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THE 12-CORE AMD OPTERON PROCESSOR, CODE-NAMED ‘‘MAGNY COURS,’’ 

COMBINES ADVANCES IN SILICON, PACKAGING, INTERCONNECT, CACHE 

COHERENCE PROTOCOL, AND SERVER ARCHITECTURE TO INCREASE THE 

COMPUTE DENSITY OF HIGH-VOLUME COMMODITY 2P/4P BLADE SERVERS 

WHILE OPERATING WITHIN THE SAME POWER ENVELOPE AS EARLIER-

GENERATION AMD OPTERON PROCESSORS. A KEY ENABLING FEATURE, THE 

PROBE FILTER, REDUCES BOTH THE BANDWIDTH OVERHEAD OF TRADITIONAL 

BROADCAST-BASED COHERENCE AND MEMORY LATENCY.  
 
Recent trends point to high and growing demand for increased compute den- 
sity in large-scale data centers. Many popular server workloads exhibit abundant process- and thread-

level parallelism, so benefit di- rectly from additional cores. One approach to exploiting thread-level 
parallelism is to in- tegrate multiple simple, in-order cores, each with multithreading support. Such 
an approach has achieved high batch through- put on some commercial workloads, but has 

limitations when response time (latency), distribution of response times (quality of service, or QoS), 
and user experience are a concern.

1,2
 Examples of highly threaded applications requiring both high 

throughput and bounded latency include real-time trad- ing, server-hosted game play, interactive sim- 

ulations, and Web search. 
Despite focused research efforts to sim- plify parallel programming,

3
 most server applications 

continue to be single-threaded and latency sensitive, which favors the use of high-performance 
cores. In fact, a com- mon use of chip multiprocessor (CMP) serv- ers is simply running multiple 

independent instances of single-threaded applications in multiprogrammed mode. In addition, for 
workloads with low parallelism, the highest performance will likely be achieved by a CMP built 
from more complex cores capable of exploiting instruction-level parallelism from the small number 

of available software threads. Similarly, many high-performance computing applications that 
operate on large data sets in main memory and use soft- ware pipelining to hide memory latency 
might run best with moderate numbers of high-performance cores. 

The AMD Opteron processor has hard- ware support for virtualization.
4
 It lets multi- ple guest 

operating systems run on a single system, fully protected from the effects of other guest operating 
systems, each running 

its own set of application workloads. A com- mon usage scenario is to dedicate one core 

per guest operating system to provide hard- ware context (thread)-based QoS. Data 
centers are consolidating legacy single- application servers onto high-core-count dual- 
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and quad-processor (2p and 4P) blade and rack servers—the dominant seg- ment of the 
server market. By doubling com- pute density, ‘‘Magny Cours’’ doubles the number of 
guest operating systems that can be run per server in this mode. By using larger servers 

in place of a pool of smaller servers (say, one 4P blade versus four 1P blades), the 
operating system or hypervisor can flexibly allocate memory and I/O resour- ces across 
applications and guest operating systems as needed and on demand. 

Efficient power management is another first-order consideration in data centers since 

power budget determines both the data center’s maximum scale and its oper- ating cost. 
Benchmarks such as SPEC- Power2008 measure power consumption and performance 
at different hardware uti- lizations. Such benchmarks reward designs that provide more 

performance within the same power envelope and conserve power when idle. The 
consolidation of multiple single-application servers with low hardware utilization levels 
onto high-core-count blade servers using virtualization results in signifi- cant power 

savings in the data center. 

Processor overview 

The basic building block in ‘‘Magny Cours’’ is a silicon design, a node that inte- 

grates six x86-64 cores, a shared 6-Mbyte level-3 (L3) cache, four HyperTransport3 
ports, and two double data rate 3 (DDR3) memory channels (see Figure 1). We built 
the node using 45-nanometer silicon on in- sulator (SOI) process technology. 

 

‘‘Magny Cours’’ die 
Each ‘‘Magny Cours’’ processor core is an aggressive out-of-order, three-way superscalar 

processor. It can fetch and decode up to three x86-64 instructions each cycle from the 
instruction cache. It turns variable-length x86-64 instructions into fixed-length macro- 

operations (mops) and dispatches them to two independent schedulers—one for integer 

 
 

and one for floating-point and multimedia operations. These 

schedulers can dispatch up to nine mops to the following execution 
resources: 

 
● three integer pipelines, each containing an integer-execution unit 

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 
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Figure 1. ‘‘Magny Cours’’ silicon block diagram. The node integrates six 

x86-64 cores, a shared L3, two DDR3 memory channels and four HT3 

ports. 
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and an address-generation unit; and 
● three floating-point and multimedia pipelines. 

 

The schedulers also dispatch load-and- store operations to the load/store unit, which can 
perform two loads or stores each cycle. The processor core can reorder as many as 72 mops. 
The core has separate in- struction and data caches, each 64 Kbytes in size and backed by a large 

on-chip L2 cache, which is 512 Kbytes. All caches throughout the hierarchy (including the L3 
cache) have 64-byte lines. The L1 caches are two-way as- sociative and have a load-to-use 
latency of three clock cycles; the L2 cache is 16-way 

HOT CHIPS 

 

 

 
 

associative with a best-case load-to-use la- tency of 12 clock cycles. As in many prior- 

generation AMD processor cores, the L1 and L2 caches use an exclusive layout—that is, the L2 
cache is a victim cache for the L1 instruction and data caches. Fills from outer cache or 
DRAM layers (system fills) go directly into the appropriate L1 cache and evict any existing 

L1 entry, which moves into the L2 cache. System fills typi- cally are not placed into the L2 
cache di- rectly. Similarly, most common-case CPU core L2 cache hits are invalidated from the 
L2 cache and placed into the requesting L1 cache.

5,6
 

The shared L3 design plays two distinct roles, exploiting the fact that the L3 cache and 

memory controller are colocated on the same die: 

 
● a traditional cache associated with the processor; and 
● storage for a cache directory (probe fil- ter), implemented in fast SRAM, asso- ciated with the 

memory controller. 

 

Multichip module (MCM) 

package 
x16 cHT3 port 

DDR3 channels 

x8 cHT3 port 

x16 ncHT3 port 

 

Figure 2. Logical view of the G34 multichip module package. The MCM 

package has 12 cores, four HyperTransport ports, a 12-Mbyte L3 cache, 

and four memory channels. Each die has six cores, four HyperTransport 

ports, a 6-Mbyte L3 cache, and two memory channels. 

cHT3: Coherent HT3 

ncHT3: Noncoherent HT3 
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Most silicon nodes will likely be packaged as uniprocessors for desktop and 

workstations. As such, we did not want to waste die area on a dedicated on-chip probe filter, 
which is useful only in multi- processor configurations. Our implementa- tion allows the probe 

filter to be enabled in a multiprocessor configuration or disabled in a uniprocessor desktop or 
workstation configuration. 

The probe filter is also known as Hyper- Transport Assist (HT Assist) at the platform level. 

This is a reference to one benefit of the probe filter, which is to conserve system bandwidth; a 
second benefit is to reduce memory latency. 

 

Multichip module package 
The processor packages two dies in a tightly coupled multichip module (MCM) 

configuration to yield a 12-core processor architecture. The processor interfaces to four DDR3 
channels and four HT3 tech- nology ports, as Figure 2 shows. The pack- age is a 42.5 60-
mm organic land grid array (LGA) and has 1,944 pins—735 more than the earlier-
generation AMD Opteron L1SP 1,207-pin package. This new socket is known as G34 

(Generation 3, four memory channels). It has 1,132 sig- nal I/O, 341 power, and 471 ground 
pins organized as a 57     40 array of contacts on a 1-mm pitch. 

The HT3 ports are ungangable since each 16 HT3 port can operate as two in- dependent     

8 HT3 ports. This allows us to build highly optimized 2P and 4P blade server topologies by 
configuring a node as a router with four to eight ports in the network. If pins had not been a 
con- straint, we would have brought out six HT3 ports on the package—three from each 

node—to allow for total platform- level flexibility. However, pin constraints imposed a limit of 
four HT3 ports on the package, as Figure 2 shows. An additional design constraint was the 
requirement that a single high-bandwidth device, such as a GPU, have access to the full 16 
non- coherent HT3 (ncHT3) I/O bandwidth. A single wide ncHT3 link connects to the lower 

node. Thus, the MCM topology is asymmetric with respect to ncHT3 but symmetric with 
respect to coherent HT3 (cHT3). The lower node has four wide 

16 HT3 ports, which we allocate as follows: 

 

● one ×16 link for I/O, 
● one 16 plus one 8 HT3 link to connect to three other sockets in the 4P topology, 

and 
● one 16 plus one 8 HT3 link to con- nect to the other node in the package. 

 
We balance traffic across the pair of on- package HT3 links by routing all ordered 

traffic (such as I/O direct memory access [DMA] read and write) on the primary 16 
HT3 link, and all unordered traffic (such as cache probes and responses) across 

the least recently used of the link pair. 

 

2P and 4P blade architectures 
Network diameter and Xfire (crossfire) bandwidth are two useful metrics for evaluat- ing and 

comparing topologies. Network di- ameter is the maximum number of hops to traverse between any 

pair of nodes in the sys- tem. Xfire bandwidth is the maximum coherent memory-read bandwidth in 
the system when each node accesses its own memory and that of every other node in a round-robin 
fashion, assuming that the HT3 links are the only limiting factor. The Xfire bandwidth metric 
is superior to the network-oriented bisection bandwidth metric

7
 because it measures useful bandwidth 

(that is, data bandwidth) and captures the interaction of topology, routing tables, and protocol 
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overhead. 
Figure 3a illustrates the recommended 2P blade topology. It has a diameter of 1, or minimum, 

latency, a key benefit for com- mercial workloads (hence the name 2P Max Perf ). Assuming 

uniform distribution of traffic (Xfire), the 8 diagonal links deter- mine the maximum system 
bandwidth. Using the two horizontal 16 links reduces the likelihood of hot spotting. We could dis- 
able the on-package 8 HT3 link in this configuration to conserve power without ad- versely 
affecting either Xfire bandwidth or average diameter. 

Figure 3b shows the recommended 4P to- pology in platforms with four HT3 I/O channels (4P 
Max I/O). It consists of two fully connected planes, (P2, P3, P6, P7) 

and (P0, P1, P4, P5), interconnected by the on-package pair ( 16 and 8) of HT3 links. This 

topology has a diameter of 2 and an average diameter of 1.25. For a uni- form traffic 
distribution memory access pat- tern such as Xfire, half of the traffic from each node traverses 

the on-package Hyper- Transport link pair and 1/8 of the traffic routes over the    8 
HyperTransport links in each fully connected plane. 

Figure 3c shows an alternative 4P topol- ogy with two HT3 I/O channels (4P Max Perf ). 

This topology trades I/O connectivity for a more fully connected topology, achiev- ing a reduced 
average diameter of 1.19. This topology is less susceptible to hot spotting and has lower average 
latency because of the additional links. 

Figure 3d shows yet another 4P topology built with two identical 2P blades. This to- pology 

provides a pay-as-you-go upgrade path for customers wanting to start small (2P) and increase the 
number of processors, memory capacity, and memory bandwidth by adding a second 2P blade. 
Table 1 shows the Xfire bandwidth and diameter metrics for the four topologies. 

 

Configurable L3 cache 
The 6-Mbyte L3 cache is a victim cache, installing lines that are evicted from any of the core 

L2 caches. Each of its four subcaches contains tag and data macros to form a 1- or 2-Mbyte 16-way 

associative cache. We built the L3 cache from two 1-Mbyte subcaches and two 2-Mbyte 
subcaches. We chose this configuration purely for silicon area consid- erations. The architecture 
itself allows one, two, or four subcaches, and each can be 1 or 2 Mbytes. This allows flexibility 
in system- on-chip (SoC) layouts and lets us use differ- ent subcache building blocks in 

different SoCs with reduced effort. For example, some prior-generation processors used two 1-
Mbyte subcaches; other processors might use four 2-Mbyte subcaches, with little im- pact to the 
overall microarchitecture. We can apply cache probe operations to all sub- caches in parallel, or 

restrict them to a specific subset based on address. The L3 cache allo- cates lines to an available 
subcache, account- ing for any address-based restrictions and giving preference to any subcache 
containing 

 
HOT CHIPS 
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Figure 3. Dual processor (2P) blade and quad processor (4P) rack topologies: 2P Max Perf (a), 4P Max I/O (b), 4P Max 

Perf (c), and 4P Modular 2þ2 (d). 
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Table 1. Xfire bandwidth and diameter metrics for the topologies in Figure 3. 

invalid entries in the indexed set. If no in- valid entries are present, a weighted round- robin 
algorithm distributes allocations among the subcaches in proportion to their size. On a valid 

replacement, the L3 cache chooses the subcache to victimize first (using weighted round-robin), 
then applies a pseudo least recently used (LRU) algorithm within the 16-way associative subcache 
for final victim selection. 

The L3 cache supports a directed address- ing mode in which the L3 cache can be sliced based on 
address. In this mode, both alloca- tions and probes are directed to half of the cache (a pair of 
subcaches) based on a hash of the address bits. This reduces power and could reduce latency. Each 

tag probe only ties up resources in part of the cache, letting the L3 cache controller issue more 
speculative reads in parallel. However, some applications might be sensitive to the reduced 
effectiveassociativity in this mode, so the benefit is workload dependent. 

Architecting the L3 as a victim cache reduces overlap between the contents of the L3 and L2 

caches, allowing more data to be cached. In addition, back invalidation of the L2 caches is not 
required when L3 lines are victimized. The L3 cache can retain a line after providing a copy 
to a requesting core when true sharing of a line is detected. The core that victimized a line is 

stored in a field in the L3 tag entry for the line and is used to detect sharing patterns by the L3 
cache controller. If the next read is from the same core that allocated the L3 line, the data is 
deemed private and the L3 cache does not retain a copy. Instead, it passes responsibility for 
the line back to the core by providing the line in E or M state and invalidating the line in the 

L3 cache. Otherwise, if it is consistent with the core request type, the L3 cache will keep a 
copy in anticipation of further sharing. This mecha- nism lets a core evict E and M state lines 
to the L3 cache and later retrieve them in the same state if they are not shared. 

 

Subcache optimization. The tags in the subcache are physically located near the L3 controller to 
provide hit/miss results with minimum possible latency. The data array within the subcache is 
divided into four regions, each providing 128 bits of data. Both the control signals to the data 

regions and the read data return path are pipelined, causing round-trip latency to each succes- sive 
region to increase by one clock. As a result, the subcache can provide four con- secutive 128-bit 
data values even though the last value might be located a significant distance from the tags. This 
provides flexi- bility in placing the data macros and facili- tates efficient floorplanning. 

 
Latency optimization. The L3 cache archi- tecture dynamically optimizes both latency and 

bandwidth. When the cache is lightly loaded, it operates in a latency-reducing mode in which a 
processor-initiated tag probe assumes a hit and reserves the neces- sary data buses and buffers in 
advance. This allows the read of the data macro to be overlapped with the tag probe, which 
minimizes latency. However, when the request rate is high and the L3 cache does not contain 

enough resources, the L3 cache controller sends the request to the tags as a query only, which will 
determine the cache status without initiating a data transfer. If the line is not present in the cache, 
it forwards the request to DRAM with minimal latency. Otherwise, it issues an L3 data read to 

the subcache containing the line once the necessary resources are available. 

 
Bandwidth. The L3 cache controller can issue one processor-initiated tag probe or tag update and 

one probe-initiated tag probe or tag update per clock. Each sub- cache provides access ports to the 
required two tags as well as two read data buses and one write data bus. A dedicated read buffer 
holds the data from each subcache until it can be returned to the requesting core. Data from any 

subcache can be returned to any core. One dedicated write buffer per core holds allocation data 
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until it can be written to the cache. Data from any core can store to any subcache. Each L3 data 
bus can sustain a bandwidth of 16 bytes per clock. The required tag accesses limit the combined 

L3 data read and write bandwidth to two 64-byte cache line accesses per clock. 

 

Coherency. For requests that miss in the L3 cache, the memory controller is the ordering point 
between requests from different cores. When data movement is to or from the L3 cache, the L3 
controller must ensure that none of the coherency rules are violated. In particular, it must 

ensure that there are no races between probes to a core and hit data being returned to the same 
core, or be- tween probes to the L3 cache and victim data from the cores being allocated into the 
L3 cache. To achieve this goal, the L3 controller performs collision detection of probes against 
L3 cache data movements be- fore delivering the probes to the core. This is a low-latency 

operation because it only probes the L3 queues; it performs the L3 cache probe after collision 
detection and in parallel with the core-cache probe. If a conflict exists, the probe can be delayed 
if the data movement is guaranteed to com- plete in a deadlock-free manner. Otherwise, the data 

movement is delayed and the probe is ordered ahead of the processor operation. When this occurs, 
the L3 controller applies the probe-state update to the L3 tags as well as conflicting L3 
allocations, which have yet to update the tags. Dependency tracking ensures that these 

conflicting operations are completed in the correct order to main- tain coherency. 
With multiprogrammed workloads, if a program running on one core has poor caching 

characteristics, it could negatively affect the cache performance of programs running on other 
cores. This situation can be detected when a core exhibits a high in- stall rate and a low cache 

hit rate, which indicates that it is not benefiting much from the L3 cache and is probably 
pollut- ing the cache for other cores. To address 

HOT CHIPS 

this situation, the L3 controller implements the block aggressive neighbors replacement algorithm. 
The BAN algorithm computes each core’s cache efficiency based on its al- location rate and L3 
cache hit rate. It limits the allocations of those programs or cores determined to be getting little 

benefit from the cache while causing significant pollution into the L3 cache. Rather than 
promoting an allocated line to the most recently used (MRU) position, the BAN al- gorithm sets 
the program lines to either the LRU position or half-way through the LRU stack (position 8). As 

a result, a poorly behaving program cannot negatively affect the most frequently accessed lines 
within the L3 cache. 

 

Memory controller and DRAM interface 
‘‘Magny Cours’’ continues the tradition of the AMD Opteron family with an on- die memory 

controller, but adds DDR3 capability. The DRAM channels are config- ured for unganged 

(independent, 72-bit versus combined 144-bit) operation for max- imum throughput and DRAM 
efficiency. The memory controller supports full single- error correction and double-error detection 
(SECDED) and x4 Chipkill. It does not sup- port ganged (144-bit) DRAM channel oper- ation 

because the natural DDR3 burst length 
(8) with a ganged channel leads to 128 bytes of data return, but the AMD Opteron cache line size is 
64 bytes, leading to 64 bytes of superfluous data. It does not use DDR3 burst four-chop mode 
to mitigate this because DRAM performance is significantly reduced in this mode. Maximum 

capacity configurations support up to three dual- rank, two quad-rank, or two dual-rank plus one 
quad-rank DDR3 device configurations per channel. At 1.5V, a maximum operating frequency of 
RDDR3-1333 will be available, subject to platform design for lower capaci- ties (up to two dual-



................... Page | 268                                                                        Copyright @ 2020 Authors 
  

Juni Khyat                                                                                         ISSN: 2278-4632 
(UGC Care Group I Listed Journal)                           Vol-10 Issue-1 January 2020 

 

Probe filter 

lookup 
Probe filter 

lookup 

Probes 

RdBlk 

request Response 

RdBlk DRAM 

request response 

R 
Req 

Directed 

probe 

Cache 

response 

(a) (b) (c) 
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rank registered dual in-line memory module [RDIMM] per channel). Maximum capacity 
configurations have operating frequencies of either 800 or 1,066 megatransfers per second, 

depending on platform routing and detailed DIMM characteristics. The memory interface sup- 
ports 1.35V (DDR3L) operation, leading to lower speeds in some configurations. 
The memory controller and DRAM in- terface have several notable features. 

First, they offer memory-controller-based prefetch for CPU and I/O traffic, allowing prefetch 

chaining with CPU core prefetchers. This includes adaptive throttling when the DRAM interface 
is heavily used. 

In addition, they provide adaptive pre- fetch of DRAM requests in parallel with local L3 tag 

accesses to minimize latency for L3 misses to local DRAM along with L3 hit/miss 
predictors. The L3 hit/miss predictors use a combination of per-page (4-Kbyte region) recent 
L3 access behavior and per-core local L3 hit/miss ratio to guide prefetch decisions. 

A third feature is overlapped DRAM ac- cess and directory lookup, which minimizes 
DRAM latency when HT Assist is enabled. A directory hit to dirty (or potentially dirty) data 
in another cache in the system will cancel a DRAM data response to the requesting processor, 
which saves intercon- nect bandwidth. The memory controller issues probes as early as possible 

to minimize indirection latency. 
The memory controller and DRAM in- terface also offer optimized DRAM page 

management and DRAM command bus uti- lization. Each memory channel has a dedi- cated 

DRAM controller that supports timeout-based and predictive page closing utilizing DRAM 
bank history. The DRAM controller allows aggressive reordering for high DRAM efficiency 
with out-of-order scheduling of both command (precharge, activate, and so on) phase and data 

(CAS) phase between multiple DRAM banks simultaneously. 
Finally, the memory controller and DRAM interface can collect multiple DRAM write 

transactions outside the DRAM schedulers until many writes are available to be handled in a 
burst (write bursting) to avoid costly DRAM read-to-write and write-to-read bus turnarounds. 

Cache coherence protocol 

The cache coherence protocol is an im- portant aspect of CMP systems. Generally, designers 

favor broadcast-based protocols when either overall protocol simplicity or la- tency for cache-to-
cache transfers is more 

 
dBlk 
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Request node 

 

 

 

 

 

 

important than interconnection and probe bandwidth. Directory-based protocols can be 

easier to scale up to larger systems,
7,8

 but they also can be difficult to implement and 
verify. In addition, in many cases, the di- rectory is stored in DRAM at the home node, 
which leads to relatively long indirec- tion latencies, more complex protocols, or complex 
directory-caching mechanisms with performance policies defining which direc- tory 
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entries to cache. 
HT Assist is a key innovation in ‘‘Magny Cours’’ and the AMD Opteron processor 

code-named ‘‘Istanbul.’’ The HT Assist di- rectory protocol gains many of the key 
scal- ability advantages of classic directories without using DRAM-based directories (for 
example, by repurposing ECC bits), and also maintains low indirection latencies. It does 
this by maintaining a cache directory, which fits naturally within the existing AMD 

Opteron processor broadcast transac- tion flow. 

 

Review of broadcast protocol 
Figure 4a illustrates the broadcast coher- ence transaction flow used by earlier genera- 

tions of AMD Opteron processors.
5
 

In the broadcast protocol, last-level cache misses go to the home node (where DRAM 

for the requested cache line resides) and the memory controller determines the ordering for 
each request for the same cache line. Once a request becomes active, the home node 
broadcasts cache probe requests to all processors, and the memory controller ini- tiates a 
DRAM access. All processors send probe responses directly to the requesting processor, 

and the memory controller (DRAM) sends a separate response whenmemory data is 
available. The requesting processor collects all responses, including cache data responses, 
and determines which data should be used to satisfy the original re- quest. Once it receives 

all responses, the requesting processor delivers data to the CPU core and sends a 
transaction (not shown in the figure) to the home-node mem- ory controller indicating that 
the cache line request is complete and another request for the same cache line can be 

activated. 

 

HyperTransport Assist directory protocol 
HT Assist adds a cache directory. Each home node keeps track of which cache lines from its 

memory are cached by other process- ors in the system. The directory includes all cached data in the 
system. If a cache line is present in any cache, there must be an entry in the home node’s directory 

to indicate that the line is cached within the system. If a directory is full or a mapping conflict 
occurs, a previous directory entry must be replaced (causing a potential writeback, plus invalida- 
tion of the previous entry’s data from all caches) to accommodate the new request. 

HT Assist’s transaction flow is similar to the broadcast protocol. Initial requests travel to the 

home node, where the memory con- troller orders and activates them. Once a re- quest is active, 
instead of broadcasting probes, it begins a DRAM access and a probe filter lookup in 
parallel to minimize DRAM latency. When the directory lookup is complete, the memory 

controller generates a broadcast probe, a directed probe (a probe targeting a single processor), or no 
probe, depending on directory state. The time to ac- cess the probe filter and generate a directed 
probe is the indirection latency. The protocol 

HOT CHIPS 
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guarantees that a directed probe never requires a DRAM response, so any DRAM response is 
canceled. When no probe is gen- erated, the memory sends a data response with an indication that 

this is the only re- sponse to expect and that the request can now be completed. Broadcast probes 
follow a similar flow to the previous broadcast pro- tocol, except this generation’s protocol guar- 
antees that data will be returned from the owner node. Figures 4b and 4c show a sim- plified 

version of the transaction flow for cases in which no probes, and a single directed probe, are 
required. 
For most requests, the directory state is immediately updated after the initial direc- tory lookup 

based on the request type and directory state. For some requests, such as a store to an S-state line in 
the requestor’s cache, the request is always treated as a broadcast, and directory lookup and 
update are postponed until after the request com- pletes. In all cases, only a single directory lookup 
and update is required, and these are treated as an atomic read-modify-write action. Designing the 

protocol in this fash- ion greatly simplified microarchitecture de- sign and reduced protocol 
complexity. 

The directory protocol must also enable alternate coherence behavior of the CPU- side caches 

(L1, L2, and L3). Notably, exter- nal read probe requests must transition E-state cache lines to O-
state, return data to the requester, and send eviction notifica- tions of E-state cache lines to the 
directory. 

 

Directory storage 
The design supports multiple directory sizes through a combination of per-way and per-subcache 

mappings of L3 space assigned to the directory. However, in its production form, only a subset of 
sizes and configura- tions are available for selection. 

Because the directory storage is held in the fast L3 SRAM arrays, directory indirec- tion latency 
is low and we can achieve suffi- cient bandwidth to the arrays to not limit per-node coherent 
bandwidth. We used the existing L3 arrays in lieu of dedicated direc- tory storage to maximize 

processor flexibility, for the discussed latency and bandwidth characteristics, and to avoid additional 
pres- sure on the DRAM ECC coding. With 

existing AMD Opteron cache line sizes, and continual pressure to improve error de- tection and 

tolerance surrounding DRAM devices, we did not pursue an in-memory di- rectory strategy. Most 
directory actions in- volve read-modify-write accesses that are implemented much more efficiently, 

and with minimum port occupancy, in SRAM than in DRAM. 
Our design’s 64-byte cache line holds 16 directory entries, with 4 bytes per entry organized as a 

four-entry four-way set asso- ciative array (see Figure 5a). The tag field tracks normalized 
addresses, which are computed by subtracting the home node’s DRAM base address (or, for 

node- interleaved addressing, removes appropriate bits of the system’s physical address) before 
storing the resulting address. Using the nor- malized address reduces the number of tag bits 
required and lets us size the probe filter tag field based on the maximum DRAM per node, not the 

total DRAM across all nodes in a system. 
By default, the basic input/output system (BIOS) will allocate 1 Mbyte of the 6-Mbyte L3 cache 

to directory storage. The directory holds 256k directory entries, which can cover 16 Mbytes of 
cache. This results in a directory coverage ratio of 16 Mbytes/(0.5 Mbytes 6 cores 5-Mbyte L3), 

or 2.0, which says there are at least twice as many di- rectory entries in a system as cached lines, 
since a single directory entry can track multi- ple cached copies of a shared line. 

 

Directory states and  transitions 
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Earlier, we showed the behavior of the di- rectory protocol using some examples. Also important 
are the protocol’s states and tran- sitions, including special consideration for the shared L3 cache 

and CMP nature of each processor node. 

 

Directory behavior. Figure 5b lists the direc- tory states. The directory supports the full MOESI 
protocol from all previous AMD Opteron processors. It observes all requests, many of which lead 
to state updates. To maintain the directory semantics discussed earlier, and to keep the directory 

up to date, the directory protocol informs the di- rectory of any cache castouts of M, O, and 

E state lines. Finally, each directory miss might find the directory index full of valid entries, 
one of which must be evicted to make space for the new entry. We refer to this final case as 

needing a downgrade probe. Such a probe causes a writeback (if dirty) and invalidates all 
existing cached copies of the downgraded cache line. 

Figure 6 shows some common transaction scenarios. The transactions in the figure have the 

following semantics: 

 
● Fetch—an instruction fetch request; in- stall in S state by default. 
● Load—a data read request; install in E state by default. 
● Store—a data store miss request (write- allocate); install in M state. 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
In each case, the ‘‘Directory hit’’ columns indicate that a request hits a pre-existing di- rectory 

entry to the same cache line address. The ‘‘I,’’ ‘‘O,’’ ‘‘S,’’ ‘‘S1,’’ and ‘‘EM’’ col- 
umns indicate the entry’s directory state, and the table entries indicate the type of probe generated, 
if any. The ‘‘Directory miss’’ columns indicate scenarios in which the requested cache line has no 

pre-existing directory entry, the line is uncached, and no probe is necessary (filtered). In the 
direc- tory miss case, the directory states indicate the state of the replaced line and the corre- 
sponding type of downgrade probe (broad- cast downgrade or directed downgrade). 

Four ways 

L3 cache 

line (64 bytes) Four sets 

Probe filter 

entry (4 bytes) 

(a) 
EM, O, S, S1, I states 

(b) 

 

Figure 5. Probe filter entry format (a) and directory states (b), which shows 

how probe filter entries map into the L3 cache line. 

Entry 0 Entry 1 Entry 2 Entry 3 

    

    

Entry 12 Entry 13 Entry 14 Entry 15 

 

Tag State Owner 

 

EM A copy of the cache line is present on a single node, recorded in 

the owner field. The state of the line in the cache is not known at 

the directory. It may be clean (Exclusive) or dirty (Modified or 

Owned with all shared copies on the owner node). 

O The cache line is cached on one node, the Owner node, and 

possibly multiple Sharing nodes. The line is dirty and is written 

back to memory when cast out of the node. 

S The cache line may be present on multiple nodes and all copies 

are clean (Shared). 

S1 The cache line is clean and present on a single node, recorded 

in the owner field. 

I The line is uncached. 
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Although a downgrade probe does not block system activity for the demand re- quest that caused 
it, minimizing down- grades to achieve high probe filtering rates and processor-side cache 

perturbation is still important. Therefore, informing the directory on M, O, and E state castouts, 
in combination with directory size and mapping, ensures that most directory miss requests find an 
available invalid directory location. The protocol does not include notifications of S-state castouts. 
Downgrade probes reclaim S-state lines in the directory. We omitted S-state evictions for several rea- 

sons, due both to performance (a poten- tially large number of eviction messages) and various 
microarchitecture-specific im- plementation complexities. Performance evaluation showed that S-
state eviction 

.......................................................................................................................................................................................

....... 
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notifications were not critical for achieving acceptable directory performance. 
Because the directory is shared with the processor-side L3 cache, AMD Opteron pro- cessors with 

HT Assist enabled must trade off directory size (minimizing downgrades) with processor-side L3 

cache performance (elimi- nating last-level cache misses). We achieved an appropriate balance via 
extensive modeling and hardware-based evaluations. This tradeoff is particularly noteworthy because the 
direc- tory’s associativity is much lower (four-way) than the net associativity of all CPU-side 

caches. As we noted earlier, a directory cover- age ratio of at least 2.0 provides significant leverage. 
Additionally, the directory index mapping uses hashing for many common- case scenarios 
considering the possible x86 page sizes (4 Kbyte, 2 Mbyte, and 1 Gbyte). In addition, interaction 
with operating system/ Hypervisor page-coloring algorithms helps avoid pathological directory 

mapping colli- sions in multiprogrammed scenarios. Finally, directory replacement policies attempt 
to avoid victimizing lines that are cached in many CPUs to reduce CPU-side cache pertur- bation 
resulting from directory downgrades. 

 
CMP considerations. Our description of the protocol and states has not specifically men- tioned 
interactions with the various levels of private (L1 and L2) and shared (L3) caches on each 

processor node. The HT Assist di- rectory treats each set of CPU cores, private caches, and shared 
L3 cache as a unit (node). All of the transaction flows and state transitions discussed previously 
are faithful representations of the directory pro- tocol behavior for the AMD Opteron cache 

hierarchy. The directory is never involved (that is, a message is never sent to the direc- tory) in any 
internal cache transitions or movement of a cache line between layers in the cache hierarchy within 
a processor node (for example, movement of a cache line from L3 to L1, or from L2 to L3). 

Performance 

We evaluated the HT Assist directory both in simulation and by making measure- ments on 

preproduction silicon. 
The simulation-based performance results presented here use AMD-internalperformance 

models. The model used in this article has a detailed representation of the on-die northbridge (L3 

cache, microarch- itecture, HT3 links, DRAM controllers/ devices, and so on), is designed to be 
cycle- accurate at the northbridge level, and is cor- related against the register transfer level (RTL) 
design presilicon. The model can use detailed, cycle-accurate, correlated-to- RTL CPU core 
models (representing AMD’s most precise CPU-to-system model- ing environment) or abstract 

No probe (filtered) 

Directed probe 

Directed invalidate 

Broadcast invalidate 

Effective 

Ineffective 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Probe filter transaction scenarios summarizing probe actions as a 

function of memory access type and probe filter state. 
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CPU core mod- els when simulation efficiency is paramount. For practical reasons, we use the 
abstract CPU core model. One model input is coher- ence transaction traces, taken from existing 

AMD Opteron multiprocessor systems. These traces are essentially lists of L1 cache miss records 
for fetches, loads, and stores issued from the cores in the system. Each trace record contains metadata 
that specifies interthread ordering for accesses to shared data so that the simulator can enforce for 
deterministic execution. The abstract core model consumes these traces when running a simulation. 

The abstract core model includes a representation of core caches (L1 and L2), CPI, memory-
level parallelism, and core frequency. The simulator models the memory traffic from the abstract 
core model cycle accurately within the northbridge model, using total execution time for a con- stant 

set of references from each input trace on each CPU as the performance metric. 
The hardware performance measurements used preproduction ‘‘Magny Cours’’ hard- ware in 

AMD’s performance labs. The CPU and on-die northbridge operational fre- quencies and other 

system parameters are rep- resentative of final shipping configurations. 

 

Transaction scenario frequencies 
Figure 7 shows the probe filter transaction scenario frequencies from early 4P hardware 

measurements for SPECJBB2005. Most requests lead to no probe or to a directed probe; 
therefore, the HT Assist directory eliminates a large amount of probe and re- sponse traffic. 
If we attach a weight of 0 to filtered, 
0.125 to directed (one probe in place of eight for broadcast), and 1 to broadcast, the coherence 
protocol overhead with probe filter 

is (72.2 percent    0)     ([24.9 percent 
1.6 percent]    0.125)    (1.3 percent    1), or 4.6 percent of the broadcast coherence. Thus, the 

protocol is more than 95 percent effective in reducing probe traffic. 
On the other hand, the directory protocol requires that clean victims be sent to the home node whenever 

E lines age out of the last-level cache (one clean victim in place of eight probes), which introduces 

66 percent 
0.125 (or 8.25 percent) additional traffic overhead corresponding to table entry 
{Load, PF Miss, I}. So, the net effectiveness— or reduction in traffic associated with main- taining 

cache coherence in this theoretical design—is greater than 87 percent. 
This example shows that the traditional cache-hit ratio is not an appropriate measure of the probe 

filter’s effectiveness (in this exam- ple, the directory-hit ratio is only 14.6 percent). Note that downgrades 

occur in the back- ground and can be overlapped with new memory requests. Additionally, the 
reduced L3 victim traffic offsets the modest band- 

width overhead of downgrades. 
 

NUMA software optimizations 
Like previous generations of AMD Opteron processors, ‘‘Magny Cours’’ is a dis- tributed 

shared memory machine that bene- fits from operating system/application tuning to optimize memory 
allocation and process scheduling. Modern operating systems, such as Windows and Linux, are 
aware of the un- derlying machine node topology via the Advanced Configuration and Power 

Inter- face (ACPI) static resource affinity table/ system locality information table (SRAT/ 
SLIT) supplied in BIOS.

9
 These tables asso- ciate memory with nodes and provide a ma- trix to 

assign a latency cost for accessing memory for all {source, destination} node pairs. The Linux 

nonuniform memory archi- tecture (NUMA) library supports a com- mand line utility, numactl, 
which defines the default memory allocation policy (local, interleaved, or user specified) for all 
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Figure 7. Probe filter transaction scenario frequencies for SPECJBB2005. 

Each table entry is a percentage of all requests. 

threads spawned by a process and specifies on which cores they should run. The shared li- brary 
libnuma provides applications with an API to control the process policy for allocat- ing new or 

existing memory and scheduling threads on sets of nodes. 
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Having the probe filter on ‘‘Magny Cours’’ reduces the observed latency of memory accesses 
when probes and probe responses are the longest path. By signifi- cantly reducing local memory 
latency, the probe filter amplifies the benefit of NUMA software optimizations. 

 

Memory latency and bandwidth 
Figure 8a shows preproduction hardware improvements in maximum main memory 

bandwidth when running STREAM triad, and Figure 8b shows improvements in local and 
one-hop memory latency in 2P and 4P (four-node and eight-node, respectively) sys- tem 

configurations. Latency measurements are for DRAM page hits. Each measurement is relative to 
HT Assist disabled for that plat- form (2P or 4P), and the 2P and 4P relative memory latencies 

cannot be compared because they are not normalized to the same baseline. As these tests show, 

enabling HT Assist significantly increases memory bandwidth and reduces memory latency. 
Notably, the memory bandwidth and latency improve- ments are larger in 4P systems than in 
2P systems, illustrating the greater benefit from HT Assist in these larger systems. As might be 
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expected, the improvement in local DRAM latency is larger than one-hop (and two-hop in 
4P) latency. We therefore expect NUMA-optimized workloads with high processor-memory 

affinity to benefit 
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more from HT Assist, and that benefit will be greater in 4P systems. 

 

Application benchmarks 
Figure 9 shows early hardware measure- ments of the benefit of HT Assist for application-level 

workloads. HT Assist bene- fits 4P systems more than 2P systems because of the larger relative 
reduction in memory la- tency and bandwidth. Note that perfor- mance scaling from 2P to 4P 

(not shown) is greater than 95 percent in these cases, illus- trating that HT Assist could enable superior 
system scalability. 

Figure 10 shows simulation-based studies of additional workloads with configurations similar 

to the hardware measurements. 
Although real-world results might vary, our simulations demonstrate that HT Assist improves 

performance more dramatically in 4P configurations than in 2P, and that it benefits the 

WebServing, Java Business, and Business workloads more significantly than the Database and 
Virtualization work- loads. Detailed evaluation of the underlying performance data (not shown 
here) indicates that Java workloads have good processor- memory affinity and significant need 
for memory bandwidth, making them a good fit for HT Assist. The WebServing and Busi- ness 

workloads benefit primarily from the additional achieved memory and intercon- nection 
bandwidth, and less from the signif- icant improvement in local memory latency because they 
have less processor-memory affinity. The Database and Virtualization workloads benefit from 

reduced memory la- tency in 2P, but have less processor-memory affinity and less overall memory 
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Figure 9. Early hardware measurements of 

application improvement with HT Assist. 
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Figure 10. Simulation-based studies of 

performance improvement with HT Assist 

across a diverse set of commercial 

workloads. 
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Figure 8. Memory bandwidth improvement (a) and relative memory latency 

(b) with and without HT Assist. Latency is normalized to HT Assist disabled 

as 100 percent (lower is better). 
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bandwidth need; therefore, the gains are smaller com- pared to other workloads. These 
workloads are more sensitive to reduced L3 capacity. In 4P, the larger relative improvement 

in average memory latency and the greater number of CPUs contending for effective memory 
bandwidth lead to larger relative gains compared to 2P. 

he ‘‘Magny Cours’’ combination of superscalar cores, high core count, and 

virtualization support make it an appro- priate choice for running a heterogeneous 
mix of workloads in the data center. The G34 socket infrastructure provides suffi- 

cient interconnect and memory bandwidth headroom to accept upgrades of future 
generations of plug-compatible processors, which are already in development. MICRO 
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