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     We have studied the mathematical models for transport of pollutants in transverse dispersion of 

unsaturated porous media one-dimensional advection-dispersion  equation  with  spatially  variable  

factor  is  derived  using  a  generalized  integral  transform  investigate the transport of sorbing but 

otherwise non-reacting solutes in  hydraulic  homogenous  but  geochemically  heterogeneous  

formations. The  solution  is  derived  under  conditions  flow and arbitrary  initial and  inlet 

boundary conditions. The results obtained  by  this  solution  agree  well  with  the  results  obtained  

by numerically  inverting  Laplace  transform-generated  solutions previously published in the 

literature. The solution is developed for a third or flux type inlet boundary condition, which is 

applicable when considering resident solute concentrations and a semi-infinite porous medium. 

                                                                                   Physical Layout of the Model 

                                  

            The Advection-Dispersion equation along with initial condition and boundary conditions can 

be written as  

 

                    

 

              The equilibrium isotherm between solution and adsorbed phase is given by 
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                         Thus the appropriate boundary conditions for the given model is 
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         The problem then is to characterize the concentration as a function of z and t, where the input 

condition is assumed at the origin and a second type or flux type homogeneous condition is assumed. 

To reduce the governing equation into a Fick’s law (diffusion equation), we have considered the 

moving coordinates  
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     The Advection-dispersion equations is of the familiar form  
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The initial and boundary condition transform to 
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If C=F(x, y, z, t) s the solution of the diffusion equation for semi-infinite media in which the initial 

concentration is zero and its surface is maintained at concentration unity, then the solution of the problem 

in which the surface is maintained at temperature  f(t) is (Duhamel’s Theorem)  
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                    This theorem is used principally for heat conduction problems, but the above has been 

specialized to fit this specific case of interest. consider now the problem in which intial concentration is zero 

and boundary is maintained at concentration unity. The boundary conditions are 
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                     The Laplace Transform of the equation is given by  
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            Hence it is reduced into an ordinary differential equation  
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                     The solution of the equation is    qzqz BeeA        where  
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                              After substitution, solution of the equation is given by  
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             Where the boundaries are symmetrical, then the solution of the problem is given by first term 

of the equation. The second term due to asymmetric boundary imposed in the more general problem. 

However , it should be noted that, if a point at great distance away from the source is considered then 

it is possible to approximate the boundary conditions by C(-, t) = C0 which lead to  a symmetrical 

solutions.  
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Fig. 1: Break-through-curve for C/C0 v/s time                                             Fig. 2: Break-through-curve for C/C0 v/s 

time  

          for z=10m, R=1.0, λ=0.5 & γ = 0                                                                  for z=10m, R=1.0, λ=0.5 & γ = 0.25  

                                                

     Fig. 3: Break-through-curve for C/C0 v/s time                                             Fig. 4: Break-through-curve for C/C0 

v/s time 

      for z=10m, R=1.0, λ=0.5 & γ = 0.5                                                           for z=10m, R=1.0, λ=0.5, γ = 0.75 & 1.0  

Result and Discussions 

This study presents analytical solutions for one-dimensional advection–dispersion equations in 

unsaturated porous medium in finite domain. The transform method coupled with the generalized 

integral transform technique is used to obtain the analytical solutions. Solutions are obtained for both 

first- and third-type inlet boundary conditions. The developed analytical solutions for finite domain 

are compared with solutions for the semi-infinite domain to clarify how the exit boundary influences 

the one-dimensional transport in a porous medium system. 

The main limitations of the analytical methods are that the applicability is for relatively simple 

problems. The geometry of the problem should be regular. The properties of the soil in the region 

considered must be homogeneous in the sub region. The analytical method is somewhat more 

flexible than the standard form of other methods for one-dimensional transport model. Figures 1 to 4 

represents the concentration profiles verses time in the adsorbing media for depth z = 10m and 

Retardation factor R=1. It is seen that for a fixed velocity w, dispersion coefficient D and distribution 
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coefficient Kd, C/C0 decreases with depth as porosity n decreases due to the distributive coefficient 

Kd and if time increases the concentration decreases for different time and decay chain.  

Accordingly, the analytical solutions derived for the finite domain will thus be particularly useful for 

analyzing the one-dimensional transport in unsaturated porous medium with a large dispersion 

coefficient whereas the analytical solution for semi-infinite domain is recommended to be applied for 

a medium system with a small dispersion coefficient. Moreover, the developed solution is especially 

useful for validating numerical model simulated solution because realistic problems generally have a 

finite domain.  

From this paper, we conclude that the mathematical solutions have been developed for predicting the 

possible concentration of a given dissolved substance in steady unidirectional seepage flows through 

semi-infinite, homogeneous, and isotropic porous media subject to source concentration that vary 

exponentially with time for spatially variable retardation factor using a change of variable and 

integral transform technique. The expressions take into account the contaminants as well as mass 

transfer from the liquid to the solid phase due to adsorption. For simultaneous dispersion and 

adsorption of a solute, the dispersion system is considered to be adsorbing at a rate proportional to its 

concentration.  
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