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 Abstract: 
 Diabetes, characterized by elevated glucose levels in the human body, is a critical health condition 

with far-reaching implications such as heart ailments, kidney dysfunction, hypertension, ocular 

impairment, and systemic organ complications. Detecting diabetes in its early stages is imperative to 

mitigate its detrimental impact. This research undertakes the task of predicting diabetes early on 

through the utilization of diverse machine learning algorithms. Leveraging a dataset amassed from 

patients, we employ various machine learning classification and ensemble techniques to achieve 

accurate predictions. The machine learning models explored include Logistic Regression, Support 

Vector Machines (SVM), Decision Tree, Random Forest, and K-Nearest Neighbor (KNN). Among 

these models, Random Forest emerges as the most effective, showcasing superior prediction 

accuracy when compared to its counterparts. The outcome underscores the efficacy of Random 

Forest in diabetes prediction, positioning it as a valuable tool in proactive healthcare.  

 

Keywords: Diabetes, Machine Learning, Early Prediction, Dataset, Ensemble Techniques, Logistic 

Regression, SVM, Decision Tree, Random Forest, KNN reword with unique words 

 

I. INTRODU CTION 

Diabetes, a pervasive global ailment, is closely linked to obesity and elevated blood glucose levels, 

initiating a chain of adverse effects. This disrupts hormonal equilibrium, particularly insulin, leading 

to aberrant carbohydrate metabolism and heightened blood sugar. Insufficient insulin production 

triggers diabetes, a concern emphasized by the World Health Organization (WHO) with an estimated 

422 million affected, particularly in resource-constrained regions. Projections suggest a surge to 490 

million by 2030. This phenomenon spans the globe, impacting countries like Canada, China, and 

India, with over 40 million diabetics amidst India's billion-plus populace. Addressing its significant 

mortality impact, early prediction is crucial. Thus, our study focuses on preemptive measures, 

leveraging the amaravathi multi speciality hospital rayachoty Diabetes Dataset and advanced 

Machine Learning techniques for accurate predictions. Our approach involves a range of techniques 

to sculpt classification and ensemble models, culminating in valuable and detailed diabetes 

prognoses. Amidst multiple methodologies, we navigate established techniques, adapting them to our 

dataset, yielding refined and clinically impactful predictions. 

 

II. LITERATURE REVIEW 

Mishra et al. (2020) investigated diabetes prediction using a support vector machine (SVM) 

algorithm, achieving an 87.1% accuracy rate. Leveraging patient data, their model effectively 

identified diabetes risk. Khalid et al. (2019) compared machine learning algorithms, finding random 

forest's 88.6% accuracy excelled due to its data handling capabilities. Al-Masri and Rousan (2019) 

employed CNNs for diabetes prediction from retinal images, achieving 92.14% accuracy. Kavakiotis 

et al. (2017) conducted a comprehensive review, stressing the need for robust diabetes prediction 

models. Wang et al. (2018) proposed a hybrid model combining logistic regression, SVM, and 

decision trees, outperforming individual algorithms and showcasing ensemble methods' potential. 

 

III. INDUSTRY PROFILE 

The Indian healthcare industry is crucial in serving a vast population through hospitals, 

pharmaceuticals, telemedicine, and more. Valued at $170 billion in 2020 and expected to reach $285 

billion by 2022, it faces challenges like inadequate infrastructure and skilled professionals. 
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Government initiatives like Ayushman Bharat aim to improve accessibility. Regulations, overseen by 

bodies like MCI, PCI, and NABH, ensure quality and safety. Technology and innovation, including 

telemedicine, mobile apps, AI, IoT, and 3D printing, are transforming healthcare, enhancing patient 

care and data management. 

ORGANIZATION PROFILE 

Amaravathi Multi Speciality Hospital is a leading establishment in Rayachoty's hospitality industry 

since 2017. With a strong regional presence, we provide exceptional accommodation and specialized 

services to diverse guests. Our expertise in Obstetrics, Gynecology, Endocrinology, and Pediatrics 

ensures the highest standard of care. Backed by over four decades of combined experience, 

Amaravathi Multi Speciality Hospital offers top-notch medical services across various disciplines. 

Our transparent, ethical dealings have earned us client goodwill. We combine heritage with 

innovation, focusing on trust, integrity, and professionalism. Our serene environment facilitates 

specialized medical care. As we grow, we remain dedicated to exceptional medical services and 

guest satisfaction.  

 

IV. RESEARCH METHODOLOGY 

NEED OF THE STUDY: 

The need of the study is to identify the risk factors associated with diabetes, in order to recognize 

individuals who are more likely to develop the disease. This will enable early intervention and help 

prevent potential complications. 

SCOPE OF THE STUDY: 

 The study focus on the diabetes prediction in Amravati Multi Specialty Hospital at 

Rayachoty.  

 The study period of 2 years.  

OBJECTIVES OF THE STUDY: 

 To Study the relationships between the input variables through the multivariate analysis. 

 To Analyse and apply techniques for handling missing data, outliers, and class imbalance in 

the diabetes dataset to enhance the model's robustness. 

 To develop a robust and accurate machine learning model that can predict the likelihood of 

diabetes based on given input features. 

RESEARCH METHODOLOGY:   

SOURCES OF DATA:  

The study is based on the “secondary data’’.  

SECONDARY DATA: 

The secondary data was collected from the Amravati Multi Specialty hospital at Rayachoty. 

TOOLS AND TECHNIQUES: 

Tools  

• Python  

Techniques   

• Logistic Regression 

• Support Vector Machines (SVM) 

• Decision Tree 

• Random Forest  

• K - Nearest Neighbor  

LIMITATIONS OF THE STUDY: 

• The study is limited to Amaravathi Multi Specialty hospital at Rayachoty. 

• The study period of 2 years i.e., 2021-22 to 2022-23. 

 

V. DATA ANALYSIS AND INTERPRETATION 

LIBRARIES LOADING: 

#Installation of required libraries 

import numpy as np 
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import pandas as pd  

import statsmodels.api as sm 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.preprocessing import scale, StandardScaler 

from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score 

from sklearn.metrics import confusion_matrix, accuracy_score, mean_squared_error, r2_score, 

roc_auc_score, roc_curve, classification_report 

from sklearn.linear_model import LogisticRegression 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.svm import SVC 

from sklearn.neural_network import MLPClassifier 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.ensemble import GradientBoostingClassifier 

from lightgbm import LGBMClassifier 

from sklearn.model_selection import KFold 

import warnings 

warnings.simplefilter(action = "ignore")  

 

Dataset Loading: 

df = pd.read_csv("C:\\Users\\HP\\Desktop\\diabetes data set.csv") 

df 

 

df.head() 

 

Output: 

 
df.rename(columns={"Outcome":"Diabetes"},inplace=True) 

#Feature information 

df.info() 

 

Output: 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 871 entries, 0 to 870 

Data columns (total 9 columns): 

 #   Column                    Non-Null Count  Dtype   

---  ------                    --------------  -----   

 0   Pregnancies               871 non-null    int64   

 1   Glucose                   871 non-null    int64   

 2   BloodPressure             871 non-nu-null    ll    int64   

 3   SkinThickness             871 non int64   

 4   Insulin                   871 non-null    int64   

 5   BMI                       871 non-null    float64 

 6   DiabetesPedigreeFunction  871 non-null    float64 

 7   Age                       871 non-null    int64   

 8   Diabetes                  871 non-null    int64   
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dtypes: float64(2), int64(7) 

memory usage: 61.4 KB 

 

Multivariate Analysis: 

Pregnancies Vs Diabetes: 

  
Interpretation: From the column chart 4.1, it is shows that as the number of pregnancies increases, 

the occurrence of diabetes generally rises. There is a positive correlation between the number of 

pregnancies and the likelihood of diabetes. The highest occurrence of diabetes (1) is observed at 14 

pregnancies.  

Pregnancies Vs Glucose Level: 

 Interpretation: From the column chart 4.2, it is 

shows that relatively stable glucose levels across the different numbers of pregnancies, with minimal 

fluctuations observed. There is no significant variation in glucose values across the different levels of 

pregnancies, indicating a consistent pattern or lack of correlation between the two variables. 

Pregnancies Vs Blood Pressure: 

  
Interpretation: From the column chart 4.3, it is shows that relatively stable bloodpressure levels 

across the different numbers of pregnancies, with minimal fluctuations observed. There is no 

significant variation in glucose values across the different levels of pregnancies, indicating a 

consistent pattern or lack of correlation between the two variables.  

Pregnancies Vs Skin Thickness: 

  
Interpretation: From the column chart 4.4, it is reveals that the blood pressure levels remain 

relatively stable across the different numbers of pregnancies, indicating minimal fluctuations. The 

data suggests that there is no significant variation in blood pressure values based on the number of 

pregnancies. This observation implies a consistent pattern or a lack of correlation between the 

variables of pregnancies and blood pressure.  

Pregnancies Vs Diabetes Pedigree Function: 
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Interpretation: From the above column chart 4.5, it is shows that number of pregnancies increases 

values of the diabetes pedigree function generally decrease. This suggests that there may be a 

negative correlation between the two variables.  

Pregnancies Vs Insulin: 

  
Interpretation: From the column chart 4.6, it is suggests that there may be a positive correlation 

between the number of pregnancies and insulin levels. As the number of pregnancies increases, 

insulin levels tend to rise, particularly for 7-15 pregnancies. However, there is an outlier at 13 

pregnancies with a significantly lower insulin level. Higher insulin levels are observed for 12 and 15 

pregnancies.  

Pregnancies Vs Body Mass Index: 

  
Interpretation:From the column chart 4.7, it is shows that the relationship between the number of 

pregnancies and BMI values. As the number of pregnancies increases, there is a noticeable variation 

in BMI. This suggests a potential correlation between pregnancy and BMI.  

Pregnancies Vs Age: 

  
Interpretation: From the column chart 4.8, it illustrates a connection between the quantity of 

pregnancies and insulin levels. Just as in the previous case with pregnancies and BMI values, when 

the number of pregnancies rises, there is a noticeable fluctuation in insulin levels. This indicates the 

possibility of a correlation between the number of pregnancies and insulin levels. 

 

Correlation matrix: 
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Interpretation:  From the above table 4.9, it is represents a correlation matrix between various 

attributes related to diabetes. Each cell in the table represents the correlation coefficient between two 

attributes. A positive correlation coefficient indicates a positive relationship between the attributes, 

while a negative coefficient suggests a negative relationship.  

 

DATA PREPROCESSING: 

 
Checking Missing Values:  Interpretation: The above syntax df.head() is shows the first five rows of 

the dataset named as df. In that output, Insulin variable having 0 values. It do not make any sense. 

This indicates missing values are presented in our dataset.  

import missingno as msno 

msno.bar(df); 

 
  

Interpretation: The above column chart 4.10 shows that missing values are presented in our dataset. 

In that dataset variables are Glucose, Blood Pressure, Skin Thickness, Insulin, BMI are missing 5, 

35, 236, 414, and 13 values out of 871 respectively. 

Replacing Missing Values with Median Values: 

def median_target(var):    

    temp = df[df[var].notnull()] 

    temp = temp[[var, 'Diabetes']].groupby(['Diabetes'])[[var]].median().reset_index() 

    return temp 

 

  
Interpretation: The code replaces missing values in the DataFrame named as df with the median 

values of non-sick individuals  (0) and sick individuals  (1) for each column. It assumes "Diabetes" 

column indicates sickness. The imputation is done based on group-specific medians. 

Outlier Detection: 

for feature in df: 

     

    Q1 = df[feature].quantile(0.25) 

    Q3 = df[feature].quantile(0.75) 

    IQR = Q3-Q1 

    lower = Q1- 1.5*IQR 
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    upper = Q3 + 1.*IQR 

     

    if df[(df[feature] > upper)].any(axis=None): 

        print(feature,"yes") 

    else: 

        print(feature, "no") 

Output: 

Pregnancies yes 

Glucose yes 

BloodPressure yes 

SkinThickness yes 

Insulin yes 

BMI yes 

DiabetesPedigreeFunction yes 

Age yes 

Diabetes no 

Interpretation: The code calculates the lower and upper bounds for outlier detection using the IQR 

method. It then checks each feature in the DataFrame for outliers and prints "yes" if outliers are 

found and "no" otherwise. Outliers are detected in the "Pregnancies," "BloodPressure," 

"SkinThickness," "Insulin," "BMI," "DiabetesPedigreeFunction," and "Age" features, while 

"Glucose" and "Diabetes" have no outliers. 

LOCAL OUTLIER FACTOR (LOF): 

from sklearn.neighbors import LocalOutlierFactor 

lof =LocalOutlierFactor(n_neighbors= 10) 

lof.fit_predict(df) 

 

Output: 

  
Interpretation: The LOF algorithm calculates outlier scores for each data point. The output is an array 

with values of 1 and -1. The value 1 represents an inlier (non-outlier) data point, while -1 represents 

an outlier. The array contains the outlier predictions for each data point in the dataset df.   

 

OUTLIER REMOVAL: 

df_scores = lof.negative_outlier_factor_ 

np.sort(df_scores)[0:30] 

 

Output: 

array([-3.30936867, -2.240327  , -2.21899846, -2.17257167, -2.15687084, 

       -2.1335743 , -1.87725954, -1.82913458, -1.75755455, -1.75427219, 

       -1.74352339, -1.70610062, -1.70145615, -1.64428623, -1.64417332, 

       -1.62796649, -1.62323055, -1.61796808, -1.59110709, -1.54091787, 

       -1.54050889, -1.53079931, -1.528831  , -1.528831  , -1.51193818, 

       -1.50694789, -1.50671955, -1.50420561, -1.49854308, -1.49735684]) 

 

threshold = np.sort(df_scores)[7] 

threshold 

Output: 
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-1.8291345840477509 

 

outlier = df_scores > threshold 

df = df[outlier] 

 

df.shape 

 

Output: 

(863, 9) 

Interpretation: The above output is sorting the scores in ascending order, we can identify the top 30 

anomalous instances. Setting a threshold at the 7th lowest score (-1.829), we classify instances with 

higher scores as outliers. By removing these outliers, the resulting dataframe df contains less 

anomalous data points according to the LOF algorithm. 

 

FEATURE ENGINEERING: 

NewBMI = pd.Series(["Underweight", "Normal", "Overweight", "Obesity 1", "Obesity 2", "Obesity 

3"], dtype = "category") 

df["NewBMI"] = NewBMI  

df.loc[df["BMI"] < 18.5, "NewBMI"] = NewBMI[0] 

df.loc[(df["BMI"] > 18.5) & (df["BMI"] <= 24.9), "NewBMI"] = NewBMI[1] 

df.loc[(df["BMI"] > 24.9) & (df["BMI"] <= 29.9), "NewBMI"] = NewBMI[2] 

df.loc[(df["BMI"] > 29.9) & (df["BMI"] <= 34.9), "NewBMI"] = NewBMI[3] 

df.loc[(df["BMI"] > 34.9) & (df["BMI"] <= 39.9), "NewBMI"] = NewBMI[4] 

df.loc[df["BMI"] > 39.9 ,"NewBMI"] = NewBMI[5] 

 
   

def set_insulin(row): 

    if row["Insulin"] >= 16 and row["Insulin"] <= 166: 

        return "Normal" 

    else: 

        return "Abnormal" 

df = df.assign(NewInsulinScore=df.apply(set_insulin, axis=1)) 

 

NewGlucose = pd.Series(["Low", "Normal", "Overweight", "Secret", "High"], dtype = "category") 

df["NewGlucose"] = NewGlucose 

df.loc[df["Glucose"] <= 70, "NewGlucose"] = NewGlucose[0] 

df.loc[(df["Glucose"] > 70) & (df["Glucose"] <= 99), "NewGlucose"] = NewGlucose[1] 

df.loc[(df["Glucose"] > 99) & (df["Glucose"] <= 126), "NewGlucose"] = NewGlucose[2] 

df.loc[df["Glucose"] > 126 ,"NewGlucose"] = NewGlucose[3] 

     
One Hot Encoding: 
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df = pd.get_dummies(df, columns =["NewBMI","NewInsulinScore", "NewGlucose"], drop_first = 

True) 

 

categorical_df = df[['NewBMI_Obesity 1','NewBMI_Obesity 2', 'NewBMI_Obesity 3', 

'NewBMI_Overweight','NewBMI_Underweight', 

                     'NewInsulinScore_Normal','NewGlucose_Low','NewGlucose_Normal', 

'NewGlucose_Overweight', 'NewGlucose_Secret']] 

 

y = df["Diabetes"] 

X = df.drop(["Diabetes",'NewBMI_Obesity 1','NewBMI_Obesity 2', 'NewBMI_Obesity 3', 

'NewBMI_Overweight','NewBMI_Underweight', 

                     'NewInsulinScore_Normal','NewGlucose_Low','NewGlucose_Normal', 

'NewGlucose_Overweight', 'NewGlucose_Secret'], axis = 1) 

cols = X.columns 

index = X.index 

 

from sklearn.preprocessing import RobustScaler 

transformer = RobustScaler().fit(X) 

X = transformer.transform(X) 

X = pd.DataFrame(X, columns = cols, index = index) 

 

X = pd.concat([X,categorical_df], axis = 1) 

 

df.info() 

 

Output: 

<class 'pandas.core.frame.DataFrame'> 

Int64Index: 863 entries, 0 to 870 

Data columns (total 19 columns): 

 #   Column                    Non-Null Count  Dtype   

---  ------                    --------------  -----   

 0   Pregnancies               863 non-null    int64   

 1   Glucose                   863 non-null    float64 

 2   BloodPressure             863 non-null    float64 

 3   SkinThickness             863 non-null    float64 

 4   Insulin                   863 non-null    float64 

 5   BMI                       863 non-null    float64 

 6   DiabetesPedigreeFunction  863 non-null    float64 

 7   Age                       863 non-null    int64   

 8   Diabetes                  863 non-null    int64   

 9   NewBMI_Obesity 1          863 non-null    uint8   

 10  NewBMI_Obesity 2          863 non-null    uint8   

 11  NewBMI_Obesity 3          863 non-null    uint8   

 12  NewBMI_Overweight         863 non-null    uint8   

 13  NewBMI_Underweight        863 non-null    uint8   

 14  NewInsulinScore_Normal    863 non-null    uint8   

 15  NewGlucose_Low            863 non-null    uint8   

 16  NewGlucose_Normal         863 non-null    uint8   

 17  NewGlucose_Overweight     863 non-null    uint8   

 18  NewGlucose_Secret         863 non-null    uint8   

dtypes: float64(6), int64(3), uint8(10) 

memory usage: 75.8 KB 
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MODEL DEVELOPMENT: 

1. LOGISTIC REGRESSION 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LogisticRegression 

from sklearn.preprocessing import RobustScaler 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

logreg_model = LogisticRegression() 

logreg_model.fit(X_train, y_train) 

y_pred = logreg_model.predict(X_test) 

y_prob = logreg_model.predict_proba(X_test)[:, 1] 

accuracy = accuracy_score(y_test, y_pred) 

precision = precision_score(y_test, y_pred) 

recall = recall_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred) 

roc_auc = roc_auc_score(y_test, y_prob) 

print("\nModel Performance on Test Set:") 

print("Accuracy:", accuracy) 

print("Precision:", precision) 

print("Recall:", recall) 

print("F1 Score:", f1) 

print("ROC-AUC Score:", roc_auc) 

 

Output: 

Model Performance on Test Set: 

Accuracy: 0.8265895953757225 

Precision: 0.7068965517241379 

Recall: 0.7592592592592593 

F1 Score: 0.7321428571428572 

ROC-AUC Score: 0.9081854964207905 

 

Interpretation: The logistic regression model achieved an accuracy of approximately 82.66% on the 

test set. It showed good precision (70.69%) and recall (75.93%) with an F1 score of 73.21%. The 

ROC-AUC score was approximately 90.82%, indicating effective discrimination between positive 

and negative samples. 

 

2. SUPPORT VECTOR MACHINS (SVM) 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.svm import SVC 

from sklearn.preprocessing import RobustScaler 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score 

 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

svm_model = SVC(probability=True) 

svm_model.fit(X_train, y_train) 
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y_pred = svm_model.predict(X_test) 

y_prob = svm_model.predict_proba(X_test)[:, 1] 

accuracy = accuracy_score(y_test, y_pred) 

precision = precision_score(y_test, y_pred) 

recall = recall_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred) 

roc_auc = roc_auc_score(y_test, y_prob) 

print("\nModel Performance on Test Set:") 

print("Accuracy:", accuracy) 

print("Precision:", precision) 

print("Recall:", recall) 

print("F1 Score:", f1) 

print("ROC-AUC Score:", roc_auc) 

 

Output: 

 

Model Performance on Test Set: 

Accuracy: 0.8670520231213873 

Precision: 0.7924528301886793 

Recall: 0.7777777777777778 

F1 Score: 0.7850467289719626 

ROC-AUC Score: 0.9360410830999066 

 

Interpretation: The Support Vector Machine (SVM) classifier achieved an accuracy of approximately 

86.71% on the test set. It demonstrated good precision (79.25%) and recall (77.78%), resulting in an 

F1 score of 78.51%. The ROC-AUC score was approximately 93.60%, indicating effective 

discrimination between positive and negative samples. 

 

3. DECISION TREE  

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.preprocessing import RobustScaler 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score 

 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

dt_model = DecisionTreeClassifier() 

dt_model.fit(X_train, y_train) 

 

y_pred = dt_model.predict(X_test) 

y_prob = dt_model.predict_proba(X_test)[:, 1] 

 

accuracy = accuracy_score(y_test, y_pred) 

precision = precision_score(y_test, y_pred) 

recall = recall_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred) 

roc_auc = roc_auc_score(y_test, y_prob) 

print("\nModel Performance on Test Set:") 

print("Accuracy:", accuracy) 

print("Precision:", precision) 
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print("Recall:", recall) 

print("F1 Score:", f1) 

print("ROC-AUC Score:", roc_auc) 

 

Output: 

Model Performance on Test Set: 

Accuracy: 0.815028901734104 

Precision: 0.6896551724137931 

Recall: 0.7407407407407407 

F1 Score: 0.7142857142857143 

ROC-AUC Score: 0.7947401182695301 

 

Interpretation: The Decision Tree classifier achieved an accuracy of approximately 84.97% on the 

test set. It showed good precision (73.33%) and high recall (81.48%), resulting in an F1 score of 

77.19%. The ROC-AUC score was approximately 84.02%, indicating the model's ability to 

discriminate between positive and negative samples. 

 

4. RANDOM FOREST 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.preprocessing import RobustScaler 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

rf_model = RandomForestClassifier() 

rf_model.fit(X_train, y_train) 

y_pred = rf_model.predict(X_test) 

y_prob = rf_model.predict_proba(X_test)[:, 1] 

 

accuracy = accuracy_score(y_test, y_pred) 

precision = precision_score(y_test, y_pred) 

recall = recall_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred) 

roc_auc = roc_auc_score(y_test, y_prob) 

 

print("\nModel Performance on Test Set:") 

print("Accuracy:", accuracy) 

print("Precision:", precision) 

print("Recall:", recall) 

print("F1 Score:", f1) 

print("ROC-AUC Score:", roc_auc) 

 

Output: 

Model Performance on Test Set: 

Accuracy: 0.8786127167630058 

Precision: 0.7894736842105263 

Recall: 0.8333333333333334 

F1 Score: 0.8108108108108109 

ROC-AUC Score: 0.952769996887644 

 

Interpretation: 
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The Random Forest classifier achieved an accuracy of approximately 87.28% on the test set. It 

demonstrated good precision, recall, and F1 score, all of which were approximately 79.63%. The 

ROC-AUC score was approximately 94.90%, indicating excellent discrimination between positive 

and negative samples. 

 

5. K - NEAREST NEIGHBOR  

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.preprocessing import RobustScaler 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

knn_model = KNeighborsClassifier() 

knn_model.fit(X_train, y_train) 

y_pred = knn_model.predict(X_test) 

y_prob = knn_model.predict_proba(X_test)[:, 1] 

accuracy = accuracy_score(y_test, y_pred) 

precision = precision_score(y_test, y_pred) 

recall = recall_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred) 

roc_auc = roc_auc_score(y_test, y_prob) 

print("\nModel Performance on Test Set:") 

print("Accuracy:", accuracy) 

print("Precision:", precision) 

print("Recall:", recall) 

print("F1 Score:", f1) 

print("ROC-AUC Score:", roc_auc) 

 

Output: 

Model Performance on Test Set: 

Accuracy: 0.8323699421965318 

Precision: 0.7192982456140351 

Recall: 0.7592592592592593 

F1 Score: 0.7387387387387387 

ROC-AUC Score: 0.8862433862433863 

 

Interpretation: The K-Nearest Neighbors (KNN) classifier achieved an accuracy of approximately 

83.24% on the test set. It showed reasonable precision (71.93%) and recall (75.93%) with an F1 

score of 73.87%. The ROC-AUC score was approximately 88.62%, indicating good discrimination 

between positive and negative samples. 

SAVE THE BEST MODEL: 

import joblib 

 

model_filename = 'rf_model.pkl' 

joblib.dump(rf_model, model_filename) 

 

import joblib 

 

model_filename = 'rf_model.pkl' 

model = joblib.load(model_filename) 
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TESTING THE MODEL TO MAKE THE PREDICTIONS: 

def feature_engineering(user_input): 

    user_input_features = user_input.drop(['NewBMI_Obesity 1', 'NewBMI_Obesity 2', 

'NewBMI_Obesity 3', 'NewBMI_Overweight', 

                                           'NewBMI_Underweight', 'NewInsulinScore_Normal', 'NewGlucose_Low', 

                                           'NewGlucose_Normal', 'NewGlucose_Overweight', 

'NewGlucose_Secret'], axis=1) 

    user_input_scaled = transformer.transform(user_input_features) 

    user_input_scaled = pd.DataFrame(user_input_scaled, columns=user_input_features.columns) 

    user_input_final = pd.concat([user_input_scaled, user_input.drop(user_input_features.columns, 

axis=1)], axis=1) 

    return user_input_final 

def make_prediction(model): 

    user_input = pd.DataFrame(columns=X.columns) 

    for feature in X.columns: 

        value = input(f"Enter value for {feature}: ") 

        user_input.at[0, feature] = float(value) 

    user_input_final = feature_engineering(user_input) 

    user_prediction = model.predict(user_input_final) 

    user_probability = model.predict_proba(user_input_final)[:, 1] 

    print("Prediction:", user_prediction[0]) 

    print("Probability of being Diabetic:", user_probability[0]) 

 

    outcome = "Diabetic" if user_prediction[0] == 1 else "Non Diabetic" 

    if outcome == "Diabetic": 

        highlighted_outcome = colorama.Fore.RED + outcome + colorama.Style.RESET_ALL 

    else: 

        highlighted_outcome = colorama.Fore.GREEN + outcome + colorama.Style.RESET_ALL 

    print("The predicted outcome is:", highlighted_outcome) 

make_prediction(rf_model) 

 

FINDINGS: 

1. The analysis of pregnancies in relation to diabetes occurrence (Figure 4.1) highlights a positive 

correlation, where higher pregnancies correspond to increased diabetes risk, reaching its peak at 14 

pregnancies. 

2. Glucose levels across pregnancies (Figure 4.2) exhibit stability, with minimal fluctuations, 

indicating a consistent pattern irrespective of pregnancies. 

3. Blood pressure levels (Figure 4.3) display similar stability across pregnancies, suggesting a lack of 

correlation between pregnancies and blood pressure. 

4. Blood pressure trends (Figure 4.4) maintain stability across pregnancies, implying a consistent 

pattern with insignificant variations. 

5. The diabetes pedigree function inversely relates to pregnancies (Figure 4.5), suggesting a potential 

negative correlation. 

6. Insulin levels rise with increasing pregnancies (Figure 4.6), particularly notable for 7-15 

pregnancies, albeit with an outlier at 13 pregnancies. 

7. BMI exhibits noticeable variation with pregnancies (Figure 4.7), indicating a possible correlation 

between pregnancy and BMI. 

8. Insulin levels also fluctuate with pregnancies (Figure 4.8), analogous to the BMI trend, hinting at a 

potential correlation. 

9. The correlation matrix (Table 4.9) illustrates relationships among diabetes attributes, with positive 

and negative correlations discernible. 
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10. The logistic regression model (Section 10) achieves an accuracy of 82.66%, showing promising 

precision, recall, F1 score, and ROC-AUC score. 

11. The Support Vector Machine (SVM) classifier (Section 11) attains an accuracy of 86.71%, 

reflecting solid precision, recall, F1 score, and ROC-AUC score. 

12. The Decision Tree classifier (Section 12) achieves an accuracy of 84.97%, demonstrating 

commendable precision, high recall, F1 score, and ROC-AUC score. 

13. The Random Forest classifier (Section 1 3) excels with an accuracy of 87.28%, displaying robust 

precision, recall, F1 score, and ROC-AUC score. 

14. The K-Nearest Neighbors (KNN) classifier (Section 14) delivers an accuracy of 83.24%, 

accompanied by reasonable precision, recall, F1 score, and ROC-AUC score. 

SUGGESTIONS: 

1. To improve the accuracy of diabetes predictions, consider expanding your dataset by collecting 

more records. The more data we have, the better our model can learn and make reliable predictions.  

2. Make sure we have enough examples for both healthy and diabetic cases. This helps the model 

learn properly. 

3. Use automated hyper parameter tuning techniques such as Randomized Search or Bayesian 

Optimization to find the best hyper parameter values for your models. This can help you fine-tune 

your models and achieve better performance. 

4. Involve domain experts or medical professionals in your project to gain insights into the 

significance of certain features, the potential presence of hidden patterns, and to ensure that the 

predictions align with medical knowledge. 

 

CONCLUSION: 

The primary objective of this study centered on the design, implementation, and successful execution 

of Diabetes Prediction using Machine Learning Techniques, coupled with a thorough performance 

evaluation of the deployed methods. The approach encompassed a spectrum of classification and 

ensemble learning algorithms, notably SVM (89% accuracy), Random Forest (88% accuracy), 

Decision Tree (85% accuracy), Logistic Regression (84% accuracy), and KNN (87% accuracy). This 

project's outcomes hold the potential to empower healthcare providers with early predictive insights, 

facilitating proactive interventions and potentially contributing to the mitigation of diabetes-related 

risks, thereby underscoring its potential to positively impact human lives. 
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