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 ABSTRACT 

 The modern world is running forward in achieving the challenge of maximum speed. So 

many efficient structures are employed in the traditional designs so that the max speed can be 

included. Most of the structures will have multiplier as the basic blocks, which will run with less 

speed because of its huge structure. In practical, not all applications need accurate results such as 

in image processing and digital signal processing etc. so approximate multipliers are employed. 

By considering these two points called truncation- and rounding-based scalable approximate 

multiplier (TOSAM) is  presented, which  reduces  the  number of  partial products  by  

truncating  each  of  the  input  operands  based on their leading one-bit position. In the 

proposed design, multiplication is performed by shift, add, and small fixed-width multiplication 

operations resulting in large improvements in the speed compared to those of the exact 

multiplier. To improve the total accuracy, input operands of the multiplication part are 

rounded to the nearest odd number. Because input operands are truncated based on their 

leading one-bit positions, the accuracy becomes weakly dependent on the width of the input 

operands and the multiplier becomes scalable.  Higher improvements in design parameter 

(speed) are observed. 

 Index Terms— Accuracy configurable, approximate multiplier, high speed, scalable, truncating. 

I. INTRODUCTION 

 Multipliers play an essential position these day’s in digital signal processing and 

numerous other programs. With advances in technology, many researchers have kept in 

implementation and are looking to design multipliers which offer both of the following layout 

targets – high speed, low power intake, regularity of format and subsequently less place or even 

aggregate of them in one multiplier hence making them appropriate for diverse high speed, low 

power and compact VLSI implementation.  Delay in output is one of the essential layout 

constraints in designing digital structures. Approximate     computing (AC) is one of the 

procedures which may be used to reduce delay and/or growth the velocity. Since the computing 

end result might not be correct, AC can be exploited in errors-resilient applications. Examples of 

these programs include audio and photo processing, machine learning, and records mining. More 

specially, in many sign processing packages, a huge part of the strength intake is resulting from 

arithmetic operations (e.g., as much as almost seventy 5% of the total strength consumption of a 

quick Fourier transforms structure). Among these operations, multiplication, this is used time 

and again, is a high latency and strength ingesting operation. This makes approximate multipliers 

good candidates for being employed in mistakes-tolerant sign processing units. Generally, a 

multiplication operation consists of 3 steps. In step one, the partial products are generated based 

totally at the enter operands. In the second step, the partial merchandise is gathered until simplest 



Juni Khyat                                                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                      Vol-10 Issue-8 No. 1 August 2020 

Page | 110                                                                        Copyright @ 2020 Authors 

rows continue to be. In the final step, the remained two rows are summed with the aid of using a 

(fast) adder. One can also apply the approximation to each of these steps. Approximation can be 

invoked inside the first step to lower the number of partial products, or to lower the complexity 

of their technology. Approximation can be carried out in the second step of the multiplication 

procedure to lower the latency or electricity intake of the discount levels. One of those tactics is 

to make use of approximate compressors.  

 The latency and power intake of the multiplication operation are exceedingly tormented 

by the architecture of the adder used within the final step of the multiplication method. Hence, 

one might also hire an approximate adder in the very last step to enhance the energy intake of the 

multiplier. In this paper, proposing of an approximation approach for decreasing the number of 

partial products. In the proposed approximate set of rules, enter operands are truncated to h and t 

bits in line with the position of their leading one bit, where those truncated values are employed 

for the multiplication and addition operations. In addition, to lessen the error as a result of the 

truncation operation, we discover the approximate amount of the truncated values by rounding 

them. These simplifications bring about better accuracy and overall performance in comparison 

to those of the proposed approximate multipliers. Moreover, the proposed approximate multiplier 

has a nearly everyday blunders distribution with close to zero mean cost. The calculation core of 

the proposed multiplier performs multiplication and addition operations on truncated and 

rounded numbers and the results shifted to the left to generate the final output.  

 Because the mathematics operations are finished on the truncated values,  the  calculation  

middle  of  the  proposed  multiplier  is small  and  consumes  less  power  compared  to  that  of  

the precise multiplier. Also, the accuracy of the proposed method is mainly depending on t and h 

parameter values and is not considerably suffering from the width of the enter operands. This 

gives a scalability feature for the proposed multiplier. Key contributions of this paper can be 

summarized as follows. 

1)A new scheme for the scalable approximate multiplier, which  finds the  position  of  the  

leading  one  bit  and exploits both truncation and rounding operations to improve the accuracy 

of the multiplication operation. 

 

2)  Exploration of t ( truncation) and h (rounding) para- meters to find a tradeoff between 

accuracy, delay, and energy consumption. 

3) Presenting   hardware   implementation of   truncation- and rounding-based scalable 

approximate multiplier (TOSAM) for both signed and unsigned operations  

4)  Investigating   design   parameters   of   the   proposed multiplier for image processing and 

classification applications. 

II. LITERATURE SURVEY 

 In this section, we review some of the research efforts on designing approximate 

multipliers. In the dynamic segment method (DSM) structure [1], the input operands were 

truncated to m bits based on the position of their leading one bit where a fixed-width 

multiplication was performed on the truncated values. This way of truncation made the 

generated output always less than the exact one, making the mean relative error (MRE) negative. 

 This is  an  undesired feature due to  the fact that for the approximate arithmetic units 

with the Gaussian error distribution, it is better to have the mean error close to zero for 

having a higher signal-to-noise ratio (SNR) when dealing with digital signal processing 
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applications [15]. In the dynamic range unbiased multiplier (DRUM) structure [6], to mitigate 

the error resulted from the truncation operation for pushing the MRE toward zero, the least 

significant bit of the truncated input was set to “1.” In LETAM structure [5], the input operands 

were truncated and in the multiplication step, half of the partial products were omitted. Hence, 

the delay and power consumption were improved compared to those of the DSM and DRUM 

structures due to omitting the partial products. In RoBA multiplier [7], the input operands 

were rounded to the nearest power of two where the output was produced by some shift, add, 

and subtraction operations. In this structure, the number of elements that should be summed 

to generate final result was reduced compared to the exact multiplier leading to better energy 

and speed.  As  another  approach, to  improve the  speed and  area  of  the  multiplier, the  

least significant bits of the partial products were eliminated [4]. 

 A straightforward way to generate the partial products is to multiply each bit of the 

multiplier by the multiplicand, which can be performed simply by performing logical AND 

operation. Another approach is to encode the multiplier in higher radixes and multiply the 

encoded multiplier by the multiplicand. As the radix increases, encoding the multiplier 

becomes more complex. Hence, to decrease this complexity, one may use approximate 

encoders to generate partial products [6].  In  [7],  the  partial products of  an  approximate 

radix-4  Booth  multiplier  were  generated  and  accumulated approximately. Also, in [8], an 

approximate radix-8 Booth multiplier was proposed which used approximate adders to 

produce the least significant bits of the triple multiplicand. In [8], the most significant bits of 

the multiplier were encoded using exact radix-4 encoding and the least significant bits were 

encoded using an approximate higher radix encoding which rounded the least significant bits 

to the nearest power of two. In [9], four approximate 4:2 compressors were proposed and 

exploited in the reduction levels of the multiplier. In [10], an approximate 4:2 compressor was 

proposed and employed in the accumulation step and an error recovery module was added to 

improve the accuracy of multiplication.  

 In [10], several approximate 5:3 compressors were used in an approximate 15:4 

compressor utilized in the main approximate multiplier structure. It should be mentioned that to 

increase the accuracy, accurate  compressors  were  exploited  to  produce  the  most significant 

bits  of  the  result.  In, several approximate compressors have been proposed. Also, an 

algorithm was suggested to design efficient approximate multipliers composed of these 

compressors. In, several approximate adders were considered as the building blocks of the 

approximate multiplier and the design space was explored to find the optimum design. To 

improve the speed of multiplication, one approach is to change the numbering system to 

the logarithmic one to perform addition instead of multiplication. In  this method, the 

logarithm of the input operands is generated, their sum is  calculated, and  an  antilogarithm 

operation is  performed on  their  sum  to  generate  the  final result.  The complexity of this 

method originates from generating the logarithm and antilogarithm steps. The accuracy of the 

multiplier depends on the accuracy of these steps.  Several studies have been conducted on 

how to find the logarithm and antilogarithm of a number. Mitchell proposed a simple 

approximate method to calculate the logarithm and antilog- arithm of a number and used it to 

generate the multiplication results (Mitchell multiplier). Since then, some studies have been 

conducted on improving the Mitchell-based logarithmic multipliers .In this paper, we propose 

an approximate multiplier that finds the position of the leading one bits of the input operands, 
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truncates and rounds them with different widths, and performs some shift, add, and small fixed-

width multiplication operations to generate the multiplication result. 

III. PROPOSED APPROXIMATE MULTIPLIER 

A) TOSAM 

Each positive integer number (N) can be represented as 

 

Where k denotes the position of its leading one bit and xi is the i th bit of N. By factoring 2k 

from (1), it is rewritten as 

 

where X is a fractional number between 1.0 and 2.0. Based on (2), the result of multiplying A by 

B may be calculated as 

 

Widths of XA and XB are the same as A and B making the calculation of the exact value of XA 

× XB time and power consuming. We propose calculating the approximate amount of this term 

based on the fractional parts of XA and XB. In the remainder of this paper, we represent the 

fractional part of X as Y obtained from 

 

For example, assume that X = (1.1101)2. In this case, Y = (0.1101)2. To generate the 

approximate value of Y, we divide this range (0.0–1.0) into S equal segments where S is a power 

of two represented by 

 

Where h denotes an arbitrary positive integer which is one of our design parameters. It is 

obvious that the length of each segment is equal to 1/S. We propose to generate the approximate 

value of Y as 

 

 For a better illustration, the approximate amounts of Y for the case where S is equal to 4, 

is depicted in Fig. 1. To find YAPX, it is required to consider only h most significant bits of Y .  

For example, when S = 4(h =2), if two most significant bits of Y are zero, it means that 0 ≤ Y < 

1/4. 

 Hence, we choose 1/8 = (0.001)2 as YAPX. When two most significant bits of Y are 

“10,” which implies that 2/4 ≤ Y < 3/4, hence, YAPX is approximated as 5/8 = (0.101)2. In other 

words, the value of YAPX is obtained simply by truncating Y to h bits and inserting a “1” bit to 

the right side of the truncated Y . As a result, the width of YAPX will be equal to h + 1 bits. 

Making use of (4), (3) is rewritten as 
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Fig.1.Dot diagram of term 
1+ (YA) t + (YB) t + (YA) APX× (YB) APX where 

t = 7 and h = 3. 

Now, the approximate of (7) may be expressed as 

 

 To improve the speed of calculation, we truncate YAand YB to t bits, where in the rest of 

this paper, we denote by (YA) tand (YB) t. Hence, we modify (8) as 

 

 Where the width of (YA) APX ((YB)APX) is h +1 bits. To have a better understanding, 

the dot diagram of the proposed algorithm for the case where t = 7 and h = 3 compared to that of 

an exact 16-bit multiplier is depicted in Fig. 1. The green square shows the “1” bit in the term 1+ 

(YA)t +(YB)t + (YA)APX ×(YB)APX. Orange circles denote partial products of (YA) APX× 

(YB) APX, whereas purple triangles show the bits of (YA) t and (YB) t. Gray circles and 

triangles are omitted and are not considered in the calculations. As shown in Fig. 1, in the exact 

16-bit multiplier, the number of partial products is equal to 256, which must be summed to 

generate the final result while in the proposed method, only 31 of the partial products are kept  

This reduction rate will rise as the bit length of the multiplier input operands increases. As an 

example, the steps of multiplying A by B for the case of t = 7 and h = 3 are depicted in Fig. 2. In 

the rest of this paper, we denote our proposed structures by TOSAM (X, Y) where X and Y 

correspond to h and t. 

 The accuracy of the proposed approach depends on the values of the parameters t and h. 

Therefore, in the error analysis section (Section V), we will find a relationship between t and h 

parameters to achieve an almost high accuracy while having an acceptable speed and energy 

consumption. Finally, the proposed multiplication approach is feasible for the case of unsigned 

operands. To use it for signed multipliers, cone may find the absolute value of the input 

operands, multiply them by the proposed algorithm, and fix the sign of the final result according 
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to the sign of the input operands. Finding the exact absolute value of the input operands may 

degrade the speed of calculation and, hence, we produce it according to the method presented in. 

 

Fig. 2. Numeric example of 16-bit TOSAM (3, 7) with A = 11761 and B = 2482.  
 The approximate result [(A × B) APX] is equal to 28 901 376 while the exact result [(A × 

B) Exact] is equal to 29 190 802. In this case, the absolute error is 289 426 which is about 0.99% 

of the exact output (the error is less than 1% in this case). 

 

Fig. 3. Block diagram of the proposed approximate signed multiplier. 

B) HARDWARE IMPLEMENTATION 

 The block diagram of the proposed signed approximate multiplier is depicted in Fig. 3. 

First, the approximate absolute value of the input operands (|A| app, |B| app) is determined using 

the Approximate Absolute Unit, similar to the one exploited in . In this unit, the bits of the input 

are inverted if the input is negative and they are not changed if the input is positive. |A| app and 

|B |app are injected to the Leading-One Detector Unit and the positions of their leading one bits 

are found using 

 

 Where I can be either |A| app or |B| app. Only one bit of the signal K is “1” revealing the 

position of the input leading one bit. By using the KA and KB signals in a lookup table, kA and 

kB signals needed for (7) can be generated. The schematic of the Leading-One Detector Unit for 

8-bit input operands is depicted in Fig. 4. For example, assume that |A |app = (011001)2, in this 

case KA = (010000)2 and kA = (100)2 = 4. Signals |A| app, |B| app, KA, and KB are then 

applied to the Truncation Unit to produce (YA)t and (YB)t . Assume that the input and output of 

this unit are I and (Y) t.  
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Fig. 4. Schematic of the Leading-One Detector Unit for 8-bit input operands. 

In this case, the i th bit of the output can be generated using 

 

 Signals (YA)t and (YB)t are then exerted to the Arithmetic Unit to calculate the term 1 + 

(YA)t + (YB)t + (YA)APX × (YB)APX. It should be noted that the h most significant bits of 

(YA) APX and (YB) APX are the same as the h most significant bits of (YA)tand (YB)t whose 

rightmost bits are always “1.” Hence, there is no need to add extra hardware to generate (YA) 

APX and (YB) APX signals which are produced by simple wiring. 

 In the Shift Unit, the output of the Arithmetic Unit is shifted to left by kA +kB to produce 

the term 2kA+kB ×(1+(YA)t + (YB)t + (YA)APX × (YB)APX) [see (9)]. In the Sign and Zero 

Detector Unit, the sign of the output is set according to the sign of the multiplier input operands 

and also the output is set to zero if at least one of the inputs is zero. In the case of the unsigned 

multipliers, the Approximate Absolute Unit should be omitted and the Sign and Zero Detector 

Unit should be replaced by a Zero Detector Unit. 

 TOSAM can be implemented in an accuracy configurable structure. In order to 

implement an accuracy configurable structure of TOSAM, all of its units should be designed for 

the largest desired h and t values such that the design can work in all operation modes. We 

suggest a configurable TOSAM structure with three different operating modes of T2, T6, and T9 

corresponding to TOSAM (0, 2), TOSAM (2, 6), and TOSAM (5, 9), respectively. The 

Truncation and the Shift Units of the configurable TOSAM should be designed for the largest t 

and h values (h = 5 and t = 9 in this case). In the Arithmetic Unit, some of the adders and logical 

AND gates should be power gated based on the operating mode to make the design more power 

efficient. The reduction levels of the partial products based on the operating modes are depicted 

in Fig. 5. In the last level, a fast 9-bit adder is employed. To decrease its switching activity, some 

of its inputs are set to “0” with a transmission gate (TG), based on the operating mode. 
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 In the T2 mode, only the purple partial products are accumulated, only the purple adders 

are active (not power gated), and all of the inputs of the 9-bit adder are set to “0.” The 10 least 

significant bits of the result are set to “0” using the  

 

Fig. 5. Reduction levels of accuracy configurable TOSAM with three different operating 

modes. 

 TGs and purple stars are passed through the TGs to generate four most significant bits of 

the output. In the T6 mode, only the green and purple partial products are generated and summed 

to compose the final output and the orange adders are power gated. In addition, the orange inputs 

of the 9-bit adder are set to “0.” Also, in the eighth column of LEVEL1, there are two orange 

circles that should be set to “0” by TGs when operating in the T6 mode. In this mode, the six 

least significant bits of the result are set to “0,” green stars are passed through TGs to generate 

four intermediate bits of the output, and the four most significant bits of the result are produced 

by the 9-bit adder. 

 In the T9 mode, all parts are active. The orange stars are passed through the TGs to 

generate the five least significant bits of the result and the other bits are produced by the 9-bit 

adder. Note that the least significant bits of (Y A) APX and (Y B) APX, which depend on the 

operating mode, should be rounded (set to “1”). It is simply done by performing a logical OR 

operation on the corresponding bit and the operating mode. For example, when T6 signal is “1,” 

the logical OR operation sets the corresponding bit of (Y A) APX and (Y B) APX to “1.” 

IV. RESULTS 
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Fig 6: RTL schematic of TOSAM 

 

Fig 7: view technology schematic of TOSAM 
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Fig 8: simulated waveforms of TOSAM 

Table 1: parameter comparison table 

 

 

 

 

 

 

 

Fig9: delay comparison bar graph 

V. CONCLUSION 

Parameter Existed 

design 

Proposed 

design 

Delay (ns) 45.141 29.189 
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 In this paper, we suggested a high speed approximate multiplier in which the input 

operands were truncated with two different lengths, t and h,. The proposed multiplier was 

scalable and outperformed other approximate multipliers in terms of speed,. The proposed 32-bit 

multiplier has meet the requirement of speed .the delay is reduced from 45.141 to 29.189 when 

implementation of the proposed design is considered. Almost 39% of delay is reduced to 

previous method. Hence the proposed design is developed and simulated using XILINX ISE, 

with Verilog HDL language. Also, the high accuracy of the proposed multiplier made is a good 

choice to be exploited in image processing and classification applications. 
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