU radix

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 441 Copyright @ 2020 Authors

local hits

remote hits

local miss

remote miss

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

Single tile: 32 tiles:
Dir−Coh N−Dist

barnes

fmm

ocean

radiosity

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

Single tile: 32 tiles:
Dir−Coh N−Dist

raytrace

volrend

water−nsquared

water−spatial

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

Single tile: 16 tiles:
Dir−Coh N−Dist

facerec

mpegdec

mpegenc

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

Figure 5. Distribution of memory accesses into local and remote, further divided into cache hits and misses.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 442 Copyright @ 2020 Authors

401
local

remote

avg

Dir−Coh

accesses, but both parallel systems show a large fraction of off-chip accesses. Given this generally small number of off- chip accesses,

we expect the main differentiating factor to be the ratio of local to remote cache accesses.

The results for NUCA-Dist show that the fraction of re- mote cache accesses is fairly small for most benchmarks, except cholesky

and mpegdec, and, to a lesser extent, lu and radiosity. Such a relatively small number of remote cache accesses partially explains the

good performance of our architecture for many benchmarks. An interesting case is cholesky where the fraction of remote cache

accesses is high compared to most benchmarks, but its performance with NUCA-Dist is good. On the other hand, some bench- marks,

such as ocean and barnes, show a small fraction of remote cache accesses, but their performance with NUCA- Dist is not as good as

some of the other benchmarks. The re- sults for Dir-Coh, on the other hand, show that it incurs very few remote accesses (i.e., cache-to-

cache transfers), which mainly explains its very good performance.

To try to further reduce the amount of remote accesses in NUCA-Dist we experimented with 1KByte pages. The re- sults (not

shown) were, however, not much different from those with 4KByte pages and the small gains from the re- duction in remote accesses

were negated by the increase in cold and capacity misses in the TLB and MAP tables.

The impact of local, remote, and off-chip accesses can be further seen in Figure 6, which shows the average load laten- cies, in cycles,

for the different types of loads for NUCA-Dist and for the average load for Dir-Coh. While the latencies for remote loads in NUCA-Dist

are significantly larger than those of local loads, the average latencies are fairly close to

the local ones and, thus, very close to those in Dir-Coh.

Migration and replication not only improve the average load latency by converting remote accesses to local ones, but also

reduce the average load latency of the remote loads themselves (results not shown). This is because reducing re- mote

accesses reduces the contention that occurs when mul- tiple requests target the same tile.

 Network and Contention Effects

One important effect of our proposed mechanism is a po- tential increase in the number of messages in the network, due to

the remote accesses used in the scheme. To properly account for this effect, we modeled the network in detail in- cluding

congestion both at intermediate nodes and at the end points. Congestion at the end points does lead to some per- formance

degradation and is one of the main reasons for the relatively large remote cache access latency shown in Fig- ure 6 (note that

for a 32 tile system the uncontended remote cache access latency should be around 18 processor cycles). On the other hand,

our results show that congestion inside the network is small and leads to negligible performance im- pact. One of the reasons

for this is the relatively small num- ber of messages in-flight in the network at any given time.

 Impact of Flushing and Invalidations

Our read-only sharing scheme (Section 3.3) involves the potentially very expensive operations of flushing caches on

barriers and invalidating the MAP table on lock acquires. To assess the actual impact of these operations’ overheads on

60

50

40

30

20

10

0

cholesky lu

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 443 Copyright @ 2020 Authors

barnes

ocean

raytrace

w−nsquared

facerec

mpegenc

fft
radix

fmm
radiosity

volrend
w−spatial

mpegdec

Figure 6. Average latencies for local, remote, and all loads for NUCA-Dist. The average latencies for Dir-Coh are shown as a

comparison. The y-axis shows the latency in processor cycles.

Table 3. Overhead for NUCA-Dist with 32 processors in

% caused by flushing the cache at barriers and invalidating the MAP table on a lock acquire.

35

30

25

20

15

10

5

0
cholesky lu

barnes

ocean

raytracew−nsquared

Benchm. Barrier Lock

ocean 10.56 <0.01

radiosity 3.74 <0.01

raytrace <0.01 5.57

volrend 0.00 0.00

water-nsq 0.18 0.43

water-spa 0.47 0.04

Benchm. Barrier Lock

cholesky <0.01 0.77

fft 0.23 0.04

lu 8.01 <0.01

radix 8.75 0.17

barnes <0.01 <0.01

fmm 1.67 0.21

S
p

e
e

d
u

p

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 444 Copyright @ 2020 Authors
[Type text] [Type text] [Type text]

fft
radix

mm
radiosity

volrend w−spatia

our benchmarks, we run a modified version of our scheme
that does not suffer from these overheads.

The results of this analysis for a 32 core system are shown in Table 3 for the Splash-2 benchmarks. For most bench- marks, the

overhead stays well below 1%. Exceptions are ocean, which experiences close to 11% overhead at barri- ers, and raytrace, which

experiences 6% overhead at locks. The overhead for ocean was expected considering that this benchmark has 900 barriers. Similarly,

since raytrace has a high number of locks, it is not much of a surprise that it suffers from invalidating the MAP table. Still, other

bench- marks have similar numbers of locks and do not suffer as much. In these benchmarks a significant number of pages are not

mapped as shared on a lock acquire, and thus are not invalidated. While these overheads are a non-negligible cause of some

performance loss in three benchmarks, they do not affect the others as badly as one might expect.

 Multi level On Chip Cache Hierarchies

The design evaluated so far assumes only a single level of cache per tile. We also evaluated systems with a 128KByte L2 cache per

tile and a write-through L1 cache with the same size as before. The total L2 capacity on chip of 4MBytes and the relatively small

capacity per core is in line with what

Figure 7. Speedups for 32 tiles with L2 caches compared to the execution time of a single tile also with L2 cache.

could be expected from a CMP with 32 cores. Each L2 has 20 cycle access time.

Figure 7 shows the speedup results of such a system for Dir-Coh and NUCA-Dist for the Splash-2 benchmarks. Note that

these speedup numbers are not directly comparable to those in Figure 4, because they are normalized to differ- ent

sequential execution times. The figure shows that the performance gap between NUCA-Dist and Dir-Coh remains mostly the

same as for systems without the second-level cache (the gap range is now 1%-32% and the average gap is 15%),

demonstrating that our scheme also works with the addition of a second level cache.

6 RELATED WORK

The work in [2] extended the original uniprocessor NUCA proposal of [16] for CMPs. Unlike our work, that work

focused on a large shared L2 and assumed that L1 co- herence is maintained through directories.

Closer to our work, [7, 9, 35] considered the tradeoffs in organizing the L2 caches in a tiled CMP where L2 is physi- cally

distributed along with each tile. Similarly to ours, those works considered the option of organizing these distributed L2 caches as a

logically single L2 cache. They differ from ours in the following ways: firstly, the L1 caches are private to each tile and allow

replication of data, such that coher- ence is always required; secondly, those works propose tech- niques that allow replication of data in

the L2 caches that is at the line level and is controlled by the hardware. Our work emphasizes simplicity and only allows a very

restricted de- gree of replication that is totally controlled by the OS and, thus, forgoes hardware coherence mechanisms.

Our work is also similar in spirit to attempts to migrate most of the cache coherence management to software [8, 21]. Like those

systems, our proposal benefits from the possibil- ity to modify, and fix, the protocol with software modifi- cation and without any

hardware changes. Those systems, however, run a full-blown coherence protocol in a dedicated protocol processor or a dedicated

processor context. Even closer to ours are recent works that attempt to transfer some of the coherence burden to the OS/software [33,

34]. Un- like such previous trap-based schemes, however, the small hardware extensions that we propose minimize the need for OS

and trap handler activity. In our proposed scheme, only the processor’s first load or store to data in a page requires trap handler

intervention and only the system’s first load or store to data in a page requires full OS intervention. An- other important difference is

that all those schemes focused on coherence mechanisms for multi-chip systems.

There have been several proposals for tiled CMP archi- tectures [4, 6, 19, 28, 29]. Most of these have focused on novel execution

paradigms to exploit ILP and DLP in single- threaded applications. In the few studies with parallel appli- cations, it is assumed that

there is some hardware mecha- nism for cache coherence, but no details are given. Closer to our architecture, [6] does not provide

hardware cache coher- ence, but, unlike ours, relies on the programmer/compiler to maintain coherence.

Our work is related to previous work on OS directed page migration and replication in CC-NUMA environments, such as [31]. Those

Dir−Coh NUCA−Dist

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 445 Copyright @ 2020 Authors
[Type text] [Type text] [Type text]

differ from ours in that the hardware cache co- herence mechanism of CC-NUMA machines supports fine- grain caching of memory

lines, so that the page-level migra- tion and replication is only necessary when the workloads overflow the private caches.

While most past shared-memory systems offered cache coherence in hardware, the Cray T3D and T3E are notable exceptions [27].

Unlike our proposed system, those ma- chines did not support remote cache accesses and did not offer OS control of caching.

Thus, avoiding incorrect local caching of shared data was left to the responsibility of the programmer/compiler. Hardware supported

remote memory

accesses were also proposed in the M-Machine [10]. How- ever, that system also allowed indiscriminate private caching of

data and no details are given on how coherence would be maintained, and it leaves the decision of caching versus remote

accesses to the programmer/compiler.

Finally, our work is also related to previous work on soft- ware DSM systems, such as [5, 15, 18, 23]. Similarly to our

proposal, those also tried to avoid the costs of hardware coherence by using the OS page mechanism to enforce co- herence,

but unlike ours, the majority of those systems sup- ported full-blown coherence in software with full replica- tion and

multiple readers and writers. Our proposal, on the other hand, allows only a single writer at a time and relies on the

relatively short communication delays on chip to per- form efficient remote cache accesses. While [23] enforced a single-

writer policy, it allowed ownership to move across nodes instead of enforcing remote accesses, which can lead to significant

traffic. In addition, while [18] supported re- mote writes, it did not support remote reads, which had to be implemented by a

tortuous mechanism by which the remote node performs remote writes on request. Those works also differ from ours in that

they were tailored to multi-computer systems, where no hardware-supported single address exists.

7 CONCLUSION

In this paper, we proposed and evaluated a novel cost- effective software/hardware mechanism to support shared-

memory parallel applications that forgoes hardware main- tained cache coherence. The proposed mechanism treats all

caches in the tiled CMP as a single logical cache and is based on the key idea that mapping of lines to physical caches is done

at the page level with OS support. We extend a tiled CMP architecture with this mechanism and evaluate it on the Splash-2

and ALPBench benchmarks against an SGI- Origin-like cache coherent system. We propose two simple mechanisms to

perform migration of pages and sharing of read-only data. These mechanisms bring the performance of the proposed system

within 16% on average for 16 and 32 processors of the directory coherent system across all bench- marks. This is an impressive

result considering that the di- rectory coherence system uses a very aggressive hardware implementation and that our

architecture requires only sim- ple hardware support.

REFERENCES

[1] D. Abts, S. Scott, and D. J. Lilja. So Many States, So Lit- tle Time: Verifying Memory Coherence in the Cray X1. In Proceedings

of IPDPS 17, Apr. 2003.
[2] B. M. Beckmann and D. A. Wood. Managing Wire Delay

in Large Chip-Mltiprocessor Caches. In Proceedings of MI- CRO 37, pages 319–330, Dec. 2004.

[3] D. Burger, T. M. Austin, and S. Bennett. Evaluating Future Microprocessors: The SimpleScalar Tool Set. Tech. Report CS-TR-1996-1308,

University of Wisconsin-Madison, 1996.
[4] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.

John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yo- der, and the TRIPS Team. Scaling to the End of Silicon with EDGE Architectures.

Computer, 37(7):44–55, July 2004.
[5] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementa-

tion and Performance of Munin. In Proceedings of SOSP 13, pages 152–164, Oct. 1991.
[6] C. Caşcaval, J. G. Castaños, L. Ceze, M. Denneau, M. Gupta,

D. Lieber, J. E. Moreira, K. Strauss, and H. S. Warren, Jr. Evaluation of a Multithreaded Architecture for Cellular Com- puting. In Proceedings

of HPCA 8, pages 311–322, Feb. 2002.
[7] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multi-

processors. In Proceedings of ISCA 33, pages 264–276, June 2006.
[8] M. Chaudhuri and M. Heinrich. SMTp: An Architecture for

Next-generation Scalable Multi-threading. In Proceedings of ISCA 31, pages 124–137, June 2004.
[9] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimiz-

ing Replication, Communication, and Capacity Allocation in CMPs. In Proceedings of ISCA 32, pages 357–368, June 2005.
[10] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang,

Y. Gurevich, and W. S. Lee. The M-Machine Multicomputer. International Journal of Parallel Programming, 25(3):183– 212, June 1997.
[11] E. Hagersten. Personal Communication regarding the verifi-

cation of the coherence protocol of Sun Microsystems’ Enter- prise Servers E3000, E4000, E5000 and E6000. July 2007.
[12] L. Iftode, J. P. Singh, and K. Li. Understanding Applications

Performance on Shared Virtual Memory Systems. In Pro- ceedings of ISCA 23, pages 122–133, May 1996.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 446 Copyright @ 2020 Authors
[Type text] [Type text] [Type text]

[13] Intel. Intel Core2 Extreme Processor X6800 and Intel Core2
Duo Desktop Processor E6000 and E4000 Sequence Specifi- cation Update, July 2007. Document No: 313279-016.

[14] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5

Chip: A Dual-Core Multithreaded Processor. IEEE Micro, 24(2):40–47, March-April 2004.
[15] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.

TreadMarks: Distributed Shared Memory on Standard Work- stations and Operating Systems. In USENIX Winter 1994 Technical Conference

Proceedings, pages 115–131, Jan. 1994.
[16] C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-

Uniform Cache Structure for Wire-Delay Dominated On- Chip Caches. In Proceedings of ASPLOS 10, pages 211–222, Oct. 2002.
[17] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-

way Multithreaded Sparc Processor. IEEE Micro, 25(2):21– 29, March-April 2005.
[18] L. I. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas,

M. Cierniak, S. Parthasarathy, W. Meira, Jr., S. Dwarkadas, and M. L. Scott. VM-Based Shared Memory on Low-Latency, Remote-Memory-

Access Networks. In Proceedings of ISCA 24, pages 157–169, June 1997.
[19] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Phar-

ris, J. Casper, and K. Asanović. The Vector-Thread Architec- ture. In Proceedings of ISCA 31, pages 52–64, June 2004.

[20] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in Multi-core Architectures: Understanding Mechanisms, Over- heads and

Scaling. In Proceedings of ISCA 32, pages 408– 419, June 2005.
[21] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-

moni, K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,

M. Horowitz, A. Gupta, M. Rosenblum, and J. L. Hennessy. The Stanford FLASH Multiprocessor. In Proceedings of ISCA 21, pages

325–337, Apr. 1994.
[22] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA

Highly Scalable Server. In Proceedings of ISCA 24, pages 241–251, June 1997.
[23] K. Li. IVY: A Shared Virtual Memory System for Parallel

Computing. In Proceedings of ICPP 1988, volume 2, pages 94–101. Pennsylvania State University Press, Aug. 1988.
[24] M. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes.

The ALPBench Benchmark Suite for Complex Multimedia Applications. In Proceedings of IISWC 2005, pages 34–45, Oct. 2005.
[25] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token coher-

ence: Decoupling performance and correctness. In Proceed- ings of ISCA 30, pages 182–193, June 2003.
[26] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-

Thread Itanium Processor. IEEE Micro, 25(2):10–20, March- April 2005.
[27] S. L. Scott. Synchronization and Communication in the T3E

Multiprocessor. In Proceedings of ASPLOS 7, pages 26–36, Oct. 1996.
[28] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin.

WaveScalar. In Proceedings of MICRO 36, pages 291–203, Dec. 2003.
[29] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt,

B. Greenwald, H. Hoffmann, P. Johnson, J. Kim, J. Psota,

A. Saraf, N. Shnidman, V. Strumpen, M. Frank, A. Agarwal, and S. Amarasinghe. Evaluation of the Raw Microprocessor: An

Exposed-Wire-Delay Architecture for ILP and Streams. In Proceedings of ISCA 31, pages 2–13, June 2004.
[30] M. Vachharajani, N. Vachharajani, and D. I. August. The Lib-

erty Structural Specification Language: A High-Level Model- ing Language for Component Reuse. In Proceedings of PLDI 2004,

pages 195–206, June 2004.
[31] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Oper-

ating System Support for Improving Data Locality on CC- NUMA Compute Servers. In Proceedings of ASPLOS 7, pages 279–289,

Oct. 1996.
[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The

SPLASH-2 Programs: Characterization and Methodological Considerations. In Proceedings of ISCA 22, pages 24–36, June 1995.
[33] H. Zeffer and E. Hagersten. A Case For Low-Complexity MP

Architectures. In Proceedings of the Conference on Super- computing, Nov. 2007.
[34] H. Zeffer, Z. Radović, M. Karlsson, and E. Hagersten. TMA:

A Trap-Based Memory Architecture. In Proceedings of ICS 20, pages 259–268, June 2006.
[35] M. Zhang and K. Asanović. Victim Replication: Maximizing

Capacity while Hiding Wire Delay in Tiled Chip Multiproces- sors. In Proceedings of ISCA 32, pages 336–345, June 2005.

View publication stats

https://www.researchgate.net/publication/224343623

