
Juni Khyat (        )                                                                                           ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                       Vol-14, Issue-4, No.02, April: 2024 

Page | 150                                                                                                     Copyright @ 2024 Author 
 

ASSESSING MACHINE LEARNING ALGORITHMS FOR INDUSTRIAL NETWORK 

ANOMALY DETECTION 

 

Dayaker P, Assistant Professor, Department of MCA Loyola Academy Degree & PG College, 

Hyderabad, Telangana, India 

P V Naga Lakshmi, Assistant Professor, Department of MCA Loyola Academy Degree & PG 

College, Hyderabad, Telangana, India 

 

Abstract: Industrial Control Systems (ICSs) cyber-physical security is a real and valuable research 

issue. This study compares and assesses various machine learning (ML) techniques to identify 

anomalies in industrial control networks. Using datasets taken from the Secure Water Treatment 

(SWaT), a testbed designed to mimic a scaled-down genuine industrial plant, we examine supervised 

and unsupervised machine learning-based anomaly detection techniques. Our tests highlight the 

advantages and disadvantages of the two ML-based industrial network anomaly detection 

techniques. 
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1. Introduction: Contemporary Supervisory Control and Data Acquisition (SCADA) systems keep 

an eye on the events, processes, and physical components of industrial plants—such as actuators and 

sensors. Although ICSs' widespread and growing interconnection capabilities enhance performance, 

they also create new opportunities for cyber-physical threats. With very minimal human interaction, 

device-to-device or device-to-computer connections predominate. These days, Cyber-Physical 

Systems (CPSs) serve as the basis for a large number of ICS applications that require actuators and 

sensors to carry out monitoring. Refineries, power plants, nuclear power plants, and water 

distribution systems are a few instances of ICS. Many malware attacks on intrusion detection 

systems (ICSs) have been reported in the past few years. The most well-known is Stuxnet [1], while 

more recent ones draw attention to the security flaws in ICSs like Triton [2] and BlackEnergy [3]. To 

safeguard these systems, it is crucial to research and create cutting-edge cyber-physical security 

techniques. Issues with ICSs might have disastrous effects. Furthermore, because some ICSs are 

classified as vital infrastructures, harming or eliminating them could hurt both the environment and 

the populace. Large volumes of data are produced by industrial infrastructures these days. It is 

difficult to filter, analyse, and make operational and security choices for ICSs because of this 

enormous volume of traffic. Artificial intelligence and machine learning have been used in decision-

making processes to address these issues. In actuality, these methods make it possible to evaluate 

enormous volumes of data and produce precise conclusions that analysts otherwise would not be able 

to afford. This sector has seen a great deal of activity in recent years, with remarkable advancements 

in research. When anomaly detection systems are combined with machine learning and artificial 

intelligence, performance and accuracy can be increased beyond what can be achieved with 

conventional methods. Thus, to create and evaluate innovative, accurate anomaly detection systems 

to prevent possible damages to ICS. 

Here is a summary of our contributions: 

• We analyse ML-based supervised and unsupervised anomaly detection techniques. 

• We test the discovered ML-based anomaly detection techniques using the SWaT testbed dataset. 

• We talk about how ML-based methods can be useful in identifying risks that impact ICSs. 

A widely researched issue in ICSs is anomaly detection. 

2. Literature Review: 

The lack of readily available datasets for evaluations plagues the scientific community. Lemay and 

Fernandez [4] offer a dataset of a SCADA system that has been sandboxed for simulation. Several 

data collections have been made in this case. Their study contains a detailed explanation of the 

simulated scenario. In this work, hostile activities are introduced and exploited with the use of 
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penetration testing tools like Metasploit. One of the most common problems with the dataset used is 

that it uses Metasploit as a source of assaults; while there are several Modbus-based attacks 

described in [5], none of them are included in the dataset. Nonetheless, extensive research was done 

using the Lemay dataset; for instance, in [6], the authors contrasted supervised and unsupervised 

methods and demonstrated the superiority of the former. Using actual ICS testbeds and creating ad 

hoc offensive and defensive strategies, such as the anomaly detection systems described in [7], [8], is 

another way to look into ICS cyber-physical security. 

This paper examines the SWaT testbed dataset [9] and will pay specific attention to the physical data 

analysis. There are thirty-six distinct cyberattacks in the SWaT dataset. This dataset has been the 

subject of numerous experiments to evaluate the efficacy of various ML detection algorithm types. 

The authors of [10] identified attacks on physical dataset sensors using unsupervised techniques. The 

authors of [11] presented a window-based anomaly detection technique in which a neural network 

model forecasts the values of the data features in the future based on past values. 

An anomaly detection system can handle its data in one of two ways. The first involves analysing 

each component separately, while the second involves grouping the components in time series and 

examining the components that have collapsed. Although the latter does not permit the identification 

of individual harmful elements, it does permit the use of temporal properties derived from the union 

of several elements. We used the first analysis approach in this work to find every single harmful 

element. Additionally, in contrast to the aforementioned publications, we compare supervised and 

unsupervised methodologies to highlight the key distinctions. 

 

3. ICS TESTBED AND DATASET 

A. Data availability problem for ICS security research 

Cyber-attack datasets are necessary for the security community to identify, test, and assess novel 

approaches for detection and prevention to comprehend trends and consequences of physical and 

cyberattacks on ICSs. However, conducting novel security research is challenging since there are 

few datasets available that contain assaults in ICS networks. The scarcity of accessible datasets 

derives from privacy issues and the impossibility of testing cyber-physical attacks on vital real-

world systems. While professional testbeds [12] or inexpensive ones [13] allow some research 

groups to explore new security techniques, most of the time there is a barrier to the 

implementation and assessment of cyber-physical security measures and cyber-physical threats. 

To overcome this problem, research groups provide useful datasets of their testbed 

communication. One example is the SWaT testbed with its dataset.  

B. The Secure Water Treatment (SWaT) testbed 

To provide a realistic ICS environment for the safe testing of offensive and defensive cyber-

physical techniques, the Singapore University of Technology and Design (SUTD) constructed 

the SWaT testbed. Figure 1 describes the procedures for operating the testbed. The testbed is 

a miniature version of an actual water treatment facility that generates clean water. 

From process P1 to process P6, the water passes through a six-step filtering process, with a 

specific number of sensors and actuators at each level. For additional details regarding the 

SWaT testbed, please see [14]. 
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Fig 1. SWaT tested  

C. The dataset SWaT 

The SWaT dataset includes four days of data recording in addition to seven days of data recording 

during normal circumstances. 

where thirty-six attacks were carried out in total. There are 946722 elements in the dataset overall, 

and each one is classified as either attack or normal. Targeting a single step of the process or several 

phases at once are two possible attack strategies. The dataset documentation includes a 

comprehensive table with every attack, its related times, and its results. 

One limitation of the dataset is that, as the authors note in [9], there are instances of overlap when 

multiple rows have the same timestamp but indicate separate activities because the data was 

collected at a per-second interval. Similarly, the data was labelled according to the start and finish 

times of the attacks without making a distinction between malicious components and those that were 

regular, based on the attack logs. Consequently, these issues have an impact on the integrity of the 

data and could jeopardise the analysis's conclusions. 

We have selected attack number three for our analysis in this work out of the 36 attacks that were 

carried out. The file under consideration includes the appropriate label along with both benign and 

harmful data. Scalar values captured by sensors at regular intervals make up the dataset. During this 

time, the attack is carried out by raising the water level by one millimetre per second. Tank overflow 

as a result damages the P-101 sensor. In a real-world situation, these implications might be 

disastrous. We chose to split the dataset into the following sections because it contains a large 

number of sensors. 

ds1: This dataset includes all of the testbed's sensor data collected throughout the attack phase. This 

dataset is examined to determine whether the modification of one sensor (LIT-101) affects the other 

sensors and, as a result, offers more data for the detection. 

ds2: this dataset solely includes information from the LIT-101 sensor, which is the target of the 

attack. Out of the 2701 entries in each of the derived datasets, 383 are malicious, or approximately 

14.18% of the total. Figure 2 shows a normal and harmful number of components. 

 

IV. METHODS FOR ML-BASED ANOMALY DETECTION 

We describe the ML-based algorithms that we utilised to carry out our evaluation in this Section. We 

examine the advantages and disadvantages of the two strategies by contrasting the supervised 

(Section IV-A) and unsupervised (Section IV-B) methods. 

Part A: Supervised Code 

a) Support Vector Machine: The Support Vector Machine (SVM) was first presented by Boser et 

al. in 1992 [15]. A supervised machine learning technique called SVM is useful for both regression 

and classification. The primary goal of this framework is to establish a divider—the so-called large 

margin classifier—between two data sets so that every element is as far away from the divider as 

possible. The training algorithm receives a set of m instances (xi) with labels (yi) in the following 

format.  

 
The output vector, z, represents the attribution to one of the two classes, while b is the offset from the 

hyperplane. SVMs can be applied in one of two scenarios: either the instances can or cannot be 

separated by a linear function. If the instances cannot be divided linearly, a kernel trick [16] 
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transformation is used. Using this technique, the input space is nonlinearly mapped into a higher 

dimensional feature space, allowing the algorithm to produce a linear divider. 

b) Random Forest: Made up of a union of Decision Trees [17] that are filled during the training 

phase, the Random Forest (RF) is a supervised learning technique used for both regression and 

classification tasks. A root node, internal nodes—also referred to as split nodes—and leaf nodes 

make up RF. Every class that the algorithm predicts has a corresponding leaf node. Through a 

majority vote, an element is assigned to a class. When faced with noise or overfitting, which are 

frequent issues in machine learning, RF works admirably. 

c) k-Nearest Neighbour: The k-Nearest Neighbour (KNN) algorithm is a non-parametric technique 

[18] that may be applied to regression and classification issues alike. The KNN method assumes that 

similar objects are located nearby. Stated differently, similar objects are located close to one another. 

In actuality, the categorization is predicated on the properties of objects in the vicinity of the object 

under consideration, generally as measured by the Euclidean distance or other particular distance 

metrics. The definition of the Euclidean distance is as follows: 

 
In n-dimensional vectors, the components are denoted by xi and pi. The class of the considered point 

is determined as the most frequent among the first k points with the smaller distance after the 

distance between the considered point and every other point is calculated. 

 

B. Unsupervised Algorithms 

a) One-Class SVM: An example of a special instance of the conventional SVM is the One-Class 

Support Vector Machine (OCSVM) [19]. OCSVMs are trained with a single class that reflects 

typical behaviour. The OCSVM is a One-Class Classification (OCC) method specifically. By setting 

up a decision boundary, OCCs attempt to distinguish objects belonging to a particular class from all 

other things. To accomplish this, a set of components that solely contain the objects of the designated 

class is used to train the OCSVM model. As a result, having every training element labelled the same 

is the same as having none at all. The OCSVM is regarded as an unsupervised learning model for 

these reasons [20], [21]. 

The OCSVM model can predict which elements do not belong to the normal class by inferring the 

properties of the normal elements once it has been trained with the normal class. Outliers are 

elements that do not fit into the typical class. 

b) Autoencoder: Fully linked neural networks trained to reconstruct their input are called 

autoencoders (AEs) [22] training materials. By first compressing the input (encoder), the AEs 

automatically learn a "compressed representation" of the input (which might be an image, text 

sequence, etc.) and decode it back to match the original input by decompressing it. One input, one 

output, and one (or more) hidden layer make up an AE network. The size of the hidden layer can be 

adjusted based on the use case, but the input and output layers must always have the same size. This 

type of neural network has gained prominence in the past several years for solving practical issues, 

such as anomaly identification. In actuality, an AE that has been trained on test set X can reconstruct 

previously undiscovered occurrences from the same data distribution. Reconstruction-based 

detection is the term for this type of detection [23]. We anticipate the reconstruction to have a 

significant error rate if an instance does not fit inside the ideas gained from X. The Root Mean 

Squared Error (RMSE) between x¯ and the reconstructed output y¯ can be used to calculate the 

Reconstruction Error (RE) of the instance x¯ for a given AE. RMSE between two vectors can be 

expressed as follows: 
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where n denotes the input vectors' dimension. One of the most important stages in the development 

of AE is threshold selection. A threshold that is set too high could lead to more false negative results, 

and a threshold set too low could result in more false positive results. Since the AEs in our instance 

are only trained with normal classes, the threshold selection strategy is based on that which was 

employed in [24]. Following neural network training, a 20% validation set with only normal 

components is taken from the training set, and the maximum of the validation set's REs is used as the 

threshold value. 

 

V. EVALUATION AND RESULTS 

This section covers the evaluation criteria used to compare the ML-based anomaly detection 

algorithms in Section V-B and the implementation specifics of the ML methods in Section V-A. 

Next, we go over the findings from the studies in Section V-C. 

To conduct the assessment, we divided every dataset into 80% for the detection test and 20% for 

training. For the unsupervised algorithm, we take advantage of a semi-supervised learning technique 

used in the instruction. This indicates that a subset of the training set's normal elements is used to 

train the models. We use the Scikit-learn library [25] for Python to build the SVM, RF, KNN, and 

OCSVM algorithms. All of the estimator classes in the Scikit-learn library implement a fit (Xtrain, 

ytrain) method to fit the model given a training set (Xtrain) and the matching labels (ytrain). For 

unsupervised algorithms, like the OCSVM, this method takes only the Xtrain value. 

The Scikit-learn library uses the predict(Xtest) function to classify the unlabeled observations Xtest 

and returns the anticipated labels y^test. We utilise the Keras [26] library to create the AE neural 

network. A primary challenge in neural network implementation is the issue of fine-tuning 

parameters. An input layer and an output layer with the same dimension of the feature number make 

up the implemented AE model. Half of the neurons in the input and output layers are found in the 

hidden layers. s. In the case of ds2, where there is only one feature, the number of neurons is set to 1. 

We evaluate a laptop with the following specifications:  

 CPU: Intel(R) Core (TM) i7-3537U 2.00GHz x 4. 

 RAM: 10GB DDR3. 

 Operative System: Ubuntu 18.10 64-bit. 

B. Metrics for Evaluation 

The following metrics are used to assess the performance of the machine learning-based anomaly 

detection algorithms: 

• Accuracy: this is the percentage of the model's predictions that are accurate. The accuracy in the 

binary classification situation is defined as follows in terms of positives and negatives: 

 
where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives. 

• F1-Score: is a metric used to evaluate a classification by taking into consideration both precision 

and recall as follows: 

 

 
C. Results 

The outcomes of the ML-based anomaly detection algorithms for the datasets under investigation are 

shown in Table I. All of the recordings are contained in the dataset ds1 the sensor data; in contrast, 

ds2 only includes the data from the targeted sensor, Lit-101. The findings demonstrate that in the 

case of ds1, which is the derived dataset characterised by all sensor readings, all algorithms-aside 

from the AE—perform better. This indicates that the other sensors' conditions are impacted by the 
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attack on the LIT101 sensor as well, which helps to identify the malicious activity. Additionally, RF 

and KNN get a detection score of 1.0 on ds1, indicating the high efficacy of their detection strategies 

on this dataset. SVM does well on this dataset as well; it is unable to identify a single element, 

allowing the data to be separated from a hyperplane. OCSVM demonstrates its discrete nature by 

outperforming supervised algorithms but outperforming AE. Once more, the outcome highlights the 

data's divisibility by the hyperplane, which is superior to the RE-based method in terms of data 

classification. The F1-score of AE on ds1 is null, indicating that no harmful items have been 

identified. The performances are typically poorer in the situation of ds2, that is, in the dataset when 

only the targeted sensor is taken into consideration. This is because the data gleaned from the 

compromised sensors is insufficient to pinpoint the malicious activity. Figure 3 displays the 

graphical representation of the Accuracy for each algorithm, and Figure 4 displays the F1-Score 

representation. 

 
We examine the RE of AE on this dataset to look into the lower scores that all of the algorithms on 

ds2 obtained in comparison to ds1. The distance between the test set's elements and the compressed 

representation of the training set that was committed to memory during the AE training phase can be 

easily visualised through the examination of the RE. Figure 5 presents the findings. When a 

prediction is made on the test set, elements that are similar to the normal ones will have a low RE 

value, while abnormal elements will have a high RE value because AE was trained only with 

elements that were labelled as normal. 

Figure 5 demonstrates that elements are classified as harmful even when the device LIT-101's 

physical condition is still regarded as normal because it hasn't started to change. Consequently, the 

dataset's poor labelling is what led to the low accuracy score. This results in a low F1-score even 

though the procedure was applied correctly. The reason for this issue is that the malicious labelling's 

beginning point was set at the moment the attack began rather than the moment the data began to 

fluctuate. While it is evident on AE, this issue also arises for the other algorithms when analysing 

ds2. 

D. Discussion on ML-based anomaly detection algorithms for ICS security 

In light of the outcomes, we concluded that algorithms that employ supervised learning typically 

outperform unsupervised ones in terms of performance. This is a result of the supervised algorithms' 

use of a priori knowledge obtained from the dataset's labelling. In contrast, no information of any 

kind is used by the unsupervised algorithms. instead, they search the data for latent information to 

identify recurring themes. One fundamental drawback of the supervised technique is that model 

training necessitates labelling the dataset. We discover that there is a labelling issue with the dataset 

following a more thorough examination of the AE findings (the issue also arises in the other 
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algorithms). Data that are equal to normal are also classified as anomalous, which results in a low 

F1-Score and a high number of FN elements.  

The trials demonstrate the potential power of machine learning techniques in identifying anomalies. 

Communications between various devices in ICS systems are continuous and repetitive because they 

are defined by polling time. When managing vast amounts of data, the application of intelligent and 

self-adaptive approaches makes it possible to discover abnormalities even in situations where 

humans are unable to. 

 

VI. Conclusion 

In this work, we assessed machine learning (ML)-based methods for industrial control networks 

anomaly detection. Specifically, we used datasets taken from the SWaT testbed to analyse supervised 

and unsupervised methods. The experiments conducted demonstrate the potentials and constraints of 

supervised and unsupervised algorithms used for anomaly identification on datasets from industrial 

control systems networks. For future work, we will implement the ML-based approaches identified 

on ad hoc ICS simulation networks and real ICS testbeds to deepen the analysis and develop 

effective anomaly detection systems. 
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