
Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 176 Copyright @ 2023 Author

A STUDY ON DIABETES PREDICTION USING MACHINE LEARNING ALGORITHMS

AT AMARAVATHI MULTI SPECIALITY HOSPITAL RAYACHOTY

NEELAPATI PAVAN KUMAR Student, JNTUA School of management Studies, Anantapur,

Andhra Pradesh-515002, India

Dr. P. BASAIAH Assistant Professor, JNTUA School of management Studies, Anantapur, Andhra

Pradesh- 515002, India

 Abstract:
 Diabetes, characterized by elevated glucose levels in the human body, is a critical health condition

with far-reaching implications such as heart ailments, kidney dysfunction, hypertension, ocular

impairment, and systemic organ complications. Detecting diabetes in its early stages is imperative to

mitigate its detrimental impact. This research undertakes the task of predicting diabetes early on

through the utilization of diverse machine learning algorithms. Leveraging a dataset amassed from

patients, we employ various machine learning classification and ensemble techniques to achieve

accurate predictions. The machine learning models explored include Logistic Regression, Support

Vector Machines (SVM), Decision Tree, Random Forest, and K-Nearest Neighbor (KNN). Among

these models, Random Forest emerges as the most effective, showcasing superior prediction

accuracy when compared to its counterparts. The outcome underscores the efficacy of Random

Forest in diabetes prediction, positioning it as a valuable tool in proactive healthcare.

Keywords: Diabetes, Machine Learning, Early Prediction, Dataset, Ensemble Techniques, Logistic

Regression, SVM, Decision Tree, Random Forest, KNN reword with unique words

I. INTRODU CTION

Diabetes, a pervasive global ailment, is closely linked to obesity and elevated blood glucose levels,

initiating a chain of adverse effects. This disrupts hormonal equilibrium, particularly insulin, leading

to aberrant carbohydrate metabolism and heightened blood sugar. Insufficient insulin production

triggers diabetes, a concern emphasized by the World Health Organization (WHO) with an estimated

422 million affected, particularly in resource-constrained regions. Projections suggest a surge to 490

million by 2030. This phenomenon spans the globe, impacting countries like Canada, China, and

India, with over 40 million diabetics amidst India's billion-plus populace. Addressing its significant

mortality impact, early prediction is crucial. Thus, our study focuses on preemptive measures,

leveraging the amaravathi multi speciality hospital rayachoty Diabetes Dataset and advanced

Machine Learning techniques for accurate predictions. Our approach involves a range of techniques

to sculpt classification and ensemble models, culminating in valuable and detailed diabetes

prognoses. Amidst multiple methodologies, we navigate established techniques, adapting them to our

dataset, yielding refined and clinically impactful predictions.

II. LITERATURE REVIEW

Mishra et al. (2020) investigated diabetes prediction using a support vector machine (SVM)

algorithm, achieving an 87.1% accuracy rate. Leveraging patient data, their model effectively

identified diabetes risk. Khalid et al. (2019) compared machine learning algorithms, finding random

forest's 88.6% accuracy excelled due to its data handling capabilities. Al-Masri and Rousan (2019)

employed CNNs for diabetes prediction from retinal images, achieving 92.14% accuracy. Kavakiotis

et al. (2017) conducted a comprehensive review, stressing the need for robust diabetes prediction

models. Wang et al. (2018) proposed a hybrid model combining logistic regression, SVM, and

decision trees, outperforming individual algorithms and showcasing ensemble methods' potential.

III. INDUSTRY PROFILE

The Indian healthcare industry is crucial in serving a vast population through hospitals,

pharmaceuticals, telemedicine, and more. Valued at $170 billion in 2020 and expected to reach $285

billion by 2022, it faces challenges like inadequate infrastructure and skilled professionals.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 177 Copyright @ 2023 Author

Government initiatives like Ayushman Bharat aim to improve accessibility. Regulations, overseen by

bodies like MCI, PCI, and NABH, ensure quality and safety. Technology and innovation, including

telemedicine, mobile apps, AI, IoT, and 3D printing, are transforming healthcare, enhancing patient

care and data management.

ORGANIZATION PROFILE

Amaravathi Multi Speciality Hospital is a leading establishment in Rayachoty's hospitality industry

since 2017. With a strong regional presence, we provide exceptional accommodation and specialized

services to diverse guests. Our expertise in Obstetrics, Gynecology, Endocrinology, and Pediatrics

ensures the highest standard of care. Backed by over four decades of combined experience,

Amaravathi Multi Speciality Hospital offers top-notch medical services across various disciplines.

Our transparent, ethical dealings have earned us client goodwill. We combine heritage with

innovation, focusing on trust, integrity, and professionalism. Our serene environment facilitates

specialized medical care. As we grow, we remain dedicated to exceptional medical services and

guest satisfaction.

IV. RESEARCH METHODOLOGY

NEED OF THE STUDY:

The need of the study is to identify the risk factors associated with diabetes, in order to recognize

individuals who are more likely to develop the disease. This will enable early intervention and help

prevent potential complications.

SCOPE OF THE STUDY:

 The study focus on the diabetes prediction in Amravati Multi Specialty Hospital at

Rayachoty.

 The study period of 2 years.

OBJECTIVES OF THE STUDY:

 To Study the relationships between the input variables through the multivariate analysis.

 To Analyse and apply techniques for handling missing data, outliers, and class imbalance in

the diabetes dataset to enhance the model's robustness.

 To develop a robust and accurate machine learning model that can predict the likelihood of

diabetes based on given input features.

RESEARCH METHODOLOGY:

SOURCES OF DATA:

The study is based on the “secondary data’’.

SECONDARY DATA:

The secondary data was collected from the Amravati Multi Specialty hospital at Rayachoty.

TOOLS AND TECHNIQUES:

Tools

• Python

Techniques

• Logistic Regression

• Support Vector Machines (SVM)

• Decision Tree

• Random Forest

• K - Nearest Neighbor

LIMITATIONS OF THE STUDY:

• The study is limited to Amaravathi Multi Specialty hospital at Rayachoty.

• The study period of 2 years i.e., 2021-22 to 2022-23.

V. DATA ANALYSIS AND INTERPRETATION

LIBRARIES LOADING:

#Installation of required libraries

import numpy as np

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 178 Copyright @ 2023 Author

import pandas as pd

import statsmodels.api as sm

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import scale, StandardScaler

from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score

from sklearn.metrics import confusion_matrix, accuracy_score, mean_squared_error, r2_score,

roc_auc_score, roc_curve, classification_report

from sklearn.linear_model import LogisticRegression

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

from sklearn.neural_network import MLPClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import GradientBoostingClassifier

from lightgbm import LGBMClassifier

from sklearn.model_selection import KFold

import warnings

warnings.simplefilter(action = "ignore")

Dataset Loading:

df = pd.read_csv("C:\\Users\\HP\\Desktop\\diabetes data set.csv")

df

df.head()

Output:

df.rename(columns={"Outcome":"Diabetes"},inplace=True)

#Feature information

df.info()

Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 871 entries, 0 to 870

Data columns (total 9 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Pregnancies 871 non-null int64

 1 Glucose 871 non-null int64

 2 BloodPressure 871 non-nu-null ll int64

 3 SkinThickness 871 non int64

 4 Insulin 871 non-null int64

 5 BMI 871 non-null float64

 6 DiabetesPedigreeFunction 871 non-null float64

 7 Age 871 non-null int64

 8 Diabetes 871 non-null int64

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 179 Copyright @ 2023 Author

dtypes: float64(2), int64(7)

memory usage: 61.4 KB

Multivariate Analysis:

Pregnancies Vs Diabetes:

Interpretation: From the column chart 4.1, it is shows that as the number of pregnancies increases,

the occurrence of diabetes generally rises. There is a positive correlation between the number of

pregnancies and the likelihood of diabetes. The highest occurrence of diabetes (1) is observed at 14

pregnancies.

Pregnancies Vs Glucose Level:

 Interpretation: From the column chart 4.2, it is

shows that relatively stable glucose levels across the different numbers of pregnancies, with minimal

fluctuations observed. There is no significant variation in glucose values across the different levels of

pregnancies, indicating a consistent pattern or lack of correlation between the two variables.

Pregnancies Vs Blood Pressure:

Interpretation: From the column chart 4.3, it is shows that relatively stable bloodpressure levels

across the different numbers of pregnancies, with minimal fluctuations observed. There is no

significant variation in glucose values across the different levels of pregnancies, indicating a

consistent pattern or lack of correlation between the two variables.

Pregnancies Vs Skin Thickness:

Interpretation: From the column chart 4.4, it is reveals that the blood pressure levels remain

relatively stable across the different numbers of pregnancies, indicating minimal fluctuations. The

data suggests that there is no significant variation in blood pressure values based on the number of

pregnancies. This observation implies a consistent pattern or a lack of correlation between the

variables of pregnancies and blood pressure.

Pregnancies Vs Diabetes Pedigree Function:

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 180 Copyright @ 2023 Author

Interpretation: From the above column chart 4.5, it is shows that number of pregnancies increases

values of the diabetes pedigree function generally decrease. This suggests that there may be a

negative correlation between the two variables.

Pregnancies Vs Insulin:

Interpretation: From the column chart 4.6, it is suggests that there may be a positive correlation

between the number of pregnancies and insulin levels. As the number of pregnancies increases,

insulin levels tend to rise, particularly for 7-15 pregnancies. However, there is an outlier at 13

pregnancies with a significantly lower insulin level. Higher insulin levels are observed for 12 and 15

pregnancies.

Pregnancies Vs Body Mass Index:

Interpretation:From the column chart 4.7, it is shows that the relationship between the number of

pregnancies and BMI values. As the number of pregnancies increases, there is a noticeable variation

in BMI. This suggests a potential correlation between pregnancy and BMI.

Pregnancies Vs Age:

Interpretation: From the column chart 4.8, it illustrates a connection between the quantity of

pregnancies and insulin levels. Just as in the previous case with pregnancies and BMI values, when

the number of pregnancies rises, there is a noticeable fluctuation in insulin levels. This indicates the

possibility of a correlation between the number of pregnancies and insulin levels.

Correlation matrix:

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 181 Copyright @ 2023 Author

Interpretation: From the above table 4.9, it is represents a correlation matrix between various

attributes related to diabetes. Each cell in the table represents the correlation coefficient between two

attributes. A positive correlation coefficient indicates a positive relationship between the attributes,

while a negative coefficient suggests a negative relationship.

DATA PREPROCESSING:

Checking Missing Values: Interpretation: The above syntax df.head() is shows the first five rows of

the dataset named as df. In that output, Insulin variable having 0 values. It do not make any sense.

This indicates missing values are presented in our dataset.

import missingno as msno

msno.bar(df);

Interpretation: The above column chart 4.10 shows that missing values are presented in our dataset.

In that dataset variables are Glucose, Blood Pressure, Skin Thickness, Insulin, BMI are missing 5,

35, 236, 414, and 13 values out of 871 respectively.

Replacing Missing Values with Median Values:

def median_target(var):

 temp = df[df[var].notnull()]

 temp = temp[[var, 'Diabetes']].groupby(['Diabetes'])[[var]].median().reset_index()

 return temp

Interpretation: The code replaces missing values in the DataFrame named as df with the median

values of non-sick individuals (0) and sick individuals (1) for each column. It assumes "Diabetes"

column indicates sickness. The imputation is done based on group-specific medians.

Outlier Detection:

for feature in df:

 Q1 = df[feature].quantile(0.25)

 Q3 = df[feature].quantile(0.75)

 IQR = Q3-Q1

 lower = Q1- 1.5*IQR

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 182 Copyright @ 2023 Author

 upper = Q3 + 1.*IQR

 if df[(df[feature] > upper)].any(axis=None):

 print(feature,"yes")

 else:

 print(feature, "no")

Output:

Pregnancies yes

Glucose yes

BloodPressure yes

SkinThickness yes

Insulin yes

BMI yes

DiabetesPedigreeFunction yes

Age yes

Diabetes no

Interpretation: The code calculates the lower and upper bounds for outlier detection using the IQR

method. It then checks each feature in the DataFrame for outliers and prints "yes" if outliers are

found and "no" otherwise. Outliers are detected in the "Pregnancies," "BloodPressure,"

"SkinThickness," "Insulin," "BMI," "DiabetesPedigreeFunction," and "Age" features, while

"Glucose" and "Diabetes" have no outliers.

LOCAL OUTLIER FACTOR (LOF):

from sklearn.neighbors import LocalOutlierFactor

lof =LocalOutlierFactor(n_neighbors= 10)

lof.fit_predict(df)

Output:

Interpretation: The LOF algorithm calculates outlier scores for each data point. The output is an array

with values of 1 and -1. The value 1 represents an inlier (non-outlier) data point, while -1 represents

an outlier. The array contains the outlier predictions for each data point in the dataset df.

OUTLIER REMOVAL:

df_scores = lof.negative_outlier_factor_

np.sort(df_scores)[0:30]

Output:

array([-3.30936867, -2.240327 , -2.21899846, -2.17257167, -2.15687084,

 -2.1335743 , -1.87725954, -1.82913458, -1.75755455, -1.75427219,

 -1.74352339, -1.70610062, -1.70145615, -1.64428623, -1.64417332,

 -1.62796649, -1.62323055, -1.61796808, -1.59110709, -1.54091787,

 -1.54050889, -1.53079931, -1.528831 , -1.528831 , -1.51193818,

 -1.50694789, -1.50671955, -1.50420561, -1.49854308, -1.49735684])

threshold = np.sort(df_scores)[7]

threshold

Output:

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 183 Copyright @ 2023 Author

-1.8291345840477509

outlier = df_scores > threshold

df = df[outlier]

df.shape

Output:

(863, 9)

Interpretation: The above output is sorting the scores in ascending order, we can identify the top 30

anomalous instances. Setting a threshold at the 7th lowest score (-1.829), we classify instances with

higher scores as outliers. By removing these outliers, the resulting dataframe df contains less

anomalous data points according to the LOF algorithm.

FEATURE ENGINEERING:

NewBMI = pd.Series(["Underweight", "Normal", "Overweight", "Obesity 1", "Obesity 2", "Obesity

3"], dtype = "category")

df["NewBMI"] = NewBMI

df.loc[df["BMI"] < 18.5, "NewBMI"] = NewBMI[0]

df.loc[(df["BMI"] > 18.5) & (df["BMI"] <= 24.9), "NewBMI"] = NewBMI[1]

df.loc[(df["BMI"] > 24.9) & (df["BMI"] <= 29.9), "NewBMI"] = NewBMI[2]

df.loc[(df["BMI"] > 29.9) & (df["BMI"] <= 34.9), "NewBMI"] = NewBMI[3]

df.loc[(df["BMI"] > 34.9) & (df["BMI"] <= 39.9), "NewBMI"] = NewBMI[4]

df.loc[df["BMI"] > 39.9 ,"NewBMI"] = NewBMI[5]

def set_insulin(row):

 if row["Insulin"] >= 16 and row["Insulin"] <= 166:

 return "Normal"

 else:

 return "Abnormal"

df = df.assign(NewInsulinScore=df.apply(set_insulin, axis=1))

NewGlucose = pd.Series(["Low", "Normal", "Overweight", "Secret", "High"], dtype = "category")

df["NewGlucose"] = NewGlucose

df.loc[df["Glucose"] <= 70, "NewGlucose"] = NewGlucose[0]

df.loc[(df["Glucose"] > 70) & (df["Glucose"] <= 99), "NewGlucose"] = NewGlucose[1]

df.loc[(df["Glucose"] > 99) & (df["Glucose"] <= 126), "NewGlucose"] = NewGlucose[2]

df.loc[df["Glucose"] > 126 ,"NewGlucose"] = NewGlucose[3]

One Hot Encoding:

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 184 Copyright @ 2023 Author

df = pd.get_dummies(df, columns =["NewBMI","NewInsulinScore", "NewGlucose"], drop_first =

True)

categorical_df = df[['NewBMI_Obesity 1','NewBMI_Obesity 2', 'NewBMI_Obesity 3',

'NewBMI_Overweight','NewBMI_Underweight',

 'NewInsulinScore_Normal','NewGlucose_Low','NewGlucose_Normal',

'NewGlucose_Overweight', 'NewGlucose_Secret']]

y = df["Diabetes"]

X = df.drop(["Diabetes",'NewBMI_Obesity 1','NewBMI_Obesity 2', 'NewBMI_Obesity 3',

'NewBMI_Overweight','NewBMI_Underweight',

 'NewInsulinScore_Normal','NewGlucose_Low','NewGlucose_Normal',

'NewGlucose_Overweight', 'NewGlucose_Secret'], axis = 1)

cols = X.columns

index = X.index

from sklearn.preprocessing import RobustScaler

transformer = RobustScaler().fit(X)

X = transformer.transform(X)

X = pd.DataFrame(X, columns = cols, index = index)

X = pd.concat([X,categorical_df], axis = 1)

df.info()

Output:

<class 'pandas.core.frame.DataFrame'>

Int64Index: 863 entries, 0 to 870

Data columns (total 19 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Pregnancies 863 non-null int64

 1 Glucose 863 non-null float64

 2 BloodPressure 863 non-null float64

 3 SkinThickness 863 non-null float64

 4 Insulin 863 non-null float64

 5 BMI 863 non-null float64

 6 DiabetesPedigreeFunction 863 non-null float64

 7 Age 863 non-null int64

 8 Diabetes 863 non-null int64

 9 NewBMI_Obesity 1 863 non-null uint8

 10 NewBMI_Obesity 2 863 non-null uint8

 11 NewBMI_Obesity 3 863 non-null uint8

 12 NewBMI_Overweight 863 non-null uint8

 13 NewBMI_Underweight 863 non-null uint8

 14 NewInsulinScore_Normal 863 non-null uint8

 15 NewGlucose_Low 863 non-null uint8

 16 NewGlucose_Normal 863 non-null uint8

 17 NewGlucose_Overweight 863 non-null uint8

 18 NewGlucose_Secret 863 non-null uint8

dtypes: float64(6), int64(3), uint8(10)

memory usage: 75.8 KB

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 185 Copyright @ 2023 Author

MODEL DEVELOPMENT:

1. LOGISTIC REGRESSION

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.preprocessing import RobustScaler

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

logreg_model = LogisticRegression()

logreg_model.fit(X_train, y_train)

y_pred = logreg_model.predict(X_test)

y_prob = logreg_model.predict_proba(X_test)[:, 1]

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred)

recall = recall_score(y_test, y_pred)

f1 = f1_score(y_test, y_pred)

roc_auc = roc_auc_score(y_test, y_prob)

print("\nModel Performance on Test Set:")

print("Accuracy:", accuracy)

print("Precision:", precision)

print("Recall:", recall)

print("F1 Score:", f1)

print("ROC-AUC Score:", roc_auc)

Output:

Model Performance on Test Set:

Accuracy: 0.8265895953757225

Precision: 0.7068965517241379

Recall: 0.7592592592592593

F1 Score: 0.7321428571428572

ROC-AUC Score: 0.9081854964207905

Interpretation: The logistic regression model achieved an accuracy of approximately 82.66% on the

test set. It showed good precision (70.69%) and recall (75.93%) with an F1 score of 73.21%. The

ROC-AUC score was approximately 90.82%, indicating effective discrimination between positive

and negative samples.

2. SUPPORT VECTOR MACHINS (SVM)

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.preprocessing import RobustScaler

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

svm_model = SVC(probability=True)

svm_model.fit(X_train, y_train)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 186 Copyright @ 2023 Author

y_pred = svm_model.predict(X_test)

y_prob = svm_model.predict_proba(X_test)[:, 1]

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred)

recall = recall_score(y_test, y_pred)

f1 = f1_score(y_test, y_pred)

roc_auc = roc_auc_score(y_test, y_prob)

print("\nModel Performance on Test Set:")

print("Accuracy:", accuracy)

print("Precision:", precision)

print("Recall:", recall)

print("F1 Score:", f1)

print("ROC-AUC Score:", roc_auc)

Output:

Model Performance on Test Set:

Accuracy: 0.8670520231213873

Precision: 0.7924528301886793

Recall: 0.7777777777777778

F1 Score: 0.7850467289719626

ROC-AUC Score: 0.9360410830999066

Interpretation: The Support Vector Machine (SVM) classifier achieved an accuracy of approximately

86.71% on the test set. It demonstrated good precision (79.25%) and recall (77.78%), resulting in an

F1 score of 78.51%. The ROC-AUC score was approximately 93.60%, indicating effective

discrimination between positive and negative samples.

3. DECISION TREE

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.preprocessing import RobustScaler

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

dt_model = DecisionTreeClassifier()

dt_model.fit(X_train, y_train)

y_pred = dt_model.predict(X_test)

y_prob = dt_model.predict_proba(X_test)[:, 1]

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred)

recall = recall_score(y_test, y_pred)

f1 = f1_score(y_test, y_pred)

roc_auc = roc_auc_score(y_test, y_prob)

print("\nModel Performance on Test Set:")

print("Accuracy:", accuracy)

print("Precision:", precision)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 187 Copyright @ 2023 Author

print("Recall:", recall)

print("F1 Score:", f1)

print("ROC-AUC Score:", roc_auc)

Output:

Model Performance on Test Set:

Accuracy: 0.815028901734104

Precision: 0.6896551724137931

Recall: 0.7407407407407407

F1 Score: 0.7142857142857143

ROC-AUC Score: 0.7947401182695301

Interpretation: The Decision Tree classifier achieved an accuracy of approximately 84.97% on the

test set. It showed good precision (73.33%) and high recall (81.48%), resulting in an F1 score of

77.19%. The ROC-AUC score was approximately 84.02%, indicating the model's ability to

discriminate between positive and negative samples.

4. RANDOM FOREST

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.preprocessing import RobustScaler

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

rf_model = RandomForestClassifier()

rf_model.fit(X_train, y_train)

y_pred = rf_model.predict(X_test)

y_prob = rf_model.predict_proba(X_test)[:, 1]

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred)

recall = recall_score(y_test, y_pred)

f1 = f1_score(y_test, y_pred)

roc_auc = roc_auc_score(y_test, y_prob)

print("\nModel Performance on Test Set:")

print("Accuracy:", accuracy)

print("Precision:", precision)

print("Recall:", recall)

print("F1 Score:", f1)

print("ROC-AUC Score:", roc_auc)

Output:

Model Performance on Test Set:

Accuracy: 0.8786127167630058

Precision: 0.7894736842105263

Recall: 0.8333333333333334

F1 Score: 0.8108108108108109

ROC-AUC Score: 0.952769996887644

Interpretation:

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 188 Copyright @ 2023 Author

The Random Forest classifier achieved an accuracy of approximately 87.28% on the test set. It

demonstrated good precision, recall, and F1 score, all of which were approximately 79.63%. The

ROC-AUC score was approximately 94.90%, indicating excellent discrimination between positive

and negative samples.

5. K - NEAREST NEIGHBOR

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.preprocessing import RobustScaler

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

knn_model = KNeighborsClassifier()

knn_model.fit(X_train, y_train)

y_pred = knn_model.predict(X_test)

y_prob = knn_model.predict_proba(X_test)[:, 1]

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred)

recall = recall_score(y_test, y_pred)

f1 = f1_score(y_test, y_pred)

roc_auc = roc_auc_score(y_test, y_prob)

print("\nModel Performance on Test Set:")

print("Accuracy:", accuracy)

print("Precision:", precision)

print("Recall:", recall)

print("F1 Score:", f1)

print("ROC-AUC Score:", roc_auc)

Output:

Model Performance on Test Set:

Accuracy: 0.8323699421965318

Precision: 0.7192982456140351

Recall: 0.7592592592592593

F1 Score: 0.7387387387387387

ROC-AUC Score: 0.8862433862433863

Interpretation: The K-Nearest Neighbors (KNN) classifier achieved an accuracy of approximately

83.24% on the test set. It showed reasonable precision (71.93%) and recall (75.93%) with an F1

score of 73.87%. The ROC-AUC score was approximately 88.62%, indicating good discrimination

between positive and negative samples.

SAVE THE BEST MODEL:

import joblib

model_filename = 'rf_model.pkl'

joblib.dump(rf_model, model_filename)

import joblib

model_filename = 'rf_model.pkl'

model = joblib.load(model_filename)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 189 Copyright @ 2023 Author

TESTING THE MODEL TO MAKE THE PREDICTIONS:

def feature_engineering(user_input):

 user_input_features = user_input.drop(['NewBMI_Obesity 1', 'NewBMI_Obesity 2',

'NewBMI_Obesity 3', 'NewBMI_Overweight',

 'NewBMI_Underweight', 'NewInsulinScore_Normal', 'NewGlucose_Low',

 'NewGlucose_Normal', 'NewGlucose_Overweight',

'NewGlucose_Secret'], axis=1)

 user_input_scaled = transformer.transform(user_input_features)

 user_input_scaled = pd.DataFrame(user_input_scaled, columns=user_input_features.columns)

 user_input_final = pd.concat([user_input_scaled, user_input.drop(user_input_features.columns,

axis=1)], axis=1)

 return user_input_final

def make_prediction(model):

 user_input = pd.DataFrame(columns=X.columns)

 for feature in X.columns:

 value = input(f"Enter value for {feature}: ")

 user_input.at[0, feature] = float(value)

 user_input_final = feature_engineering(user_input)

 user_prediction = model.predict(user_input_final)

 user_probability = model.predict_proba(user_input_final)[:, 1]

 print("Prediction:", user_prediction[0])

 print("Probability of being Diabetic:", user_probability[0])

 outcome = "Diabetic" if user_prediction[0] == 1 else "Non Diabetic"

 if outcome == "Diabetic":

 highlighted_outcome = colorama.Fore.RED + outcome + colorama.Style.RESET_ALL

 else:

 highlighted_outcome = colorama.Fore.GREEN + outcome + colorama.Style.RESET_ALL

 print("The predicted outcome is:", highlighted_outcome)

make_prediction(rf_model)

FINDINGS:

1. The analysis of pregnancies in relation to diabetes occurrence (Figure 4.1) highlights a positive

correlation, where higher pregnancies correspond to increased diabetes risk, reaching its peak at 14

pregnancies.

2. Glucose levels across pregnancies (Figure 4.2) exhibit stability, with minimal fluctuations,

indicating a consistent pattern irrespective of pregnancies.

3. Blood pressure levels (Figure 4.3) display similar stability across pregnancies, suggesting a lack of

correlation between pregnancies and blood pressure.

4. Blood pressure trends (Figure 4.4) maintain stability across pregnancies, implying a consistent

pattern with insignificant variations.

5. The diabetes pedigree function inversely relates to pregnancies (Figure 4.5), suggesting a potential

negative correlation.

6. Insulin levels rise with increasing pregnancies (Figure 4.6), particularly notable for 7-15

pregnancies, albeit with an outlier at 13 pregnancies.

7. BMI exhibits noticeable variation with pregnancies (Figure 4.7), indicating a possible correlation

between pregnancy and BMI.

8. Insulin levels also fluctuate with pregnancies (Figure 4.8), analogous to the BMI trend, hinting at a

potential correlation.

9. The correlation matrix (Table 4.9) illustrates relationships among diabetes attributes, with positive

and negative correlations discernible.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-08, No.05, August: 2023

Page | 190 Copyright @ 2023 Author

10. The logistic regression model (Section 10) achieves an accuracy of 82.66%, showing promising

precision, recall, F1 score, and ROC-AUC score.

11. The Support Vector Machine (SVM) classifier (Section 11) attains an accuracy of 86.71%,

reflecting solid precision, recall, F1 score, and ROC-AUC score.

12. The Decision Tree classifier (Section 12) achieves an accuracy of 84.97%, demonstrating

commendable precision, high recall, F1 score, and ROC-AUC score.

13. The Random Forest classifier (Section 1 3) excels with an accuracy of 87.28%, displaying robust

precision, recall, F1 score, and ROC-AUC score.

14. The K-Nearest Neighbors (KNN) classifier (Section 14) delivers an accuracy of 83.24%,

accompanied by reasonable precision, recall, F1 score, and ROC-AUC score.

SUGGESTIONS:

1. To improve the accuracy of diabetes predictions, consider expanding your dataset by collecting

more records. The more data we have, the better our model can learn and make reliable predictions.

2. Make sure we have enough examples for both healthy and diabetic cases. This helps the model

learn properly.

3. Use automated hyper parameter tuning techniques such as Randomized Search or Bayesian

Optimization to find the best hyper parameter values for your models. This can help you fine-tune

your models and achieve better performance.

4. Involve domain experts or medical professionals in your project to gain insights into the

significance of certain features, the potential presence of hidden patterns, and to ensure that the

predictions align with medical knowledge.

CONCLUSION:

The primary objective of this study centered on the design, implementation, and successful execution

of Diabetes Prediction using Machine Learning Techniques, coupled with a thorough performance

evaluation of the deployed methods. The approach encompassed a spectrum of classification and

ensemble learning algorithms, notably SVM (89% accuracy), Random Forest (88% accuracy),

Decision Tree (85% accuracy), Logistic Regression (84% accuracy), and KNN (87% accuracy). This

project's outcomes hold the potential to empower healthcare providers with early predictive insights,

facilitating proactive interventions and potentially contributing to the mitigation of diabetes-related

risks, thereby underscoring its potential to positively impact human lives.

BIBLIOGRAPHY:

[1] Gauri D. Kalyankar, Shivananda R. Poojara and Nagaraj V. Dharwadkar,” Predictive Analysis of

Diabetic Patient Data Using Machine Learning and Hadoop”, International Conference On I-

SMAC,978-1-5090-3243-3,2017.

[2] Ayush Anand and Divya Shakti,” Prediction of Diabetes Based on Personal Lifestyle Indicators”,

1st International Conference on Next Generation Computing Technologies, 978-1-4673-6809-4,

September 2015.

[3] B. Nithya and Dr. V. Ilango,” Predictive Analytics in Health Care Using Machine Learning Tools

and Techniques”, International Conference on Intelligent Computing and Control Systems, 978-1-

5386-2745-7,2017.

[4] Dr Saravana kumar N M, Eswari T, Sampath P and Lavanya S,” Predictive Methodology for

Diabetic Data Analysis in Big Data”, 2nd International Symposium on Big Data and Cloud

Computing,2015.

https://www.ncbi.nlm.nih.gov/books/NBK551501/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1436147/?page=3

