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ABSRACT: 

We consider various MIDAS (Mixed Data Sampling) regression models to predict volatility. The 

models differ in the specification of regressors (squared returns, absolute returns, realized volatility, 

realized power, and return ranges), in the use of daily or intra-daily (5-minute) data, and in the length 

of the past history included in the forecasts. The MIDAS framework allows us to compare models 

across all these dimensions in a very tightly parameterized fashion. Using equity return data, we find 

that daily realized power (involving 5-minute absolute returns) is the best predictor of future volatility 

(measured by increments in quadratic variation) and outperforms model based on realized volatility 

(i.e. past increments in quadratic variation). Surprisingly, the direct use of high-frequency (5-minute) 

data does not improve volatility predictions. Finally, daily lags of one to two months are sufficient to 

capture the persistence in volatility. These findings hold both in- and out-of-sample. 

INTRODUCTION: 

The conditional volatility literature, starting 

with Engle’s (1982) ARCH-class of models, 

has been successful at capturing the dynamics 

of return variance using simple parametric 

models. A measure of that success is the 

widespread use of such models in all areas of 

finance by academics and practitioners alike. 

And while most researchers would agree that it 

is important to have a good prediction model of 

conditional volatility, the question of what 

model to use is still unsettled. 

When it comes to forecasting volatility, there 

are many existing models in addition to the 

benchmark ARCH/GARCH models of Engle 

(1982) and Bollerslev (1986) which cast future 

variance as a polynomial of past squared 

returns, i.e., σˆ 2 t+1|t ≡ A(L)r 2 t . One 

alternative is to look for variables, other than 

squared returns, that relate to future volatility. 

Ding et al. (1993) and several others show that 

low-frequency components of volatility might 

be better captured by absolute returns instead of 

squared returns. Also, Alizadeh et al. (2002) 

and Gallant et al. (1999) find daily ranges 

(high-low price ranges) to be good predictors of 

volatility. Another rapidly growing research 

area focuses on data-driven models of realized 

volatility computed from intra-daily returns 

sampled at very short intervals such as 5 

minutes (Andersen and Bollerslev (1998)).1 

All these models suggest a variety of possible 

ways to forecast volatility. Hence, it seems 

natural to ask whether some of the suggested 

predictors are clearly dominated by others and 

whether there are real benefits from using high-

frequency data.2 These questions have proven 

difficult to answer because the models 

considered are so different in terms of 

regressors, frequencies, parameterizations, and 
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return histories, that is it difficult to directly 

compare them. 

We use Mixed Data Sampling (henceforth 

MIDAS) regression models introduced in 

Ghysels, Santa-Clara and Valkanov (2002a,b) 

to provide answers to these questions. MIDAS 

regressions allow us to run parsimoniously 

parameterized regressions of data observed at 

different frequencies. There are several 

advantages of using mixed data sampling 

regressions. They allow us to study, in a unified 

framework, the forecasting performance of a 

large class of volatility models which involve: 

(i) Data sampled at different frequencies; 

(ii) Various past data window lengths; and  

(iii) Different regressors. The specification 

of the regressions 

combine recent developments regarding 

estimation of volatility and a not so recent 

literature on distributed lag models.3 We focus 

on predicting future conditional variance, 

measured as increments in quadratic variation 

(or its log transformation) from one week to 

one month horizons, because these are the 

horizons that are most widely used for option 

pricing, portfolio management, and hedging 

applications. 

First, we use MIDAS regressions to examine 

whether future volatility is well predicted by 

past daily squared returns, absolute daily 

returns, realized daily volatility, realized daily 

power (sum of intra-daily absolute returns, a 

measure proposed by Barndorff-Nielsen and 

Shephard (2003b, 2004)), and daily range. 

Since all of the regressors are used within a 

framework with the same number of 

parameters and the same maximum number of 

lags, the results from MIDAS regressions are 

directly comparable. Hence, the MIDAS setup 

allows us to determine if one of the regressors 

dominates others. We find that, for the Dow 

Jones Index and six individual stock return 

series, the realized power clearly dominates all 

other daily predictors of volatility at all 

horizons. Importantly, the predictive content 

of the realized power is evident not only from 

in-sample goodness of fit measures, but also 

from out-ofsample forecasts. The daily range 

is also a good predictor in the sense that it 

dominates squared and absolute daily returns. 

Our method is a significant departure from the 

usual autoregressive model building approach 

embedded in the ARCH literature and its 

recent extensions such as high-frequency data-

based approaches. A comparison of the 

MIDAS regressions with purely 

autoregressive volatility models reveals that 

the MIDAS forecasts are better at forecasting 

future realized volatility in- and out-of-sample. 

Second, the weights in the MIDAS regressions 

are parameterized by a flexible function. 

Obviously, the choice of regressors is as 

important as is the profile of weights placed on 

them. In our MIDAS framework, the shape of 

the weight function is determined by two 

parameters that are estimated from the data. 

Hence, the weight profile on the lagged 

predictors is captured by the shape of the 

function, whose parameters are estimated from 

the data with no additional pre-testing or lag-

selection procedures. We find that daily lags 

longer than about 50 days do not help (nor 

hurt) the forecasts, for any of the regressors. 

Third, mixed data regressions allow us to 

directly project future realized volatility onto 

high-frequency (say 5-minute) squared and 

absolute returns without daily pre-filtering and 

without increasing the number of parameters. 

Hence, we are able to analyze if there are real 

benefits from directly using high-frequency 

data in volatility forecasting. Surprisingly, we 

find that forecasts using high-frequency data 

directly do not outperform those that use daily 
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regressors (although the daily regressors are 

themselves obtained through the aggregation 

of high-frequency data). It must be noted that 

none of these results are driven by over-fitting 

or parameter proliferation. Indeed, all MIDAS 

specifications – daily and 5-minutes – are 

directly comparable since they all have the 

same number of estimated parameters. 

In summary, we find that daily realized power 

is the best predictor of future increments in 

quadratic variation, followed by the daily 

range. The prediction equations involve about 

50 daily lags and there is no real benefit of 

using intra-daily data directly. These MIDAS 

regressions also outperform other linear 

forecast models involving daily realized 

volatility. Finally, all of the above results hold 

in- and out-of-sample. The out-of-sample 

forecasting precision, which is perhaps the 

ultimate measure of a model’s forecasting 

potential, indicates that our results are unlikely 

to be due to sampling error or over-fitting. 

The MIDAS regressions can also be used to 

model asymmetries and the joint forecasting 

power of the regressors. In fact, Engle and 

Gallo (2003) use the multiplicative error model 

(MEM) of Engle (2002) and find 

improvements in forecasting volatility from 

the joint use of absolute returns, daily ranges, 

and realized volatilities using S&P 500 index 

returns data. Interestingly enough, their results 

agree with ours, despite the different data set 

and different method, as they argue that range-

based measures in particular provide a very 

good forecast of future volatility. 

The paper is structured as follows. In a first 

section we introduce and discuss MIDAS 

volatility models. In section two, we use daily 

regressors to forecast weekly to monthly 

volatility in the MIDAS framework. The third 

section is devoted to MIDAS volatility 

forecasts involving intra-daily data. Section 

four concludes. 

MIDAS Models of Conditional Volatility: 

To fix notation, let daily returns be denoted by 

rt,t−1 =log(Pt) − log(Pt−1). Throughout the 

paper the time index t will refer to daily 

sampling. When the data is sampled at a higher 

frequency, say, m-times in a day, we will 

denote the return over this interval as rt,t−1/m 

= log(Pt) − log(Pt−1/m). For instance, in our 

study, returns are sampled every five minutes 

between the trading hours of 9:30 am and 4:05 

pm (corresponding to 80 five-minute intervals 

within a trading day), and we will write 

rt,t−1/80 = log(Pt) − log(Pt−1/80), which 

corresponds to the last 5-minute return of day 

t − 1. 

 

Our goal is to predict a measure of volatility 

over some future horizon H, Vt+H,t. As a 

primary measure of volatility for the period t to 

t + H, we consider the increments in the 

quadratic variation of the return process 

Qt+H,t. We focus on predicting future realized 

volatility from one week (H = 5) to one month 

(H = 20) horizon. These are horizons that 

matter mostly for option pricing and portfolio 

management. Focusing on predicting future 

increments of quadratic variation also allows 

us to make our analysis directly comparable 

with a large body of existing literature. The 

quadratic variation is not observed directly but 

can be measured with some discretization 

error. One such measure would be the sum of 

(future) squared returns, namely PHm 

j=1[r(t+H)−(j−1)/m,(t+H)−(j−2)/m] 2 , which 

we will denote by Q˜ (Hm) t+H,t since it 

involves a discretization based on Hm intra-

daily returns. The superscript in parentheses 

indicates the number of high-frequency data 

used to compute the variable. Besides 
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increments in quadratic variation, we also 

consider log Q˜ (Hm) t+H,tas a target variable 

to forecast. Previous papers, including 

Andersen et al. (2003), have observed that 

forecasting the log transformation yields better 

in- and out-of-sample forecasts of the variance 

as it puts less weight on extreme realizations of 

the quadratic variation. 

1 The MIDAS Specification: 

A daily MIDAS volatility model is a 

regression model  

 

where V (Hm) t+H,t is a measure of (future) 

volatility such as Q˜ (Hm) t+H,t or log Q˜ 

(Hm) t+H,t. Specification (1.1) has three 

important features when compared to other 

models of conditional volatility (discussed 

below). First, the volatility measure on the left-

hand side, V (Hm) t+H,t , and the variables on 

the right-hand side, X˜ (m) t−k,t−k−1 , might 

be sampled at different frequencies. Second, 

the polynomial lag parameters bH are 

parameterized to be a function of θ, thereby 

allowing for a longer history without a 

proliferation of parameters. Third, MIDAS 

regressions typically do not exploit an 

autoregressive scheme, so that X˜ (m) 

t−k,t−k−1 is not necessarily related to lags of 

the left hand side variable. Instead, MIDAS 

regressions are first and foremost regression 

models and therefore the selection of X˜ (m) 

t−k,t−k−1 amounts to choosing the best 

predictor of future quadratic variation from the 

set of several possible measures of past 

fluctuations in returns. MIDAS regressions 

could potentially involve more than one type 

of regressors, see Ghysels et al. (2004) for 

further discussion. MIDAS regression models 

may also be nonlinear and indeed some of the 

regressors we will consider may provide better 

results with nonlinear specifications. For 

instance, Engle and Gallo (2003) provide 

interesting results along these lines. For 

simplicity, in this paper we consider only a 

single regressor linear MIDAS setting. 

Sampling at Different Frequencies : 

In equation (1.1), the volatility is measured at 

weekly, bi-weekly, tri-weekly, and monthly 

frequency, whereas the forecasting variables 

X˜ (m) t−k,t−k−1 are available at higher 

frequencies. For instance, we can use daily 

data to compute a forecast of next month’s 

volatility (H = 22). In other words, the return 

volatility over the month of, say, April (from 

the close of the market during the last day of 

March to the close of the market during the last 

day of April) will be forecasted with daily data 

up to the last day of March. But we could also 

use hourly or five-minute data to form monthly 

volatility forecasts. Thus, our model allows us 

not only to forecast volatility with data sample 

at different frequencies, but also to compare 

such forecasts and ultimately to see whether 

Merton’s (1980) well-known continuous 

asymptotic arguments hold up in practice 

In general, the MIDAS framework allows us to 

investigate whether the use of high-frequency 

data necessarily leads to better volatility 

forecasts at various horizons. These issues 

have motivated much of the recent literature 

on high-frequency data, see Andersen et al. 

(2001, 2002, 2003), Andreou and Ghysels 

(2002), Barndorff-Nielsen and Shephard (2001, 

2002a,b, 2003a), among others. In some cases, 

the right-hand side variables are computed 

using m high-frequency returns, in which case 

they are denoted by a superscript (m). For 

instance, if we want to compute a monthly 

forecast of volatility using lagged daily 
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volatility estimates obtained from five-minute 

data, m would be equal to 80, the number of 

five-minutes in a day. 

The MIDAS volatility models allow for a great 

degree of flexibility. For the sake of 

systematizing the results, in the next section 

we consider forecasts at weekly, bi-weekly, tri-

weekly, and monthly frequency using daily 

data. In a subsequent section, we will turn to 

intra-daily regressors.  

Parsimony of Parameterization: 

Another distinguishing feature of (1.1) is that 

the lag coefficients bH (k, θ) (weights) are not 

unrestricted parameters. Rather they are 

parameterized as a function of θ, where θ is a 

small-dimensional vector. A flexible 

parameterization is an important element in 

the MIDAS specification, as the inclusion of 

high-frequency data might imply a significant 

increase in the number of lagged forecasting 

variables and unrestricted parameters to 

estimate. It allows us to dramatically reduce 

the number of parameters to estimate, which 

is particularly relevant in estimating a 

persistent process, such as volatility, where 

distant X˜ (m) t−k,t−k−1 are likely to have an 

impact on current volatility. 

Even with daily forecasting variables, the 

unrestricted specification of the weights 

results in a lot of parameters to estimate. The 

problem only worsens with higher-frequency 

data. As we will see below, a suitable 

parameterization bH(k, θ) circumvents the 

problem of parameter proliferation and of 

choosing the truncation point k max . Hence, 

the parameterization bH (k, θ) is one of the 

most important ingredients in a MIDAS 

regression. 

The parameterization also allows us to 

compare MIDAS models at different 

frequencies as the number of parameters to 

estimate will be the same even though the 

weights on the data and the forecasting 

capabilities might differ across horizons. We 

don’t have to adjust our measures of fit for the 

number of parameters. In all estimations, we 

have either one or two parameters 

determining the pattern of the weights, the 

former being the case when we restrict our 

attention to θ1 = 1 and only estimate θ2 > 1. 

To illustrate the issue of parameter 

proliferation, consider Figure 1. It displays the 

estimated unconstrained parameters of 

equation (1.1) for lags up to 10 days. The figure 

contains results from various regressors X˜ (m) 

t−k,t−k−1 , such as Q˜ (m) t−k,t−k−1 , as well as 

absolute daily returns, daily range, and daily 

realized power, all of which we discuss at 

length below. We notice from the results 

displayed in the figure that the parameter 

estimates appear to be erratic as the lag 

increases. Hence, volatility models such as 

(1.1), whose weights are not tightly 

parameterized, do only well even with a small 

number of lags and almost surely will produce 

poor out of sample forecasts. It must be noted 

that the robust performance of ARCH/GARCH 

models can largely be attributed to capturing 

the dynamics of a large number of past shocks 

with only a few parameters. This basic idea is 

also the insight behind the MIDAS regressions. 

Various Regressors: 

In the MIDAS volatility model (1.1), X˜ (m) 

t−k,t−k−1 can be any variable that has the 

ability to forecast Q˜ (Hm) t+H,t. To put it 

differently, MIDAS volatility regressions can 

involve X˜ (m) t−k,t−k−1 
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other than past squared returns or past realized 

volatility, which are the usual regressors 

considered in the autoregressive conditional 

volatility literature. The MIDAS approach puts 

us in the mind set of regression analysis and 

prompts us to explore various regressors that 

have the potential to predict future volatility. A 

number of predictors other than past realized 

volatility or squared returns have been 

proposed in various models. Unlike MIDAS, 

however, these models are typically 

autoregressive in nature. The MIDAS setup 

allows us to compare the forecasting ability of 

different X˜ (m) t−k,t−k−1 ’s and to choose the 

model with the best forecasting ability. 

In the context of forecasting the quadratic 

variation Q˜ (Hm) t+H,t, we consider the 

following regressors. 

 

In equation (1.3), past Q˜ (m) t,t−1 are used to 

predict Q˜ (Hm) t+H,t. Examples of such 

models have been advocated by Andersen et al. 

(2001, 2002, 2003) and are discussed at length 

below. Specification (1.4) is a projection of Q˜ 

(Hm) t+H,t onto lagged daily returns and 

corresponds to the ARCH/GARCH class of 

models (under some parameter restrictions).6 

Equations (1.5) and (1.6) involve projecting Q˜ 

(Hm) t+H,t onto past daily absolute returns and 

daily ranges, respectively, which are two 

alternative measures of volatility. Therefore 

they are natural candidate regressors in the 

MIDAS specification. It is often argued that in 

the presence of deviations from normality 

absolute values could be more robust than 

squared values for conditional variance 

estimation (see e.g. Davidian and Caroll 

(1987)) whereas the virtues of daily range have 

been explored most recently by Alizadeh et al. 

(2001) and Gallant et al. (1999). Typically, past 

absolute returns (ranges) are used to predict 

future absolute returns (ranges). In particular, 

when absolute returns (daily ranges) are 

considered, the autoregressive features of 

absolute returns (daily ranges) are studied and 

modeled (see e.g. Ding et al. (1993) for 

absolute returns and Alizadeh et al. (2001) for 

daily ranges). Hence, the exploration of 

alternative measures of volatility has been cast 

in the context of autoregressive schemes. Here 

we introduce absolute returns and ranges as 

alternative predictors and examine their success 

(relative to the other predictors) at predicting 

realized volatility. The MIDAS regression 

format makes this a relatively straightforward 

exercise. 

The last regression (1.7) involves similar 

arguments using techniques and developments 

of more recent date. The preference for 

absolute returns is a subject that has received 

much attention recently, see in particular 

Barndorff-Nielsen and Shephard (2003b, 2004) 

and Woerner (2002). Recall that Q˜ (m) t,t+1 is 

defined as the sum of m intra-daily squared 

returns. Instead of taking squared returns, say 

every five minutes, Barndorff-Nielsen and 

Shephard suggest to consider the sum of high-

frequency absolute returns, or the so-called 

“realized power” variation P˜ (m) t+1,t, which 

is defined as Pm j=1 |rt−(j−1)/m,t−(j−2)/m|. 
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Regression (1.7) projects future realized 

volatility on past daily realized power. 

Finally, to forecast the log of the quadratic 

variation, we consider log transformations of 

the five regressors in equations (1.3-1.7). In this 

fashion, our results would be directly 

comparable with those in the previous 

literature. To summarize, the MIDAS 

framework offers the ability to mix data 

sampled at different frequency, combined with 

a tightly parameterized model that allows 

different regressors to forecast volatility. 

Comparison of MIDAS with Other Volatility 

Models : 

TO further understand the flexibility of the 

MIDAS volatility models, it useful to compare 

them with other widely used models of 

conditional volatility, which for the purpose of  

presentation will be written as: 

 

In equation (1.8), past Q˜ (m) t,t−1 are used to 

predict Q˜ (Hm) t+H,t and the weights b Q H(k) 

are not parameterized. When H = 1 such models 

for so called realized volatility, analyzed by 

Andersen et al. (2001, 2003), Andreou and 

Ghysels (2002), Barndorff-Nielsen and 

Shephard (2001, 2002a,b, 2003a), and Taylor 

and Xu (1997), often rely on Merton’s (1980) 

arguments that arbitrarily accurate estimates of 

volatility can be obtained by increasingly finer 

sampling of returns. The above papers show 

that the use of high-frequency data is beneficial 

in predicting volatility. Again, when H = 1, the 

difference between (1.8) and (1.3) is the 

specification of the weights b Q H . In this 

regard, it is important to note that Andersen et 

al. (2003) advocate the use of long memory 

models to parsimoniously parameterize the 

weights. In particular, they consider models of 

the following type: 

 

Hence, using a fractional differencing approach 

one can capture with a single parameter d 

slowly decaying response patterns associated 

with long memory. In addition to the fractional 

differencing parameter d in equation (1.10) 

Andersen et al. (2003) advocate the use of an 

AR(5) autoregressive expansion appearing on 

the left hand side of the equation. Hence, a total 

of 6 parameters (not including the constant) are 

used to model the autoregressive dynamics of 

realized volatility. Model (1.10) is expressed in 

terms of log volatility as Andersen et al. argue 

that the log transformation induces normality 

and therefore justifies the use of linear 

autoregressive models. This model will be our 

benchmark for all in-sample and outof-sample 

forecast comparisons and is henceforth referred 

to as the “ABDL” model. 

It is important to stress the differences between 

MIDAS regression models and the benchmark 

ABDL ARFI(5,d) model specification 

appearing in equation (1.10). None of the 

MIDAS regressions operate through 

autoregression whereas the ABDL 

specification follows much closer the tradition 

of ARCH-type models since Q˜ (m) t+1,t is 

projected onto its lagged values. 

Furthermore, MIDAS regressions involve at 

most two parameters for the Beta polynomial, a 

scaling parameter and an intercept, i.e. less than 

the typical ABDL setting. The challenge is to 

outperform the ABDL specification while 

choosing: (1) the type of regressors; and (2) the 

decay patterns through judicious choice of 

parameterizations of the polynomial weighting 
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schemes. The success of this challenge is the 

main argument of this paper.7 

Finally, it should be noted that equation (1.9) is 

a version of the most widely used specification 

of conditional volatility, namely, the ARCH-

type models of Engle (1982) (see also 

Bollerslev (1986)). In (1.9), future volatility is 

projected onto lagged daily squared returns 

(and a constant), where the weights are tightly 

parameterized via an autoregression such as in 

the popular GARCH(1,1) specification. 

Andersen et al. (2003) show that models 

appearing in equation (1.10) outperform 

ARCH-type models, which is why we use the 

former as a benchmark. 

Results: 

 

In above screen in blue colour text we 

can see LSTM MSE (mean square 

error) is 66 and in graph X-axis 

represents number of days and y-axis 

represents asset values and red line 

represents original asset value and 

green line represents Predicted value. In 

below screen we can see output for 

MDT dataset 

 

In above screen we can see MSE value 

as 328 on MSFT dataset and below is 

the TJX dataset output 

CONCLUSION: 

We study the predictability of return volatility 

with MIDAS regressions. Our approach allows 

us to compare forecasting models with different 

measures of volatility, frequencies, and lag 

lengths. While the main focus of this paper is 

volatility forecasting, it is clear that the MIDAS 

framework is general in nature and can find a 

good use in any empirical investigation that 

involves data sampled at different frequencies. 

Simplicity, robustness, and parsimony are three 

of its main attributes. 

We report several intriguing findings regarding 

the predictability of weekly to monthly realized 

volatility in equity markets. First, we find that 

daily realized power outperforms daily realized 

volatility and that daily and intra-daily absolute 

returns outperform respectively daily and intra-

daily squared returns. This set of results 

suggests that absolute returns are very 

successful at capturing fluctuations in future 

return volatility, despite the predominant 

emphasis in the literature on squared returns. 

Also, we find that daily ranges are extremely 

good forecasters of future volatility and are 

only second to realized power. This last finding 

is consistent with results in Gallant et al. 

(1999), Alizadeh et al. (2002) and Engle and 

Gallo (2003), among others, who use different 

methods and different data. Finally, we show 
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that the direct use of high-frequency data does 

not necessarily lead to better volatility 

forecasts. 
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