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ABSTRACT: There is a big trend nowadays to use event-triggered proximity report for indoor positioning. 

This paper presents a generic received-signal-strength (RSS) threshold optimization framework for 

generating informative proximity reports. The proposed framework contains five main building blocks, 

namely the deployment information, RSS model, positioning metric selection, optimization process and 

management. Among others, we focus on Gaussian process regression (GPR) based RSS models and 

positioning metric computation. The optimal RSS threshold is found through minimizing the best achievable 

localization root-mean-square-error formulated with the aid of fundamental lower bound analysis. 

Computational complexity is compared for different RSS models and different fundamental lower bounds. 

The resulting optimal RSS threshold enables enhanced performance of new fashioned low-cost and low-

complex proximity report based positioning algorithms. The proposed framework is validated with real 

measurements collected in an office area where bluetooth-low-energy (BLE) beacons are deployed.  

Index Terms—Gaussian process, indoor positioning, proximity report, received-signal-strength, threshold 

optimization. 

1. INTRODUCTION 

Over the past few years, indoor localization and tracking using wireless networks has received considerable 

attention due to the ever increasing demand on location-awareness in various sectors. So far, most of the 

efforts have been made to improve the localization accuracy using advanced technologies, for instance 

statistical sensor fusion, dedicated to optimally fuse different types of position-related measurements 

collected from indoor wireless infrastructures (for instance, cellular, wireless fidelity (Wi-Fi) and bluetooth 

low-energy (BLE) nodes and mobile devices. Due to the rapid development of the beaconing techniques, 

there is a big trend nowadays to use event-triggered proximity information for developing new-fashioned, 

low-cost (e.g., less communication overhead, smaller database for storage, cheaper deployment and 

maintenance) indoor positioning systems. 

One way of obtaining a proximity report from the network is to compare an instantaneous RSS value with a 

tuned threshold Pth. A proximity report obtained in such way indicates whether or not a user equipment 

(UE) is in proximity of a reference network node. Essentially, a proximity measurement can be treated as a 

quantized RSS with merely two quantization levels. Unlike in the conventional paradigm, where the UE 

sends the measured RSS indication values periodically to the core network, a proximity report is triggered 

only when the UE’s status changes, for instance when the UE is crossing a border to another service region. 

Such proximity reporting scheme is beneficial in various ways. Among other benefits, the signaling between 

the UE and the core network can be significantly reduced by sending much less frequently 1-bit proximity 

values instead of 6-8 bits RSS indication values proximity values instead of 6-8 bits RSS indication values. 

In order to explain the concept of proximity based noncooperative indoor positioning more clearly, we give 

an illustrative example in Fig, wherein we assume noise free RSS measurements and a simplistic 

propagation model with which an RSS threshold corresponds to a circular coverage area in open space. As 

we can see from the figure, the service area is divided into several small regions. An instantaneous RSS 

measurement being larger than a predefined threshold implies that the UE resides in the corresponding 

coverage area. For instance, the proximity vector, e.g., [1, 1, 0], indicates that the UE is in the coverage area 

of the first and the second reference nodes, while outside of the coverage area of the third reference node. 

The UE needs to upload the proximity vector only if there is status change in the proximity report, for 

instance from [1, 1, 0] to [0, 1, 0], when the UE moved from the marked place some distance to the right. 

However, we note that in practice the RSS measurements are subject to various types of noise and we resort 

to a statistical framework for RSS thresholding. 
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Fig.. Illustration of proximity report based indoor positioning. In this example, three reference nodes are 

deployed in a service area for positioning purposes. For simplicity, we assume that the RSS measurements 

are noise free and the underlying propagation model fits a linear log-distance model, cf. Section II-B. The 

coverage radius of each node, dˆ i, i = 1, 2, 3, is simply determined by dˆ i = d0 · 10 Pth,i−Aˆ i 10Bˆ i , 

where the notations will be explained later on. As we can see, the service area is divided into several small 

regions. An instantaneous RSS measurement being larger than a predefined threshold implies that the UE 

resides in the corresponding coverage area. For instance, the proximity vector, e.g., [1, 1, 0], indicates that 

the UE is in the coverage area of the first and the second reference nodes, while outside of the coverage area 

of the third reference node. The UE needs to upload the proximity vector if and only if there is at least one 

entry reversing the status, for instance from [1, 1, 0] to [0, 1, 0], when the UE moved from the marked place 

some distance to the right. 

 

2. RELATED WORK  

In the literature, the proximity based positioning algorithms are often called coarse grained algorithms or 

range-free algorithms. Since the publication of a plethora of proximity based positioning algorithms have 

been proposed, including the centroid algorithm, the approximate point in triangle (APIT) algorithm, the 

maximum-likelihood estimation based algorithm, the ecolocation algorithm and the iterative learning based 

algorithm, to mention a few. The majority of the existing work considered large-scale cooperative sensor 

network localization subject to communication constraints. To the best of our knowledge, RSS thresholding 

was first considered for cooperative localization. Therein, a single RSS threshold is optimized so as to limit 

the number of the neighboring senors. In our recent work, RSS thresholding was considered for non-

cooperative, infrastructure-based indoor positioning, which can be regarded as a special case. But the focus 

of lies in the overall positioning performance in a given service area and thorough treatment on the 

measurement campaign, RSS modeling, model fitting and parameter calibration, signaling, and performance 

evaluation using real data measured from a live network. In this work, we extend to multiple RSS thresholds 

tuning. The performance metric to be optimized is selected to be the overall positioning root-mean-square-

error (RMSE) represented in terms of the Cram´er-Rao bound or Barankin bound. The former bound is 

suitable to benchmark estimation performance for mediumand large scale sensor networks, while the latter 

bound is more suitable to benchmark small scale sensor networks. Moreover, we introduce advanced 

Gaussian process regression (GPR) based RSS models, perform detailed performance analyses and validate 

the results with more real data. Lastly, we incorporate the derived fundamental lower bounds and the 

advanced GPR based RSS models into RSS thresholds optimization. To give a quick overview, the proposed 

generic framework for selecting a set of reasonable RSS thresholds for proximity report based positioning is 

given in Figure. 
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Fig. Key steps of the proposed RSS thresholds optimization procedure. Herein, P opt th represents the 

optimized RSS thresholds. The connections are the following. The fundamental bound analysis is based on 

deployment information and RSS modeling. The outcome of the fundamental bound analysis is the best 

achievable RMSE expression. Together with the evaluation set of positions, they are combined to evaluate 

the overall best achievable positioning accuracy as a function of the rss threshold. 

 

3. SYSTEM ANALYSIS 

RSS THRESHOLD OPTIMIZATION 

In this section, we first define an optimization problem based on our objective, and then, we come up with 

an objective function that satisfies the optimization problem statement. Then, we propose a suitable 

optimization method and a multi-sensor sampling method (which provides RSS gradient inputs to the 

optimization algorithm). Then, we present a position controller that implements the optimization algorithm. 

The algorithm itself is summarized at the end of this section. 

OPTIMIZATION PROBLEM 

Let the measured RSS at the relay node from the client node be  

 and from the server node be   

   A way to solve Problem 1 is to find a function that maximizes both the RSSc and RSSs at 

the same time, so that the total good put is at a maximum. Figure shows the RSS readings as the relay node 

travels between the server and client nodes. The reason for non-symmetrical RSS values between the two 

nodes is that the environment has NLOS conditions and, hence, has different propagation constants. It can 

be observed from this figure that the good put is maximal when RSSs and RSSc become close to each other, 

and this is the basis for the objective of this work, i.e., to maximize the network capacity by maintaining a 

balance between radio signal strengths received from the server and the client nodes while attempting to 

maximize the RSS from both sides at the same time. It is also worth noting that this figure shows a one-

dimensional RSS measurement, and if extrapolated to a 2D scenario, there can be multiple possible positions 

where RSSc and RSSs are equal, as will be shown later. Hence, it is important to consider a function that 

maximizes the values of RSSc and RSSs together while maintaining them as close as possible. The objective 

of the optimization problem can be formulated as follows: 

 
where G(pr) is the goodput value when the relay node is at position pr. The position of the relay node pr = 

(xr ∈ R, yr ∈ R) (whose value ranges between the positions of server and client nodes) is the control variable 

(argument), and the function f(pr) : R n → R is the objective function to be maximized in the optimization 
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problem. p ∗ r is the position at which the objective function f(pr) is maximum and also the following two 

constraints are achieved: maximum goodput; RSSc and RSSs values match each other. 

 
OBJECTIVE FUNCTION 

A simple function that satisfies the objective of simultaneously maximizing the RSS values from both the 

server and client nodes would be f(pr) = RSSc(pr) + RSSs(pr); however, this results in multiple optimum 

positions, each resulting in a sub-optimum solution. Thus, a different objective function that satisfies all of 

the constraints has to be chosen. For example, Dixon and Frew [16] used f(pr) = min{SNRc(pr), SNRs(pr)} 

as the objective function for a similar problem statement and adopted a least squares gradient estimation 

(LSGE) method for determining the gradient of the objective function and to deal with the non-smooth 

nature of the objective function. 

As our algorithm will rely purely on the spatial gradient approximation (using measurements), determining 

the gradients for solving a non-smooth objective function has many practical difficulties. To aid the easier 

integration of our proposed method, we approximate the non-smooth objective function used in to a smooth 

valued function by using a smoothing approximation method proposed. Furthermore, as we do not have 

direct SNR measurements, we use RSS measurements instead. Hence, we propose the following objective 

function that solves the optimization problem defined in the Equation: 
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OPTIMIZATION METHOD 

The proposed function f : R → R 2 (with bounded RSS values) possesses at least one maximum value 

(according to the extreme value theorem). In this section, we show how this maximum value can be 

achieved using an appropriate optimization method. We are inclined towards gradient-based optimization 

methods for the advantages, such as the convergence and stability, as mentioned. Optimization methods 

using only an approximated gradient (of the objective function) information typically use stochastic 

optimization algorithms.  

The gradients of the objective function are estimated using the RSS measurements and are then used to 

determine the future position of the relay robot, which maximizes the value of the objective function. A 

stochastic gradient ascent (SGA) algorithm is used to recursively update the relay node’s position based on 

the RSS gradients as follows:  

 
The relay node’s position vector #»pr i = (x i r , yi r ) is updated at every i−th iteration. γ ∈ R+ is the 

learning rate (also called “step size”), whose value will be determined in real time in each iteration. The 

selection of this learning rate is crucial to obtain fast convergence [38] and should satisfy the conditions P i 

γi = ∞ and P i γ 2 i < ∞. The choice of the learning rate γ will be discussed in Section. The multi-variate 

gradient vector #»g = (gx, gy) of the objective function is determined in the following way: 

 
The above method is called the stochastic gradient ascent method, because the objective function f has both 

deterministic and stochastic parts, as it is a function of RSS, and therefore, the stochastic gradient vector is 

#»g (pr) = # » ∇f(pr) + #». The #»is the noise vector in the gradient measurements at every iteration. The 

RSS gradient vector #»g is approximated by measurements at a single position of the relay node. Thus, we 

try to increase robustness and achieve fast convergence by using the concept of stochastic gradient ascent. 

The SGA method requires that the objective function f(pr) is concave and the gradient g(pr) is locally 

Lipschitz continuous to guarantee convergence and, thus, to reach the global optimum value. We show 

below how the convergence requirements for the SGA method are met. 

Proof for concavity: to prove that f is concave, it is necessary to show that the Hessian matrix (second-order 

partial derivatives) is negative semi-definite (NSD). We have the Hessian matrix, 

 
the determinant of the Hessian matrix is zero, and both ∂ 2f ∂x2 and ∂ 2f ∂y2 are negative. This means that 

the Hessian matrix is NSD (as all the Eigen values are non-positive for any RSSc and RSSs value). Thus, the 

function f is concave. 
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Proof for Lipschitz continuity: to show that the gradient function ∇f(pr) is locally Lipschitz continuous, it 

should be proven that there exists a positive constant L ≥ 0, such that k∇f(RSSi+1) − ∇f(RSSi )k ≤ 

LkRSSi+1 − RSSik in a bounded interval for RSS ∈ (RSSmin, RSSmax). Alternatively, one can prove this 

by showing that the derivative of ∇f (which is ∇2 f) exists and that ∇2 f is continuous and bounded in the 

same interval of the RSS (using the theorem, a bounded derivative implies Lipschitz continuity. We can 

come to this conclusion by analyzing ∇2 f in Equation and noting that in a bounded interval of the RSS 

(RSSmin, RSSmax) set by the threshold limits, the function ∇2 f ≤ K is bounded with a constant K 

depending on the RSS interval. 

Stochastic optimization methods can work with noisy gradient measurements, which is a vital requirement, 

because the RSS measurements usually contain random variations that can be treated as a measurement 

noise in the optimization problem. Therefore, the key factor driving the choice of a stochastic optimization 

method is that the environmental factors affecting the RSS are not known prior, and hence, an optimization 

method that is both adaptable (to environmental changes) and robust (to noise) is needed. 

Though we can reach the global optimum if f(x) is concave, the stochastic nature of the RSS is not easing 

this phenomenon, and hence, the objective function has multiple local optima. With careful pre-processing 

techniques discussed in the following subsection, the local optima issue can be mitigated. Nevertheless, as 

the objective is to reach the optimum in a localized region, the issue of global optimization is not a concern. 

 

PRE-PROCESSING OF THE RSS DATA 

As the measured RSS values are noisy, we propose spatial and temporal smoothing RSS filters to mitigate 

measurement noise and multipath fading effects. 

SPATIAL SMOOTHING 

It has been shown in [43] that the (spatial) multipath fading effects at each sensor can be mitigated by linear 

spatial averaging of the RSS measurements with several measurements per wavelength (λ) of the radio 

signal used. Moreover, it is mentioned that there should be a minimum spacing of 0.38λ between two RSS 

spacial samples to obtain independent uncorrelated measurements. Therefore, we propose to use an average 

filter for RSS spatial smoothing when the relay node is moving from (x i , yi ) to (x i+1, yi+1). Assuming 

that we use the 2.4 GHz (λ = 12.5 cm) radio frequency band, the spatial sampling (note: the spatial sampling 

here refers to the sampling (in space) of the RSS by each sensor on the relay node, whereas the purpose of 

the spacing of multiple sensors within the relay node is to estimate the RSS gradient around the relay node) 

frequency (fs) has been set to a value greater than or equal to 5 cm, meeting both the minimum spacing for 

uncorrelated measurements, as well as the resolution needs of the linear spatial averaging (around 2.5 

measurements per λ). The spatial averaging filer is modeled as follows: 

 
At each receiver, the RSS sampling time is ts = fsν, ν being the velocity of the relay node. This means that 

the outcome of the smoothed RSS will be the RSS sample at (x i+ 1 2 , yi+ 1 2 ) instead of (x i+1, yi+1). As 

we are concerned only about the RSS gradient measurements, this spatial averaging has a positive impact. 

 

TEMPORAL SMOOTHING 

In a radio receiver, active analog filters, such as an automatic gain control (AGC) circuit, adjust the input 

amplification gain depending on the received signal level to protect against large signal interference and 

attenuate slow changes in the received signal strength caused by shadowing effects. As the objective is to 

mitigate fast multipath fading effects in the RSS, active analog filters are not suitable, and therefore, we 

propose a digital exponential moving average (EMA) filter for smoothing rapid variations in the RSS over a 

given time. The filter implementation is similar to a discrete first order infinite impulse response (IIR) or a 

single-pole low-pass filter that has a recursive feedback. The filter is characterized by the following 

equation:  
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where α is the smoothness parameter (0 ≤ α ≤ 1) that yields the filter time constant τf = ∆T ( 1−α α ) and ∆T 

is the RSS sampling period used in the temporal smoothing. The next sub-section discusses how to 

determine the RSS gradients (which is a key ingredient to the SGA method) after applying spatial and 

temporal filters for RSS smoothing. 

 

4. RSS THRESHOLD OPTIMIZATION AND ANALYSIS 

RSS THRESHOLD OPTIMIZATION 

 
Fig. Signaling chart illustrating the proposed RSS threshold optimization procedure. The steps marked with 

dashed lines and in red color are optional. 

we have shown how to optimize a single RSS threshold for enhanced localization performance. In what 

follows, we aim to validate the idea experimentally using a batch of real RSS measurements collected in an 

indoor bluetooth low-energy (BLE) network. The most attractive features of the BLE network as compared 

to other wireless networks lie in the low power consumption and efficient monitoring procedures in devices. 

As trade-off, more BLE beacons need to be deployed due to the shorter communication range compared to 

techniques based on higher transmission powers. 

SENSOR DEPLOYMENT AND MEASUREMENT CAMPAIGN 

We consider a typical office environment at Ericsson, Linkoping, Sweden. In total ¨ N = 10 BLE beacons 

are placed rather uniformly in the area. The floor plan as well as the known beacon positions are shown in 

two-dimensional (2-D) space in Fig, wherein a local coordinate system is used. The BLE beacons serve as 

transmitters and broadcast beacon information regularly. The transmit power is PT = −58 dBm. A moderate 

scale measurement campaign was conducted during normal work hours. Throughout the measurement 

campaign, the mobile device (equipped with BLE chipset) receives data packages from the BLE beacons 

and measures the RSS. A total number of M = 12144 RSS measurements were collected along 52 predefined 

tracks. During the measurement campaign, the mobile device was held approximately 1.3 meter above the 

ground. For clarity, we depict the 52 tracks all together in Fig. 4 and use different colors to indicate the 

quality of the observed RSS. Besides, Table gives the 3-D positions of the BLE beacons as well as the total 

number of RSS measurements collected per beacon. The obtained RSS measurements were then uploaded to 

the computation entity (in this case a laptop) via Wi-Fi for RSS model fitting and threshold optimization. In 

the above training phase, we assumed full knowledge about the position of all BLE beacons and tracks. 
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Table: 3-d position of the reference network nodes (ble beacons) and the amount of rss measurements 

collected by each node during the offline measurement campaign. 

 
FITTED RSS MODELS 

We enumerated three different RSS models. In the first two linear models, we take into account the 

truncation effect by setting Pdec = −99 dBm. Next, we perform RSS model calibration repeatedly for each 

BLE beacon using the real RSS measurements. Due to space constraint, we only show some representative 

results. Specifically, we show the calibrated linear log-distance model, dual-mode piece-wise linear model, 

and nonlinear GPR model all for beacon #4 in Fig’s, respectively. It is straightforward to see that the piece-

wise log-distance mode can better represent the data as compared to the simplest log-distance model, but 

they are only able to represent the predicted mean RSS value as a simple function of the Euclidean distance 

between the mobile device and the reference network node. In contrast, the GPR model is able to take into 

account some additional information hidden in the training data about the deployment area. As was 

demonstrated in Fig.(a), concrete walls should have more adverse impact on the mean RSS value than glass 

walls. 

 
Fig. Illustration of the deployment area and the calibration set of sample positions and RSS measurements 

(with the strength indicated by different colors). The BLE beacons are indexed and marked by red ∗. 
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Fig. Scatter plot of the collected RSS measurements (marked by red circles) versus the calibrated log-

distance model (blue line) and piece-wise linear log distance model (black lines) for the 4th BLE beacon. 

The calibrated parameters for the log-distance model are Aˆ4 = −60.0145 dB, Bˆ4 = −2.1156 dB, and σˆ4 = 

7.45 dB; while the calibrated parameters for the piece-wise log distance model are Aˆ1,4 = −66.81 dB, Bˆ1,4 

= −0.87 dB, Bˆ2,4 = −3.50 dB, σˆ1,4 = 8.30 dB, and σˆ2,4 = 7.27 dB, and the corresponding critical distance 

is set to 0.8 meter (in log-scale) for this beacon. 

 

 
Fig. Illustration of the training data set (marked by black +) and the calibrated GPR model with parameters 

Aˆ4 = −69.85 dB, Bˆ4 = −1.41 dB, σˆs,4 = 3.75 dB, σˆn,4 = 2.78 dB, ˆlc,4 = 5.55 meter, for the 4th BLE 

beacon: (a) depicts the posterior mean and (b) depicts the posterior variance of (6). 

 

RSS THRESHOLD OPTIMIZATION 

In order to perform the RSS threshold optimization, we first generate a set X ∗ with 3038 sample positions 

p∗ i spread uniformly over the area, as shown in Fig.The weighting factors are set equally as w∗ i = 1/|X ∗| 

for all sample positions in X ∗. We note that this evaluation set X ∗ shouldn’t be confused with the 

calibration data set used for RSS model calibration. As the localization accuracy metric, we adopt the best 

achievable RMSE as defined. Herein, we assume that the z-component of all sample positions is fixed to 1.3 

meter and known a priori. In other words, we only concern about position estimation in x- and y-directions. 

As a consequence, f(p∗ i , Pth) boils down to f([x∗ i , y∗ i ], Pth). 

 
Fig. Illustration of an evaluation set of uniformly distributed sample positions (marked by blue dots), X∗. 
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We repeat the steps for RSS optimization as given in Section III for the three different RSS models. In Fig, 

we depict the overall best achievable localization RMSE as a function of the RSS threshold Pth, which 

ranges from P min th = −99 dBm to P max th = −70 dBm with an increment 1 dBm. It is not surprising to 

have convex profiles of RMSEpos(Pth) with respect to Pth in all cases. The reason is that too large or too 

small threshold gives very little information about an unknown location. In order to better explain this, let us 

reconsider the example shown in Fig. Therein, when Popt th is set to −∞ or equivalently the coverage area is 

infinitely large, the receiver will receive [1, 1, 1] everywhere; Similarly, when Popt th is set to +∞ or 

equivalently the coverage area is null, the receiver will always receive [0, 0, 0]. Despite the use of different 

RSS models, the final RSS thresholds remain similar. In addition, we illustrate in Fig.the best achievable 

localization RMSE at each sample position of the evaluation set, X ∗, but only for the conventional linear 

log-distance RSS model and Pth = Popt th = −82 dBm. Therein, we can clearly see that the localization 

performance is quite good in the center of this floor, where many beacons can be received, but can be 

extremely bad in perimeter areas, where few beacons are received. This can be seen from Fig, where the 

average number of received BLE beacons reaches the maximum in the center of this floor and decreases 

when moving to the boundary. Appendix B gives detailed derivations for computing this quantity based on 

the linear log-distance RSS model. Similar results can be observed for the other two RSS models and are 

omitted here due to space constraint. Lastly, we note that in Fig it is obvious to see a few narrow stripe-like 

areas where the best achievable RMSE is relatively big. The reason is that in these areas the mobile device 

and the most influencing BLE beacons are nearly co-linearly located, hence the geometric dilution of 

precision (GDOP) or simply the geometry for positioning is extremely poor. 

 
Fig. Overall best achievable localization RMSE versus threshold candidates for the linear log-distance 

model in subfigure-I, piece-wise linear log-distance model in subfigure-II, and Gaussian process regression 

model in subfigure III, respectively. The optimal RSS threshold is marked by red circle. 

 
Fig. Illustration of the best achievable localization RMSE evaluated at each sample position of the 

evaluation set, X∗. 
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Fig. Illustration of the average number of communicating BLE beacons at each sample position of the 

evaluation set, X∗. 

 

5. CONCLUSION 

In this paper, we have proposed a general RSS threshold optimization procedure for indoor positioning using 

wireless networks. The importance of this work is to provide a fundamental baseline for converting a 

continuous RSS measurement to a binary proximity measurement for analyzing time series of binary 

proximity reports. Given the prior knowledge about the deployment information and the RSS model, a 

reasonable RSS threshold can be found via optimizing an adequate performance metric. As a concrete 

example, we have exemplified how to optimize the RSS threshold for three salient RSS models so that the 

best achievable localization RMSE of any unbiased position estimator is minimized. Moreover, we have 

conducted experimental validation of the proposed procedure in a live BLE network deployed at an office 

area at Ericsson. The results have shown largely enhanced localization performance when using the 

optimized RSS threshold, which underpins our statement that inappropriately selected RSS threshold will 

result in little information in the proximity measurements. 
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