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Abstract 

Weather forecasting has numerous impacts in our 

daily life from cultivation to event planning. 

Previous weather forecasting models used the 

complicated blend of mathematical instruments 

which was insufficient in order to get higher 

classification rate. In contrast, simple analytical 

models are wellsuited for weather forecasting tasks. 

In this work, we focus on the weather forecasting by 

means of classifying different weather events such 

as normal, rain, and fog by applying comprehensible 

C4.5 learning algorithm on weather and climate 

features. The C4.5 classifier classifies weather 

events by building the decision tree using 

information entropy from the set of training 

samples. We conducted experiments on LA weather 

history dataset; from evaluation results, it is 

revealed that C4.5 classifier classifies weather 

events with f-score of around 96.1%. This model 

also indicates that climate features such as rainfall, 

visibility, temperature, humidity, and wind speed 

are highly discriminative toward events 

classification. We study specifically the power of 

making predictions via a hybrid approach that 

combines discriminatively trained predictive models 

with a deep neural network that models the joint 

statistics of a set of weather-related variables. We 

show how the base model can be enhanced with 

spatial interpolation that uses learned long-range 

spatial dependencies. 
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I.INTRODUCTION 

The situation of weather plays a crucial role in 

almost every aspects of human life. Note that 

intelligent weather analysis techniques can help us 

to make efficient decisions that can lead us to save 

valuable lives, properties, and time. As a 

consequence, researchers focus on the automated 

analysis of weather and climate data such as 

forecasting rainfall, predicting air temperature to 

understand and to extract useful information. As 

modernization continued, prediction of weather 

events draws more attention. From the very 

beginning of civilization, people want to know the 

pattern of weather change. Discovering the weather 

pattern and forecasting weather has been a field of 

interest from the exploration of science and 

technology. Weather forecasting involves 

foreseeing how the current situation with the air 

will change in which present climate conditions are 

taken by ground perceptions such as from boats, 

airplane, radiosondes, Doppler radar, and satellites. 

The collected data is then sent to meteorological 

focuses in which the information are gathered, 

analyzed, and made into an assortment of outlines, 

maps, and charts. Algorithms exchange a huge 

number of perceptions onto surface and upper air 

maps and draw the lines on the maps with 

assistance from meteorologists. Algorithms draw 
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the maps as well as anticipate how the maps will 

look at some point later on. 

Making inferences and predictions about 

weather has been an omnipresent challenge 

throughout human history. Challenges with 

accurate meteorological modeling brings to the fore 

difficulties with reasoning about the complex 

dynamics of Earth’s atmospheric system. everal 

challenges must be addressed in taking a 

datacentric approach to weather prediction. First, 

we note that the set of weather variables under 

consideration are tightly coupled. For example, 

pressure and temperature follow natural gas laws 

(i.e., the well-known formula, P V = nRT). Similarly, 

there is a tight relationship between relative 

humidity and temperature. Consequently, any 

model that jointly aims to predict the set of weather 

variables should leverage knowledge of the tight 

statistical couplings that are based in physics. 

Secondly, dependencies among the variables may 

have long-range influences across space and time. 

For instance, wind vectors across large geographic 

distances may follow isobaric contours. As another 

consideration, the weather phenomena may be 

affected by local geography and associated natural 

processes (e.g. isolated thunderstorms), as well as 

shifts in the large-scale structure of atmospheric 

phenomena (e.g. shifting of jet streams). 

 We aim to tackle these challenges via a 

representation that jointly predicts winds, 

temperature, pressure, and dew point across space 

and time. The proposed architecture combines a 

bottom-up predictor for each individual variable 

with a top-down deep belief network that models 

the joint statistical relationships. Another key 

component in the framework is a data-driven 

kernel, based on a similarity function that is learned 

automatically from the data. The kernel is used to 

impose long-range dependencies across space and 

to ensure that the inferences respect natural laws. 

Numerical or computational models for 

weather forecasting are the dynamic 

representations of the systems is being used in 

present days. These models discretize regions or 

bodies in a few measurements by separately 

utilizing estimated capacities to portray the 

behavior of the climatic variables of interest [2]. 

Nowadays, numerical or computational models are 

irreplaceable for atmosphere estimation. For 

instance, Bayesian networks [3] with time differed 

scaling features can be used to review whether 

there are factually noteworthy patterns in the 

climate information. In addition, Tae-wong [4] 

demonstrated a space-time model that displays the 

short time and geographical conditions of the day 

by day rain event. 

 Although there are several techniques 

available for weather forecasting, weather 

forecasting is actually a challenging task due to the 

complicated physics behind weather which depends 

on numerous features, and which is also boisterous 

and deterministically confusing natural event. 

Moreover, people produce numerous disasters, and 

change of climate or characteristics of climate such 

as air temperature, rainfall, dew point temperature, 

visibility, and humidity displays a strong role on the 

weather. Notice that several automated techniques 

including Artificial Neural Network (ANN), Support 

Vector Regressor (SVR), Genetic Algorithm (GA) 

were applied to forecast or model weather [5] [6] 

[7] [8], where ANN was the most commonly used 

technique that can forecast weather with decent 

performance rate. 

On the other hand, public services usually 

use the data from fixed sensors. The sensors have 

high quality and potential. However, they can be 

costly to install and maintain[9]. So the location 

data collected for weather can also be used to real-

time traffic updates as well. In this paper, a system 

has been designed that will mainly act as the source 
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of weather data along with real-time data for traffic 

condition with the help of mobile applications and 

device integrated with Arduino, different sensors 

and Bluetooth module. The data is quantitative 

continuous data which is analyzed to show perfect 

correlation for accurate prediction. 

II. RELATED WORK 

Over the last few decades, researchers conducted a 

number of automated analyses on weather and 

climate data such as dew point temperature 

prediction using several Artificial Intelligence (AI) 

techniques from different sub-domains of AI 

including model output statistics, fuzzy logic, expert 

system, machine learning, and data mining. For 

instance, Chevalier et al. [11] trained SVR on small, 

and minimally pre-processed meteorological 

dataset to predict air temperature. Devi et al. [12] 

developed ANN based temperature forecasting 

model using real-time quantitative data about the 

current state of the atmosphere. Olaiya and 

Adeyemo [13] also investigated the performance of 

ANN and decision trees during the classification of 

maximum, minimum, and mean temperature, 

rainfall, evaporation, and wind speed on 

meteorological data gathered from Nigeria. Lin and 

Chen [8] designed typhoon rainfall forecasting 

model using ANN feeding eight typhoon 

characteristics and spatial rainfall information, 

where they found that excessive spatial rainfall 

information may not increase the generalization of 

the forecasting model. Mohammadi et al. [14] 

predicted the dew point temperature on the daily 

scale on different climate conditions applying 

extreme learning machine algorithm on five 

common climate-related features such as mean air 

temperature, relative humidity, atmospheric 

pressure, vapor pressure and horizontal global solar 

radiation. 

 As per our knowledge based on literature 

review, Awan and Awais’s research [15] is the only 

similar study available in the literature that also 

attempted to predict weather events. In their 

research, they aimed to predict weather events 

based on fuzzy RBS method for Lahore, Pakistan. 

They used two different datasets of 365 examples 

with only 4 features, and 2500 examples with 17 

features e.g. temperature, dew point, humidity, sea 

level, visibility, wind speed, respectively, for 

experimentation. They mentioned in their finding 

that fuzzy RBS method was sensitive to random 

sampling with replacement technique that was 

applied to produce training and test dataset. In 

contrary, we applied comprehensible tree-based 

machine learning algorithm for events classification 

for Los Angeles, California, the USA in which we 

used 5325 examples with 19 features extending the 

feature set to include rainfall information to build 

the weather events prediction model. 

 Despite the success of machine learning in a 

variety of tasks, applications to the problem of 

weather forecasting has been limited. Exceptions 

include the use of Bayesian Networks for 

precipitation forecasts [3] and temporal modeling 

via Restricted Boltzmann Machines (RBM) [15]. A 

separate thread of research has also focused on 

efficient representation of relational spatiotemporal 

data in Random Forests for prediction of severe 

surface-level weather processes, such as droughts 

and tornadoes. More recently, large-scale wind 

prediction has been presented [9] using a Bayesian 

framework with Gaussian Processes. 

 To date, uses of machine learning for 

weather prediction have been limited in several 

ways. First, almost all methods consider only one 

variable at a time and do not explore the joint 

spatiotemporal statistic of multiple weather 

phenome

na. Also, 

to our 

knowledg



Juni Khyat                                                                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                         Vol-13, Issue-08, August 2023 

Page | 250                                                                                              Copyright @ 2023 Author 

e, long-range spatiotemporal dependencies have 

not been modeled explicitly. We introduce methods 

that address these limitations, via introduction of a 

hybrid representation. With a hybrid 

representation, individual predictors are 

discriminatively trained from historic data and local 

inferences from these models are combined with a 

deep neural network that overlays statistical 

constraints among key weather variables. We 

additionally apply a spatial interpolation scheme 

that respects constraints of long-range statistical 

dependencies. The methodology employs 

covariance matrix for Gaussian Process regression 

constructed from a large dataset. Here, the 

covariance matrix, also referred to as the kernel, 

allows us to enforce smoothness constraints over 

the weather variables. By ensuring that the kernel 

captures the dynamics of the system as informed by 

the training data, we are able to align estimates 

according to spatial constraints imposed by natural 

laws. 

III. C4.5 FOR WEATHER EVENTS CLASSIFICATION 

C4.5 is a statistical classifier used to build a 

decision tree for classification. The key idea beneath 

C4.5 algorithm is that C4.5 creates decision trees 

using information entropy H from set of training 

samples e.g. S = s1 , s2 , . . . , sn of pre-classified 

samples, where each sample si comprises of 

Ndimensional vector x1,i , . . . , xN ,i in which xj 

denotes feature of the sample and class in which si 

falls. At each node of the tree, C4.5 selects the 

feature that most effectively splits its set of samples 

into subsets using normalized information gain as 

splitting gain criteria. C4.5 makes a decision using 

the feature with highest information gain where 

information gain IGain is measured as follows. 

 

Where Event denotes weather event class, 

and Feature denotes available weather and climate 

features used in weather prediction model. Figure 1 

shows a decision tree produced from C4.5 classifier 

on LA weather history dataset. The technical 

description of the C4.5 algorithm is given in 

Algorithm 1. 

 

 

IV. EXPERIMENTS AND RESULTS 

The proposed weather events classification model 

was evaluated on LA weather history dataset using 

J48, an open source implementation of C4.5 on data 

mining and machine learning tool, applying cross-

fold validation e.g. 5 − fold, 10 − fold, 20 − fold, and 

random splitting e.g. 50% − 50%, 60% − 40%, 70% − 

30% strategies. We benchmarked C4.5 classifier 

against classic learning algorithm naive Bayes, and 

displayed the comparison in Table I and II. Each of 

the experiments was run for 20 times with different 

random seeds, and the results were obtained by 

averaging over 20 different experimental runs. We 

produced accuracy, precision, recall, and f-score for 

each weather event class to demonstrate the 

performance of the models. The larger values of the 

performance metric accuracy, precision, recall, and 

f-score indicate the higher weather events 
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classification performance. Note that, we modeled 

the weather events prediction task as classification 

problem as we aimed to estimate the probable 

weather event using weather and climate features. 

Table I displays the performance of C4.5 and naive 

Bayes classifiers for multiple cross-fold validations 

and random splitting strategies, where Table II 

shows the performance of C4.5 and naive Bayes 

classifiers during the classification of three weather 

events e.g. normal, rain, and fog. From Table II, it 

can be indicated that C4.5 classifier was better than 

naive Bayes since C4.5 classified all three events 

with higher f-score than naive Bayes. More 

precisely, naive Bayes classified fog event with a low 

precision rate of 34.5%, and f-score rate of 49.9% 

that was extremely worst than the performance of 

C4.5 classifier. Another important point to note is 

that C4.5 basically confused fog and rain events 

with normal, and normal event with rain event, 

while naive Bayes widely confused fog event with 

both normal and rain events, and rain event with 

the normal event. According to the experimental 

results from Table II, we can outline that the 

proposed C4.5 classifier can efficiently classify each 

of the three weather events. Hence, C4.5 can be 

extensively utilized for weather event prediction or 

forecasting. In addition, C4.5 is extremely viable 

weather event classifier as the C4.5 classifier is 

comprehensible and interpretable, can deal with 

the over-fitting issue and may take care of 

persistent features. 

V. HYBRID MODEL 

We seek a prediction model that respects 

spatiotemporal dependencies among weather 

variables induced by atmospheric physics. We test 

the framework with data drawn from a continental 

scale weather corpus composed of data captured 

via balloons. In particular, we consider the IGRA 

dataset consisting of balloon observations made at 

60 stations across the U.S. These balloons transmit 

observations about wind speed and direction, 

temperature, geopotential height, dew point, and 

other weather variables.  

These observations are released in real time by the 

NOAA and later by the National Climatic Data 

Center following preprocessing. The data is 

eventually integrated into the curated IGRA dataset 

which is updated daily and contains historical 

weather data spanning decades compiled from 

eleven source datasets. Any data added to the 

archive undergoes a cycle of quality assurance to 

resolve potential inconsistencies among variables 

[4, 5]. Formally, we consider four weather variables 

in the model: wind velocity, v; pressure, p; 

temperature, t and dew point, d. The wind 

observations are represented as a two-dimensional 

vector, v = [v x , vy ] while all other weather 

variables are scalars. We represent weather stations 

(where the balloons are released) as SL = {s1,...,sNs } 

where Ns is the total number of weather stations. 

For each of these stations, we have historical 

weather data logged at a frequency of 

approximately six hours over several years. Our 

approach to building the weather model was 

governed by the following guidelines:  

1. Temporal mining: Our model should be able to 

identify and learn from recurring weather patterns 

over time.  

2. Spatial interpolation: The dynamic influence of 

atmospheric laws on weather phenomena need to 

be accounted for in our predictions.  

3. Inter-variable interactions: The local 

interdependencies between weather variables 

should be captured by our model. 

VI. CONCLUSION 

We presented a weather forecasting model that 

makes predictions via considerations of the joint 

influence of key weather variables. We introduced a 
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data-centric kernel and showed how using GPR with 

such a kernel can effectively interpolate over space, 

taking into account weather phenomena such as 

turbulence. We performed temporal analysis using 

short- and longer-term features within a gradient-

tree based learner. We augmented the system with 

a deep belief network and tuned the parameters to 

model the dependencies among weather variables. 

A set of experiments on real-world data shows that 

the new methodology can provide better results 

than NOAA benchmarks, as well as recent research 

that had demonstrated improvements over the 

benchmarks. 

We also outline relevant and influential weather 

event features e.g. rainfall, visibility, temperature, 

wind speed, dew point computing their relative 

importance scores. In addition, feature correlation 

plot demonstrates that air temperature and dew 

point, dew point and humidity, humidity, and 

temperature, temperature, and visibility, humidity 

and rainfall are highly correlated. In our future 

work, we will include an extension of the weather 

event class to more complex events such as rainfog, 

thunderstorm, rain-thunderstorm, tornado, rain-

tornado, rain-thunderstorm-tornado, and fog-rain-

thunderstorm. The proposed event prediction 

model on more complex and unbalanced weather 

dataset with different climate conditions. 
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