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Abstract Fuzzy phenomena are ubiquitous in real-world applications, spanning engineering and economics, 

where uncertainties and ambiguities are inherent, making the study of boundary value issues for fuzzy 

differential equations (FDEs) a vital area of research. In this abstract, numerical methods that are 

specifically designed to solve FDEs with boundary conditions are presented and discussed, along with an 

examination of similar issues. An expansion of classical differential equations, fuzzy differential equations 

model data uncertainty by introducing fuzzy sets. When solving FDEs, the most difficult part is dealing with 

the fuzziness, which is absent in more conventional differential equations. In order to estimate solutions of 

FDEs while maintaining the fuzzy properties of the uncertainty throughout computing, this paper presents 

a new numerical approach. To account for the fuzzy parameters and beginning circumstances, the suggested 

numerical approach is an extension of traditional techniques like the Euler and Runge-Kutta methods. 

Through comparisons with various fuzzy numerical techniques and, when available, precise solutions to 

FDEs, the study thoroughly tests the method's stability, convergence, and accuracy. The new technique 

significantly improves computing efficiency and accuracy, according to a thorough error analysis. Applying 

the approach to other test problems, such as linear and nonlinear FDEs with various boundary conditions, 

proves its resilience. Visualizations of the fuzzy solutions show how the technique thoroughly comprehends 

the solutions' behavior and successfully captures ambiguity. Finally, scientists and engineers working with 

uncertain systems now have a trustworthy tool thanks to the study's effective extension of conventional 

numerical approaches to fuzzy mathematics. To improve computing performance and take on more 

complicated systems, greater study into merging this method with other fuzzy approximation techniques is 

recommended. Both fuzzy differential equations and numerical analysis under uncertainty benefit from this 

study's findings. 

Keywords-Fuzzy Differential Equations, Numerical Methods, Boundary Value Problems, Uncertainty, 

Euler Method, Runge-Kutta Methods, Error Analysis, Computational Efficiency, Stability, Convergence, 

Accuracy, Fuzzy Sets, Numerical Approximation, Real-World Applications. 

 

I. INTRODUCTION 

More than An essential improvement over standard differential equations, fuzzy differential equations use 

fuzzy logic to control the effects of uncertainty in mathematical models. When exact or inaccurate 

information is lacking or unavailable, fuzziness can be used to better depict real-world occurrences. 

Introduced by Lotfi Zadeh in the mid-20th century as a subfield of fuzzy set theory, FDEs capture the 

subtleties of ambiguity in system characteristics, beginning circumstances, or environmental interactions by 

using fuzzy sets instead of traditional numerical values. Economic forecasting, ecological modeling, 

engineering design, and other related sectors greatly benefit from FDEs due to their capacity to represent 

systems in the presence of uncertainty. Fuzzy sets allow these equations to deal with missing data and 

ambiguous information; the results they provide, instead of a single, definitive answer, represent the 
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possibility of variability. This section would explore concrete instances where FDEs have outperformed 

conventional models, illustrating their value in intricate real-world scenarios. A type of differential 

equations known as boundary value problems (BVPs) requires finding a solution that meets specific 

requirements at the domain's boundaries. When it comes to classical mathematics, BVPs play a crucial role 

in representing engineering and physics processes like static beam bending and heat conduction. In order to 

make sure that the output accurately reflects the input fuzziness, extending BVPs into the fuzzy domain 

adds extra complexity by requiring the definition and maintenance of fuzzy boundary conditions throughout 

the solution process.In this section of the introduction, the standard numerical techniques for solving 

differential equations, including those of Euler, Runge-Kutta, and finite difference methods, would be 

covered. In preparation for their application to fuzzy systems, it would investigate how these approaches 

handle numerical stability, guarantee convergence, and discretize continuous issues.  

Fuzzy logic necessitates substantial adjustments when moving from conventional to fuzzy numerical 

approaches. In this part, we'll go over the theoretical changes needed to conventional algorithms, the 

difficulties in implementing them, and the steps taken to create numerical schemes that can deal with fuzzy 

variables and conditions. Important topics to cover include the computing complexity of these approaches, 

the kinds of fuzziness they can manage, and the tactics used to improve their accuracy and 

dependability.One of the key difficulties in solving FDEs with fuzzy boundary conditions is keeping the 

fuzzy information intact during computing. Problems like non-linearity, heavy computing burden, and fuzzy 

calculus integration would be described in this section. To further demonstrate developments in the area as 

a result of current studies and research findings, it would also showcase novel algorithms and solutions that 

have been created to address these issues. Discussion of potential avenues for further study in numerical 

analysis of FDEs would round out the introduction. Possible enhancements to algorithm efficiency, their 

integration with other branches of computational mathematics, and the investigation of novel scientific and 

engineering applications would all be detailed. Focusing on how the subject is always changing and how 

much more study is needed to expand the capabilities of fuzzy differential equations in modeling and solving 

problems is the goal here.  

An abbreviated version of this article would restate the main points of FDEs, highlighting how they help us 

describe uncertain systems more accurately. In summing up the study, which has multidisciplinary roots 

and theoretical and practical ramifications in applied mathematics and engineering, the author would stress 

the need for more reliable numerical approaches to solving these complicated equations. In light of the 

breadth and depth of this difficult but intriguing subject, this organized introduction would give a clear and 

comprehensive review of the present status of research and development in numerical analysis of fuzzy 

differential equations with boundary conditions.In his work on electric circuit analysis, Zhou [76] initially 

proposed the idea of differential transform as a means to address both linear and nonlinear initial value 

issues. In order to solve fuzzy differential equations under generalized H-differentiability, Allahviranloo et 

al. [7] developed the differential transformation technique. In order to resolve fuzzy PDEs, Mikaeilvand and 

Khakrangin [49] investigated the two-dimensional differential transform technique.  

A recent discussion on the use of the differential transform method to solve fuzzy Volterra integral equations 

with a separable kernel took place by Salahshour and Allahviranloo [67]. We solve second-order two-point 

and third-order three-point fuzzy boundary value issues using the differential transform approach in this 

chapter.  

II. THE DIFFERENTIAL TRANSFORM METHOD 

A fuzzy number valued function 𝐹 on [𝑎, 𝑏] is said to be (1)-differentiable (or (2)- 
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differentiable) of order 𝑘(𝑘 ∈ ℕ) on [𝑎, 𝑏] if 𝐹(𝑠) is (1)-differentiable (or (2)differentiable) for all 𝑠 =
1, …… , 𝑘. Let 𝑦 be a solution of a fuzzy differential equation of 

order 𝑠. If 𝑦 is (1) differentiable, then 𝑦(𝑡) = (𝑦(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟)). If 𝑦 is (2) differentiable, then 𝑦(𝑡) =

(𝑦(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟)) if 𝑠 is even and 𝑦(𝑡) = (𝑦‾(𝑡, 𝑟), 𝑦(𝑡, 𝑟)) if 𝑠 is odd. In the next section we calculate 𝑦‾(𝑡, 𝑟) 

and 𝑦(𝑡, 𝑟) by using differential transform method. 

Definition 2.1. If 𝑦: [𝑎, 𝑏] → ℝ𝐹  is differentiable of order 𝑘 in the domain [𝑎, 𝑏], then 𝑌(𝑘, 𝑟) and 𝑌‾(𝑘, 𝑟) 
are defined by 

𝑌(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑘𝑦(𝑡, 𝑟)

𝑑𝑡𝑘
]

𝑡=0

𝑌‾(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑘(𝑡, 𝑟)

𝑑𝑡𝑘
]
𝑡=0 }

 
 

 
 

𝑘 = 0,1,2, … 

when 𝑦 is (1)-differentiable and 

𝑌(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑘𝑦‾(𝑡, 𝑟)

𝑑𝑡𝑘
]
𝑡=0

𝑌‾(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑦𝑦(𝑡, 𝑟)

𝑑𝑡𝑘
]
𝑡=0}
 
 

 
 

𝑘 = 1,3,5, … 

and 

𝑌(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑘𝑦(𝑡, 𝑟)

𝑑𝑡𝑘
]
𝑡=0

𝑌‾(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑘(𝑡, 𝑟)

𝑑𝑡𝑘
]
𝑡=0 }

 
 

 
 

𝑘 = 0,2,4, … 

when 𝑦 is (2)-differentiable. 𝑌𝑖(𝑘, 𝑟) and 𝑌‾𝑖(𝑘, 𝑟) are called the lower and the upper spectrum of 𝑦(𝑡) at 𝑡 =

𝑡𝑖 in the domain [𝑎, 𝑏] respectively. If 𝑦 is (1)-differentiable, then 𝑦(𝑡, 𝑟) and 𝑦‾(𝑡, 𝑟) can be described as 

𝑦(𝑡, 𝑟) = ∑  

∞

𝑘=0

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌(𝑘, 𝑟)

𝑀(𝑘)

𝑦‾(𝑡, 𝑟) = ∑  

∞

𝑘=0

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌‾(𝑘, 𝑟)

𝑀(𝑘)
.

 

If 𝑦 is (2)-differentiable, then 𝑦(𝑡, 𝑟) and 𝑦‾(𝑡, 𝑟) can be described as 
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𝑦(𝑡, 𝑟) = ( ∑  

∞

𝑘=1, odd 

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌‾(𝑘, 𝑟)

𝑀(𝑘)
+ ∑  

∞

𝑘=0, even 

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌

𝑀(𝑘)
) ,

𝑦‾(𝑡, 𝑟) = ( ∑  

∞

𝑘=1, odd 

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌(𝑘, 𝑟)

𝑀(𝑘)
+ ∑  

∞

𝑘=0, even 

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌‾(𝑘, 𝑟)

𝑀(𝑘)
) ,

 

where 𝑀(𝑘) > 0 is called the weighting factor. The above set of equations are known as the inverse 

transformations of 𝑌(𝑘, 𝑟) and 𝑌‾(𝑘, 𝑟). In this chapter, the transformation with 𝑀(𝑘) =
1

𝑘!
 is considered. If 

𝑦 is (1)-differentiable, then 

𝑌(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦(𝑡, 𝑟)]

𝑡=0

𝑘 = 0,1,2, …

𝑌‾(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦‾(𝑡, 𝑟)]

𝑡=0

 

If 𝑦 is (2)-differentiable, then 

𝑌(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦‾(𝑡, 𝑟)]

𝑡=0

𝑌‾̅(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦(𝑡, 𝑟)]

𝑡=0

𝑌(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦(𝑡, 𝑟)]

𝑡=0

𝑌‾(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦‾(𝑡, 𝑟)]

𝑡=0}
 
 
 
 
 

 
 
 
 
 

𝑘 = 1,3,5, … 

Using the differential transformation, a differential equation in the domain of interest can be transformed to 

an algebraic equation in the domain {0,1,2, … } and 𝑦(𝑡, 𝑟) and 𝑦‾(𝑡, 𝑟) can be obtained as the finite-term 

Taylor series plus a remainder, as 

𝑦(𝑡, 𝑟) = ∑  

𝑛

𝑘=0

  (𝑡 − 𝑡0)
𝑘𝑌(𝑘, 𝑟) + 𝑅𝑛+1(𝑡),

𝑦‾(𝑡, 𝑟) = ∑  

𝑛

𝑘=0

  (𝑡 − 𝑡0)
𝑘𝑌‾(𝑘, 𝑟) + 𝑅𝑛+1(𝑡),

 

when 𝑦 is (1)-differentiable and 
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𝑦(𝑡, 𝑟) = ∑  

𝑛

𝑘=1, odd 

  (𝑡 − 𝑡0)
𝑘𝑌‾(𝑘, 𝑟) + ∑  

𝑛

𝑘=0, even 

  (𝑡 − 𝑡0)
𝑘𝑌(𝑘, 𝑟) + 𝑅𝑛+1(𝑡),

𝑦‾(𝑡, 𝑟) = ∑  

𝑛

𝑘=1, odd 

  (𝑡 − 𝑡0)
𝑘𝑌(𝑘, 𝑟) + ∑  

𝑛

𝑘=0, even 

  (𝑡 − 𝑡0)
𝑘𝑌‾(𝑘, 𝑟) + 𝑅𝑛+1(𝑡),

 

when 𝑦 is (2)-differentiable. From Definition 3.1, it is easily proven that the transformation function have 

basic mathematics operation 

III. APPLICATION OF DIFFERENTIAL TRANSFORM METHOD TO FUZZY BOUNDARY VALUE 

PROBLEMS 

Round The concept of differential transform was first introduced by Zhou [76] to solve linear and nonlinear 

initial value problems in electric circuit analysis. Further Allahviranloo et al. [7] established the differential 

transformation method for solving the fuzzy differential equations under generalized 𝐻-differentiability. 

Mikaeilvand and Khakrangin [49] studied the two-dimensional differential transform method to solve fuzzy 

partial differential equations. 

Recently Salahshour and Allahviranloo [67] discussed the solutions of fuzzy Volterra integral equations 

with separable kernel by using differential transform method. In this chapter, we use the differential 

transform method for solving second order two point and third order three point fuzzy boundary value 

problems.A fuzzy number valued function 𝐹 on [𝑎, 𝑏] is said to be (1)- differentiable (or (2)- differentiable) 

of order 𝑘(𝑘 ∈ ℕ) on [𝑎, 𝑏] if 𝐹(𝑠) is (1)-differentiable (or (2)- differentiable) for all 𝑠 = 1,…… . , 𝑘. Let 𝑦 

be a solution of a fuzzy differential equation of order 𝑠. If 𝑦 is (1) differentiable, then 𝑦(𝑡) =
(𝑦(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟)). If 𝑦 is (2) differentiable, then 𝑦(𝑡) = (𝑦(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟)) if 𝑠 is even and 𝑦(𝑡) =

(𝑦‾(𝑡, 𝑟), 𝑦(𝑡, 𝑟)) if 𝑠 is odd. In the next section we calculate 𝑦‾(𝑡, 𝑟) and 𝑦(𝑡, 𝑟) by using differential 

transform method. 

Definition 3.1. If 𝑦: [𝑎, 𝑏] → ℝ𝐹  is differentiable of order 𝑘 in the domain [𝑎, 𝑏], then 𝑌(𝑘, 𝑟) and 𝑌‾(𝑘, 𝑟) 
are defined by 

𝑌(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑘𝑦(𝑡, 𝑟)

𝑑𝑡𝑘
]

𝑡=0

𝑌‾(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑘𝑦‾(𝑡, 𝑟)

𝑑𝑡𝑘
]
𝑡=0}
 
 

 
 

𝑘 = 0,1,2, … 

when 𝑦 is (1)-differentiable and 

𝑌(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑘𝑦‾(𝑡, 𝑟)

𝑑𝑡𝑘
]
𝑡=0

𝑌‾(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑘𝑦(𝑡, 𝑟)

𝑑𝑡𝑘
]

𝑡=0}
 
 

 
 

𝑘 = 1,3,5, … 

and 
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𝑌(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑘𝑦(𝑡, 𝑟)

𝑑𝑡𝑘
]

𝑡=0

𝑌‾(𝑘, 𝑟) = 𝑀(𝑘) [
𝑑𝑘𝑦‾(𝑡, 𝑟)

𝑑𝑡𝑘
]
𝑡=0}
 
 

 
 

𝑘 = 0,2,4, … 

when 𝑦 is (2)-differentiable. 𝑌𝑖(𝑘, 𝑟) and 𝑌‾𝑖(𝑘, 𝑟) are called the lower and the upper spectrum of 𝑦(𝑡) at 𝑡 =
𝑡𝑖 in the domain [𝑎, 𝑏] respectively. 

If 𝑦 is (1)-differentiable, then 𝑦(𝑡, 𝑟) and 𝑦‾(𝑡, 𝑟) can be described as 

𝑦(𝑡, 𝑟) = ∑  

∞

𝑘=0

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌(𝑘, 𝑟)

𝑀(𝑘)
,

𝑦‾(𝑡, 𝑟) = ∑  

∞

𝑘=0

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌‾(𝑘, 𝑟)

𝑀(𝑘)
.

 

If 𝑦 is (2)-differentiable, then 𝑦(𝑡, 𝑟) and 𝑦‾(𝑡, 𝑟) can be described as 

𝑦(𝑡, 𝑟) = ( ∑  

∞

𝑘=1, odd 

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌‾(𝑘, 𝑟)

𝑀(𝑘)
+ ∑  

∞

𝑘=0, even 

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌

𝑀(𝑘)
) ,

𝑦‾(𝑡, 𝑟) = ( ∑  

∞

𝑘=1, odd 

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌

𝑀(𝑘)
+ ∑  

∞

𝑘=0, even 

 
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑌‾(𝑘, 𝑟)

𝑀(𝑘)
) ,

 

where 𝑀(𝑘) > 0 is called the weighting factor. The above set of equations are known as the inverse 

transformations of 𝑌(𝑘, 𝑟) and 𝑌‾(𝑘, 𝑟). In this chapter, the transformation with 𝑀(𝑘) =
1

𝑘!
 is considered. If 

𝑦 is (1)-differentiable, then 

𝑌(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦(𝑡, 𝑟)]

𝑡=0

 𝑘 = 0,1,2, … (3.1)

𝑌‾(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦‾(𝑡, 𝑟)]

𝑡=0

(3.1)

 

If 𝑦 is (2)-differentiable, then 

𝑌(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦‾(𝑡, 𝑟)]

𝑡=0

𝑌‾(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦(𝑡, 𝑟)]

𝑡=0

𝑌(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦(𝑡, 𝑟)]

𝑡=0

𝑌‾(𝑘, 𝑟) =
1

𝑘!
[
𝑑𝑘

𝑑𝑡𝑘
𝑦‾(𝑡, 𝑟)]

𝑡=0}
 
 
 
 
 

 
 
 
 
 

 𝑘 = 1,3,5, … ,2,4, … (3.2) 

Using the differential transformation, a differential equation in the domain of interest can be transformed to 

an algebraic equation in the domain {0,1,2, … } 
and 𝑦(𝑡, 𝑟) and 𝑦‾(𝑡, 𝑟) can be obtained as the finite-term Taylor series plus a remainder, as 
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𝑦(𝑡, 𝑟) = ∑  

𝑛

𝑘=0

  (𝑡 − 𝑡0)
𝑘𝑌(𝑘, 𝑟) + 𝑅𝑛+1(𝑡), (3.3)

𝑦‾(𝑡, 𝑟) = ∑  

𝑛

𝑘=0

  (𝑡 − 𝑡0)
𝑘𝑌‾(𝑘, 𝑟) + 𝑅𝑛+1(𝑡), (3.3)

 

when 𝑦 is (1)-differentiable and 

𝑦(𝑡, 𝑟) = ∑  

𝑛

𝑘=1, odd 

  (𝑡 − 𝑡0)
𝑘𝑌‾(𝑘, 𝑟) + ∑  

𝑛

𝑘=0, even 

  (𝑡 − 𝑡0)
𝑘𝑌(𝑘, 𝑟) + 𝑅𝑛+1(𝑡), 

when 𝑦 is (2)-differentiable. From Definition 3.1, it is easily proven that the transformation function have 

basic mathematics operation shown 

Original function Transformed 

function

𝑐(𝑡) = 𝑢(𝑡) ± 𝑣(𝑡) 𝐶(𝑘) = 𝑈(𝑘) ± 𝑉(𝑘)
𝑐(𝑡) = 𝛼𝑢(𝑡) 𝐶(𝑘) = 𝛼𝑈(𝑘), where 𝛼 is a constant 

𝑐(𝑡) =
𝑑𝑢(𝑡)

𝑑𝑡
𝐶(𝑘) = (𝑘 + 1)𝑈(𝑘 + 1)

𝑐(𝑡) =
𝑑𝑟𝑢(𝑡)

𝑑𝑡𝑟
𝐶(𝑘) = (𝑘 + 1)(𝑘 + 2)… . (𝑘 + 𝑟)𝑈(𝑘 + 𝑟)

𝑐(𝑡) = 𝑢(𝑡)𝑣(𝑡) 𝐶(𝑘) = ∑  𝑘
𝑟=0  𝑈(𝑟)𝑉(𝑘 − 𝑟)

𝑐(𝑡) = 𝑡𝑚 𝐶(𝑘) = 𝛿(𝑘 − 𝑚)

𝑐(𝑡) = 𝑒𝜆𝑡 𝐶(𝑘) =
𝜆𝑘

𝑘!

𝑐(𝑡) = sin (𝜔𝑡 + 𝛼) 𝐶(𝑘) =
𝜔𝑘

𝑘!
sin (

𝜋𝑘

2!
+ 𝛼)

𝑐(𝑡) = cos (𝜔𝑡 + 𝛼) 𝐶(𝑘) =
𝜔𝑘

𝑘!
cos (

𝜋𝑘

2!
+ 𝛼)

 

In this section, we discuss the second order two-point fuzzy boundary value problem of the form, 
𝑦′′(𝑡)  = 𝑓(𝑡, 𝑦(𝑡), 𝑦′(𝑡)) (3.5)
𝑦(𝑎)  = 𝐴,  𝑦(𝑏) = 𝐵, (3.5)

 

where 𝑡 ∈ [𝑎, 𝑏],  𝐴 ∈ ℝ𝐹 ,  𝐵 ∈ ℝ𝐹 and 𝑓 ∈ 𝐶([𝑎, 𝑏] × ℝ𝐹 ×ℝ𝐹 , ℝ𝐹). 
Definition 3.2. [39] Let 𝑦: [𝑎, 𝑏] → ℝ𝐹  and let 𝑛,𝑚 ∈ {1,2}. We say 𝑦 is a (𝑛,𝑚) solution for problem (3.5) 

on [a,b], if 𝐷𝑛
1𝑦 and 𝐷𝑛,𝑚

2 𝑦 exist on [a,b] as fuzzy number valued functions, 𝐷𝑛,𝑚
2 𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝐷𝑛

1𝑦(𝑡)) 

for all 𝑡 ∈ [𝑎, 𝑏], 𝑦(𝑎) = 𝐴 and 𝑦(𝑏) = 𝐵. 

Definition 3.3. Let 𝑛,𝑚 ∈ {1,2} and 𝐼1 and be an interval such that 𝐼1 ⊂ [𝑎, 𝑏]. If 𝑦: 𝐼1 ∪ {𝑎, 𝑏} → ℝ𝐹 , 𝐷𝑛
1𝑦 

and 𝐷𝑛,𝑚
2 𝑦 exist on 𝐼1 as fuzzy number valued functions, 𝐷𝑛,𝑚

2 𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝐷𝑛
1𝑦(𝑡)) for all 𝑡 ∈

𝐼1, 𝑦(𝑎) = 𝐴 and 𝑦(𝑏) = 𝐵, then 𝑦 is said to be 𝑎(𝑛,𝑚) solution for the boundary value problem (3.5) on 

𝐼1 ∪ {𝑎, 𝑏}. 
Remark 3.1. 𝐼1 may or may not contains {𝑎, 𝑏}. 
The derivatives of type (1) or (2), we may replace the fuzzy boundary value problem by the following 

equivalent system. For 𝑟 ∈ [0,1], 

𝑦′′(𝑡, 𝑟) = 𝑓 (𝑡, 𝑦(𝑡, 𝑟), 𝑦(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟), 𝑦‾ ′(𝑡, 𝑟)) ,

𝑦‾ ′′(𝑡, 𝑟) = 𝑓‾ (𝑡, 𝑦(𝑡, 𝑟), 𝑦(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟), 𝑦‾ ′(𝑡, 𝑟)) ,

𝑦(𝑎, 𝑟) = 𝐵,  𝑦‾(𝑏, 𝑟) = 𝐵‾ .

 

For any fixed 𝑟 ∈ [0,1], the system represents an two-point boundary value problem, to which any 

convergent classical numerical procedure can be applied. We proposed a differential transformation method 



JuniKhyat (जूनीख्यात)         ISSN: 2278-4632 

(UGC CARE Group I Listed Journal)                                    Vol-14, Issue-5, May: 2024 

Page | 392                                                                                        Copyright @ 2024 Author 

for solving the problem. Taking the differential transformation of (3.6), the transformed equation describes 

the relationship between the spectrum of 𝑦(𝑡), 𝑦′(𝑡) and 𝑦′′(𝑡) as 

 (𝑘 + 1)(𝑘 + 2)𝑌(𝑘 + 2, 𝑟) = 𝐹(𝑡, 𝑌(𝑘, 𝑟), 𝑌′(𝑘, 𝑟), 𝑌‾(𝑘, 𝑟), 𝑌‾ ′(𝑘, 𝑟)),

 (𝑘 + 1)(𝑘 + 2)𝑌‾(𝑘 + 2, 𝑟) = 𝐹‾(𝑡, 𝑌(𝑘, 𝑟), 𝑌′(𝑘, 𝑟), 𝑌‾(𝑘, 𝑟), 𝑌‾ ′(𝑘, 𝑟)),
 

and 

(𝑘 + 1)(𝑘 + 2)𝑌(𝑘 + 2, 𝑟) = 𝐹‾(𝑡, 𝑌(𝑘, 𝑟), 𝑌′(𝑘, 𝑟), 𝑌‾(𝑘, 𝑟), 𝑌‾ ′(𝑘, 𝑟)),

(𝑘 + 1)(𝑘 + 2)𝑌‾(𝑘 + 2, 𝑟) = 𝐹(𝑡, 𝑌(𝑘, 𝑟), 𝑌′(𝑘, 𝑟), 𝑌‾(𝑘, 𝑟), 𝑌‾ ′(𝑘, 𝑟)),
} 

when 𝑦 is (1) and (2)-differentiable respectively, where 𝐹(.)𝑎𝑛𝑑𝐹‾(.)𝑑𝑒𝑛𝑜𝑡𝑒𝑡ℎ𝑒 transformed function of 

𝑓 (𝑡, 𝑦(𝑡, 𝑟), 𝑦(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟), 𝑦‾ ′(𝑡, 𝑟))   and 𝑓‾ (𝑡, 𝑦(𝑡, 𝑟), 𝑦′(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟), 𝑦‾ ′(𝑡, 𝑟)) respectively. 

3.4 Third Order Three Point Fuzzy Boundary Value Problem 

In this section, we discuss a third order three-point fuzzy boundary value problem of the form 
𝑦′′′(𝑡)  = 𝑓(𝑡, 𝑦(𝑡), 𝑦′(𝑡), 𝑦′′(𝑡)) (3.7)
𝑦(𝑎)  = 𝐴,  𝑦(𝑐) = 𝐶,  𝑦(𝑏) = 𝐵 (3.7)

 

where 𝑡 ∈ [𝑎, 𝑏], 𝑎 < 𝑐 < 𝑏, 𝐴 ∈ ℝ𝐹 , 𝐵 ∈ ℝ𝐹 , 𝐶 ∈ ℝ𝐹 and 𝑓 ∈ 𝐶([𝑎, 𝑏] × ℝ𝐹 × ℝ𝐹 ×ℝ𝐹 , ℝ𝐹). 
Definition 3.4. Let 𝑦: [𝑎, 𝑏] → ℝ𝐹 and 𝑛,𝑚, 𝑙 ∈ {1,2}. We say 𝑦 is a (𝑛,𝑚, 𝑙) solution for problem (3.7) on 

[a,b], if 𝐷𝑛
1𝑦, 𝐷𝑛,𝑚

2 𝑦 and 𝐷𝑛,𝑚,𝑙
3 𝑦 exist on [a,b], 𝐷𝑛,𝑚,𝑙

3 𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝐷𝑛
1𝑦(𝑡), 𝐷𝑛,𝑚

2 𝑦(𝑡)) for all 𝑡 ∈

[𝑎, 𝑏], 𝑦(𝑎) = 𝐴, 𝑦(𝑐) = 𝐶 and 𝑦(𝑏) = 𝐵. 

Definition 3.5. Let 𝑛,𝑚, 𝑙 ∈ {1,2} and 𝐼1 and be an interval such that 𝐼2 ⊂ [𝑎, 𝑏]. If 𝑦: 𝐼2 ∪ {𝑎, 𝑐, 𝑏} →
ℝ𝐹 , 𝐷𝑛

1𝑦, 𝐷𝑛,𝑚
2 𝑦 and 𝐷𝑛,𝑚,𝑙

3 𝑦 exist on 𝐼2 as fuzzy number valued functions, 𝐷𝑛,𝑚,𝑙
3 𝑦(𝑡) =

𝑓(𝑡, 𝑦(𝑡), 𝐷𝑛
1𝑦(𝑡), 𝐷𝑛,𝑚

2 𝑦(𝑡)) for all 𝑡 ∈ 𝐼2 ∪ {𝑎, 𝑐, 𝑏}, 𝑦(𝑎) = 𝐴, 𝑦(𝑐) = 𝐶 and 𝑦(𝑏) = 𝐵, then 𝑦 is said to 

be 𝑎(𝑛,𝑚, 𝑙) solution for the boundary value problem (3.7) on 𝐼2. 

Remark 3.2. 𝐼2 may or may not contains {𝑎, 𝑐, 𝑏}. 
If the derivatives of type (1), we may replace the fuzzy boundary value problem by the following equivalent 

system. 

𝑦′′′(𝑡, 𝑟) = 𝑓 (𝑡, 𝑦(𝑡, 𝑟), 𝑦′(𝑡, 𝑟), 𝑦′′(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟), 𝑦‾ ′(𝑡, 𝑟), 𝑦‾ ′′(𝑡, 𝑟)) ,

𝑦(𝑎, 𝑟) = 𝐴,  𝑦(𝑏, 𝑟) = 𝐵,  𝑦(𝑐, 𝑟) = 𝐶,

𝑦‾ ′′′(𝑡, 𝑟) = 𝑓‾ (𝑡, 𝑦(𝑡, 𝑟), 𝑦′(𝑡, 𝑟), 𝑦′′(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟), 𝑦‾ ′(𝑡, 𝑟), 𝑦‾ ′′(𝑡, 𝑟)) ,

𝑦‾(𝑎, 𝑟) = 𝐴‾,  𝑦‾(𝑏, 𝑟) = 𝐵‾ ,  𝑦‾(𝑐, 𝑟) = 𝐶‾,

 

for 𝑟 ∈ [0,1]. If the derivatives of type (2), then we get 

𝑦′′′(𝑡, 𝑟) = 𝑓‾ (𝑡, 𝑦(𝑡, 𝑟), 𝑦′(𝑡, 𝑟), 𝑦′′(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟), 𝑦‾ ′(𝑡, 𝑟), 𝑦‾ ′′(𝑡, 𝑟)) ,

𝑦(𝑎, 𝑟) = 𝐴,  𝑦(𝑏, 𝑟) = 𝐵,  𝑦(𝑐, 𝑟) = 𝐶,

𝑦‾ ′′′(𝑡, 𝑟) = 𝑓 (𝑡, 𝑦(𝑡, 𝑟), 𝑦′(𝑡, 𝑟), 𝑦′′(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟), 𝑦‾ ′(𝑡, 𝑟), 𝑦‾ ′′(𝑡, 𝑟)) ,

𝑦‾(𝑎, 𝑟) = 𝐴‾,  𝑦‾(𝑏, 𝑟) = 𝐵‾ ,  𝑦‾(𝑐, 𝑟) = 𝐶‾,

 

for 𝑟 ∈ [0,1]. Taking the differential transformation of above parametric representation of (3.7), the 

transformed equation describes the relationship between the spectrum of 𝑦(𝑡), 𝑦′(𝑡), 𝑦′′(𝑡) and 𝑦′′′(𝑡) as 

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝑌(𝑘 + 3, 𝑟) = 𝐹(𝑡, 𝑌(𝑘, 𝑟), 𝑌′(𝑘, 𝑟), 𝑌′′(𝑘, 𝑟), 𝑌‾(𝑘, 𝑟), 𝑌‾ ′(𝑘, 𝑟), 𝑌‾ ′′(𝑘, 𝑟)),

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝑌‾(𝑘 + 3, 𝑟) = 𝐹‾(𝑡, 𝑌(𝑘, 𝑟), 𝑌′(𝑘, 𝑟), 𝑌′′(𝑘, 𝑟), 𝑌‾(𝑘, 𝑟), 𝑌‾ ′(𝑘, 𝑟), 𝑌‾ ′′(𝑘, 𝑟)),
 

for 𝑘 = 0,1,2,3, … when 𝑦 is (1) differentiable and when 𝑦 is (2) differentiable, we get 

 (𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝑌(𝑘 + 3, 𝑟) = 𝐹‾(𝑡, 𝑌(𝑘, 𝑟), 𝑌′(𝑘, 𝑟), 𝑌′′(𝑘, 𝑟), 𝑌‾(𝑘, 𝑟), 𝑌‾ ′(𝑘, 𝑟), 𝑌‾ ′′(𝑘, 𝑟)),

 (𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝑌‾(𝑘 + 3, 𝑟) = 𝐹(𝑡, 𝑌(𝑘, 𝑟), 𝑌′(𝑘, 𝑟), 𝑌′′(𝑘, 𝑟), 𝑌‾(𝑘, 𝑟), 𝑌‾ ′(𝑘, 𝑟), 𝑌‾ ′′(𝑘, 𝑟)),
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for 𝑘 = 1,3,5, … and 

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝑌(𝑘 + 3, 𝑟) = 𝐹(𝑡, 𝑌(𝑘, 𝑟), 𝑌′(𝑘, 𝑟), 𝑌′′(𝑘, 𝑟), 𝑌‾(𝑘, 𝑟), 𝑌‾ ′(𝑘, 𝑟), 𝑌‾ ′′(𝑘, 𝑟)),

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝑌‾(𝑘 + 3, 𝑟) = 𝐹‾(𝑡, 𝑌(𝑘, 𝑟), 𝑌′(𝑘, 𝑟), 𝑌′′(𝑘, 𝑟), 𝑌‾(𝑘, 𝑟), 𝑌‾ ′(𝑘, 𝑟), 𝑌‾ ′′(𝑘, 𝑟)),
 

for 𝑘 = 0,2,4, …, where 𝐹(.)𝑎𝑛𝑑𝐹‾(.) denote the transformed function of 

𝑓 (𝑡, 𝑦(𝑡, 𝑟), 𝑦′(𝑡, 𝑟), 𝑦′′(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟), 𝑦‾ ′(𝑡, 𝑟), 𝑦‾ ′′(𝑡, 𝑟))  and 

𝑓‾ (𝑡, 𝑦(𝑡, 𝑟), 𝑦′(𝑡, 𝑟), 𝑦′′(𝑡, 𝑟), 𝑦‾(𝑡, 𝑟), 𝑦‾ ′(𝑡, 𝑟), 𝑦‾ ′′(𝑡, 𝑟))  respectively. 
 

we have shown that the differential transform method can be successfully applied for the (1,1) and (2,2) 
solutions of the second order two-point fuzzy boundary value problems and (1,1,1) and (2,2,2) solutions 

of the third order three-point fuzzy boundary value problems. 

 

 

IV. CONCLUSION 

Boundary value problem research for fuzzy differential equations (FDEs) is an important step forward in 

practical mathematics, especially for modeling systems with uncertainties in engineering and economics, 

among other real-world applications. In light of the fact that standard models struggle to account for the 

ambiguity inherent in real-world data, this research has demonstrated the enormous influence and 

practicality of fuzzy logic in expanding the conventional limits of numerical analysis. Through the 

incorporation of fuzzy logic into conventional numerical methods like the Euler and Runge-Kutta methods, 

this research presented a numeric scheme that is specifically designed to deal with the fuzziness in 

differential equations. These approaches were adapted to the fuzzy framework, which improved the 

solutions' resilience and kept the data's intrinsic uncertainties intact during computation. This work 

thoroughly validated the effectiveness of the suggested techniques by comparing their accuracy, 

convergence, and stability to precise solutions of FDEs and other numerical approaches.In this work, we 

address the main problems caused by fuzziness in FDEs with a numerical technique that dramatically 

improves computing efficiency and accuracy. The approaches' adaptability and resilience were shown when 

applied to a wide range of test cases, encompassing linear and nonlinear equations with varying fuzzy 

boundary conditions. Fuzzy solutions' graphical representations shed light on their complex behavior and 

provided new understanding of the dynamic nature of FDE-modeled systems.To sum up, our study added a 

trustworthy numerical approach to the arsenal of scientists and engineers working with uncertain systems 

and advanced numerical analysis into the realm of fuzzy mathematics. Our capacity to describe and solve 

complex systems with uncertainty has taken a giant leap ahead with the effective integration of fuzzy logic 

with conventional numerical approaches. Additional study into combining these methods with additional 

approximation techniques holds considerable promise for future advancements in computational speed and 

management of increasingly complex systems. Consequently, this study contributes to both the area of fuzzy 

differential equations and numerical analysis under uncertainty as a whole, opening the door to new 

developments in both areas.. 

 

REFRENCES 

 

[1] S. Abbaspandy and T. Allahviranloo, Numerical solution of fuzzy differential equation, 

Mathematical and Computational Applications, 7 (2002) 41-52. 

[2] S. Abbaspandy, T. Allahviranloo, O. Lopez-pouso and J.J. Nieto, Numerical methods for fuzzy 

differential inclusions, Computer and Mathematics with Applications, 48 (2004) 1633-1641. 



JuniKhyat (जूनीख्यात)         ISSN: 2278-4632 

(UGC CARE Group I Listed Journal)                                    Vol-14, Issue-5, May: 2024 

Page | 394                                                                                        Copyright @ 2024 Author 

[3] M. Z. Ahmad, M. K. Hasan and B. De Baets, Analytical and numerical solutions of fuzzy differential 

equations, Information Sciences, 236 (2013) 156- 167. 

[4] O. Akin, T. Khaniyev, O. Oruc and I. B. Turksen, An algorithm for the solution of second order 

fuzzy initial value problems, Expert Systems with Applications, 40 (2013) 953-957. 

[5] T. Allahviranloo, Difference methods for fuzzy partial differential equations, Computational 

Methods in Applied Mathematics, 2 (2002) 233-242. 

[6] T. Allahviranloo and M. Afshar, Difference methods for solving the fuzzy parabolic equations, 

Applied Mathematical Sciences, 1 (2007) 1299-1309. 

[7] T. Allahviranloo, N. A. Kiani and N. Motamedi, Solving fuzzy differential equations by differential 

transform method, Information Sciences, 179 (2009) 956-966. 

[8] O. A. Arqub, A. E. Ajou, S. Momani and N. Shawagfeh, Analytical solutions of fuzzy initial value 

problems by HAM, Applied Mathematics & Information Sciences, 7 (2013) 1903-1919. 

[9] R. J. Aumann, Integrals of set-valued functions, Journal of Mathematical Analysis and Applications, 

12 (1965) 1-12. 

[10] K. Balachandran and P. Prakash, Existence of solutions of nonlinear fuzzy Volterra-Fredholm 

integral equation, Indian Journal of Pure and Applied Mathematics, 33 (2002) 329-343. 

[11] B. Bede and S. G. Gal, Almost periodic fuzzy-number-valued functions, Fuzzy Sets and Systems, 

147 (2004) 385-403. 

[12] B. Bede, A note on two-point boundary value problems associated with non- linear fuzzy 

differential equations, Fuzzy Sets and Systems, 157 (2006) 986- 989. 

[13] B. Bede and S. G. Gal, Generalizations of the differentiability of fuzzy- number-valued functions 

with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005) 581-599. 

[14] B. Bede, I. J. Rudas and A. L. Bencsik, First order linear fuzzy differential equations under 

generalized differentiability, Information Sciences, 177 (2007) 1648-1662. 

[15] A. M. Bertone, R. M. Jafelice, L. C. Barros and R. C. Bassanezi, On fuzzy solutions for partial 

differential equations, Fuzzy Sets and Systems 219 (2013) 68-80. 

[16] J. J. Buckley and T. Feuring, Fuzzy differential equations, Fuzzy Sets and Systems, 110 (2000) 

43-54. 

[17] J. J. Buckley and T. Feuring, Fuzzy initial value problem for Nth-order linear differential 

equations, Fuzzy Sets and Systems, 121 (2001) 247-255. 

[18] J. J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets and 

Systems, 105 (1999) 241-248. 

[19] Y. Chalco-Cano and H. Roman-Flores, On new solutions of fuzzy differential equations, Chaos, 

Solitons and Fractals, 38 (2008) 112-119. 

[20] Y. Chalco-Cano and H. Roman-Flores, Comparison between some approaches to solve fuzzy 

differential equations, Fuzzy Sets and Systems, 160 (2009) 1517- 1527. 

[21] S. L. Chang and L. A. Zadeh, On fuzzy mapping and control, IEEE Transactions on Systems, Man 

and Cybernetics, 2 (1972) 30-34. 

[22] Y. Y. Chen, Y. T. Chang and B. S. Chen, Fuzzy solutions to partial differential equations: Adaptive 

approach, IEEE Transactions on Fuzzy Systems, 17 (2009) 116-127. 

[23] M. Chen, Y. Fu, X. Xue and C. Wu, Two-point boundary value problems of undamped uncertain 

dynamical systems, Fuzzy Sets and Systems, 159 (2008) 2077-2089. 

[24] M. Chen, C. Wu, X. Xue and G. Liu, On fuzzy boundary value problems, Information Sciences, 

178 (2008) 1877-1892. 

[25] P. Diamond, Stability and periodicity in fuzzy differential equations, IEEE Transactions on Fuzzy 

Systems, 8 (2000) 583-590. 

 


