

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 93 Copyright @ 2021 Authors

MULTIPLE ERROR CORRECTION USING LATTICE ERROR

CORRECTOR

1
Ch Durga Bhavani, Pg. scholar Department of ECE, Vikas Group of Institutions, Nunna,

Vijayawada, Mail id: kotieashwar@gmail.com
2

Y. Uma Maheswari Assistant Professor

Department of ECE, Vikas Group of Institutions, Nunna,

Vijayawada, Mail id: umaecestaff@gmail.com
3
 S.Kishore babu Associate Professor Department of ECE, Vikas Group of Institutions, Nunna,

Vijayawada, Mail id:

ABSTRACT

The reliability of memory subsystem is fast

becoming a concern in computer architecture and

system design. From on-chip embedded

memories in Internet-of-Things (IoT) devices and

on-chip caches to off-chip main memories, they

have become the limiting factor in reliability of

computing systems. This is because they are

primarily designed to maximize bit storage

density; this makes memories particularly

sensitive to manufacturing process variation,

environmental operating conditions, and aging-

induced wear out. Addressing these concerns is

particularly challenging in on-chip caches or

embedded memories like scratchpads in IoT

devices as additional area, power and latency

overheads of reliability techniques in these

memories need to be minimized as much as

possible. Hence, this dissertation proposes MS-

OLS Fault Tolerance in SRAM based scratchpad

memories and last level caches. In the first part of

the dissertation we propose Difference Set: an

approach to deal with known hard faults in

software managed scratchpad memories.

Difference Set avoids hard faults found during

testing by generating a custom-tailored

application binary image for each individual chip.

During software deployment-time, Difference Set

optimally packs small sections of program code

and data into fault-free segments of the memory

address space and generates a custom linker

script for a lazy-linking procedure. The second

part proposes two software defined MS-OLS

error detection and correction techniques:

Software Defined Error Localization Code (SED-

DEC) and MS-OLS-ML to recover from soft

errors during run time. SED-DEC is mostly for

embedded memories and uses novel and

inexpensive MS-OLS Error-Localizing Codes

(DS-SECs). These require fewer parity bits than

single-error-correcting Difference Set codes. Yet

our DS-SECs are more powerful than basic

single-error-detecting parity: they localize single-

bit errors to a specific chunk of a codeword.

SED-DEC then heuristically recovers from these

localized errors using a small embedded C library

that exploits observable side information (SI)

about the application’s memory contents. MS-

OLS-ML is a novel unequal message protection

scheme that preferentially provides stronger error

protection to certain “special messages”. This

protection scheme provides Single Error

mailto:kotieashwar@gmail.com
mailto:umaecestaff@gmail.com

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 94 Copyright @ 2021 Authors

Detection (SED) for all messages and Single

Error Correction (SEC) for a subset of special

messages. MS-OLS-ML can be used in both last

level caches and MS-OLS embedded memories.

1 .1 INTRODUCTION

Memories are one of the key bottlenecks in the

performance, reliability and energy efficiency of

most computing systems. As computing systems

have scaled over the decades, the need for

memory systems where large amount of data can

be stored and retrieved efficiently have also risen

rapidly. To achieve this, main memory systems

have been scaled for maximum information

density. Moore’s Law has been the primary driver

behind the phenomenal advances in computing

capability of the past several decades. However,

with technology scaling having reached the

nanoscale era, integrated circuits, especially

memory systems, are becoming increasingly

sensitive to process variations leading to

reliability and yield concerns.

1.2 MEMORY RELIABILITY IS

BECOMING A KEY CONCERN

Memories have become the limiting factor in

reliability of computing systems [3] because they

are primarily designed to maximize bit storage

density; this makes memories particularly

sensitive to manufacturing process variation,

environmental operating conditions, and aging-

induced wearout [4, 5]. Unfortunately, errors in

computing memories have also increased. In

warehouse-scale computers, these errors have

become expensive culprits that cause machine

crashes, corrupted data, security vulnerabilities,

service disruption, and costly repairs and

hardware servicing [3, 6]. Google has observed

70000 failures in time (FIT)/Mb in commodity

on-chip DRAM memory, with 8% of modules

affected per year [3], while Facebook has found

that 2.5% of their servers have experienced

memory errors per month [7]. The Blue Waters

supercomputer had 8.2% of the dual in-line

memory modules (DIMMs) (modules that contain

multiple RAM chips) encounter an error over the

course of a 261 day study [8]. These trends are

expected to continue to rise.

Moreover, with IoT devices increasingly

becoming part of critical infrastructure and being

deployed in failure-intolerant modes (e.g., cars),

development of inexpensive fault tolerance

schemes for them has become important [9].

Also, with sensing and data-processing being one

of the most important use cases for edge devices,

these devices are seeing increasing use of large

memories. SRAM based scratchpad memories are

often the choice of memory architecture used in

IoT devices. As demand for higher memory

density increases, memory cells are shrunk using

advanced technology nodes which in turn makes

the memory cells more susceptible to both soft

and hard faults. Need for low-power and hence

lower operating voltage exacerbates the error

rates further. These trends indicate that memory

failures are likewise going to be critical for

emerging edge/IoT computing devices as well.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 95 Copyright @ 2021 Authors

Error-Correcting Codes (ECCs)

ECCs are mathematical techniques that transform

message data stored in memory into codewords

using a hardware encoder to add redundancy for

added protection against faults. When soft faults

affect codewords, causing bit flips, the ECC

hardware decoder is designed to detect and/or

correct a limited number of errors. ECCs used for

random-access memories are typically based on

linear block codes.

The encoder implements a binary generator

matrix G and the complementary decoder

implements the parity-check matrix H to

detect/correct errors. To encode a binary message

~m, one multiplies its bit-vector by G to obtain

the codeword ~c: ~mG =~c. To decode, one

multiplies the stored codeword (which may have

been corrupted by errors) with the parity-check

matrix to obtain the syndrome ~s, which provides

error detection and correction information: H~c
T

=~s. Typical ECCs used for memory have the

generator and parity-check matrices in systematic

form, i.e., the message bits are directly mapped

into the codeword and the redundant parity bits

are appended to the end of the message. This

makes it easy to directly extract message data in

the common case when no errors occur.

1.3 APPROACH

We propose SED-DEC that together form a novel

hybrid approach to low-cost embedded memory

fault-tolerance. They specifically address the

unique challenges posed by SPMs.

The high-level concept is illustrated in Fig. 2.1.

At fabrication time, process variation and defects

may result in hard faults in embedded memories.

During test-time, these are characterized and

maintained in a per-chip fault map that is stored

in a database for later. When the system

developer later deploys the application software

onto the devices, Difference Set is used to

customize the binary for each individual chip in a

way that avoids its unique hard fault locations.

Finally, at run-time, unpredictable soft faults are

detected, localized, and recovered heuristically

using SED-DEC.

Note that Difference Set is not heuristic and

therefore does not induce errors. On the other

hand, SED-DEC has a chance of introducing

silent data corruption (SDC) if recovery turns out

to be incorrect; this consideration will be

revisited later in the discussion. We briefly

explain the approaches of the SED-DEC steps

before going into greater detail for each.

1.4 SED-DEC

We describe the SED-DEC architecture, the

concept of DS-SEC codes, and two SED-DEC

recovery policies for instruction and data

memory. Architecture

The SED-DEC architecture is illustrated in Fig.

2.6 for a system with split on-chip instruction and

data SPMs (each with its own DS-SEC code) and

a single-issue core that has an in-order pipeline.

We assume that hard faults are already mitigated

using Difference Set.

When a codeword containing a single-bit soft

fault is read, the DS-SEC decoder detects and

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 96 Copyright @ 2021 Authors

localizes the error to a specific chunk of the

codeword and places error information in a

Penalty Box register (shaded in gray in the

figure). A precise exception is then generated,

and software traps to a handler that implements

the appropriate SED-DEC recovery policy for

instructions or data, which we will discuss

shortly.

Once the trap handler has decided on a candidate

codeword for recovery, it must correctly commit

the state in the system such that it appears as if

there was no memory control flow disruption. For

instruction errors, because the error occurred

during a fetch, the program counter (pc) has not

yet advanced. To complete the trap handler, we

write back the candidate codeword to instruction

memory. If it is not accessible by the load/store

unit, one could use hardware debug support such

as JTAG. We then return from the trap handler

and re-execute the previously-trapped instruction,

which will then cause the pc to advance and re-

fetch the instruction that had been corrupted by

the soft error. On the other hand, data errors are

triggered from the memory pipeline stage by

executing a load instruction. We write back the

chosen candidate codeword to data memory to

scrub the error, update the register file

appropriately, and manually advance pc before

returning from the trap handler.

Fault-Tolerant Caches

There is an abundance of prior work on fault-

tolerant and/or low-voltage caches. Examples

include PADded Cache [47], Gated-VDD [48],

Process-Tolerant Cache [49], Variation-Aware

Caches [50], Bit Fix/Word Disable [51],

ZerehCache [52], Archipelago [53], FFT-Cache

[54], VS-ECC [55], Correctable Parity Protected

Cache (CPPC) [56], FLAIR [57], Macho [58],

DPCS [59], DARCA [60], and others (see related

surveys by Mittal [61, 4]). These fault-tolerant

cache techniques tolerate hard faults/save energy

by sacrificing capacity or remapping physical data

locations. This affects the software-visible memory

address space and hence they cannot be readily

applied to SPMs.

Although they are cache-specific, some of the

above techniques can be roughly compared with

Difference Set in terms of min-VDD. For instance,

DPCS [59] achieves a similar min-VDD to

Difference Set of around 600 mV, while FLAIR

[57] achieves a lower min-VDD (485 mV). We

emphasize that the above techniques cannot be

applied to SPMs and are therefore not a valid

comparison.

Similar to SED-DEC, CPPC [56] can recover

random soft faults using SED parity. However,

CPPC requires additional hardware bookkeeping

mechanisms that are in the critical path whenever

data is added, modified, or removed from the cache

(and again, their method is not applicable to

SPMs).

Performance Overheads

Difference Set does not add any performance

overheads because it is purely a link-time solution,

while its impact on code size is less than 1%. SED-

DEC recovery of soft faults, however, requires about

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 97 Copyright @ 2021 Authors

1500 dynamic instructions, which takes a few ms on

a typical microcontroller (the number of instructions

varies depending on the specific recovery action

taken and the particular DS-SEC code). However, for

low-cost IoT devices that are likely to be operated in

low-radiation environments with only occasional soft

faults, the performance overhead is not a major

concern. Simple recovery policies could be

implemented in hardware, but then software-defined

flexibility and application-specific support would be

unavailable.

Memory Reliability Binning

Difference Set could bring significant cost savings

to both IoT manufacturers and IoT application

developers throughout the lifetime of the devices.

Manufacturers could sell chips with hard defects in

their on-chip memories to customers instead of

completely discarding them, which increases yield.

Customers could run their applications on

commodity devices with or without hard defects at

lower-than-advertised supply voltages to achieve

energy savings. Fault maps for each chip at typical

min-VDDs are small (bytes to KBs) and could be

stored in a cloud database or using on-board flash.

Several previous works have proposed

heterogeneous reliability for approximate

applications to reduce cost [70, 71, 72, 73].

Table Error! No text of specified style in

document.-1 Fraction of Special Messages

per Benchmark Within Suite

 Top Two

Most Freq

Opcodes

(Data

Memory)

First 6 bits

are 0

(Instruction

Memory)

Benchmark

Suite Max Mean Max Mean

AxBench 0.51 0.46 0.92 0.86

SPEC
CPU2006

0.56 0.37 0.99 0.89

MS-OLS ERROR CORRECTION CODE

Flow of a read operation in a cache with ECC

protection

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 98 Copyright @ 2021 Authors

Fig 1.1 Flow of read operation in cache with

memory speculation and MS-OLS-ML

protection schemes

Additional Cache Support for Speculation

Figure 3.3 depicts the additional circuitry that

needs to be added to a traditional cache to support

the memory speculation scheme with MS-OLS-

ML.

Fig1.2 Cache architecture to implement MS-

OLS-ML with memory speculation

The non linear bit is first checked. If it is a

special message, then speculation is triggered

and the speculated value is forwarded to the

next stage. This speculated value comprises of

the lower 26-bits of the received codeword to

which the special prefix is separately

appended. Meanwhile, the decoding and the

error detection circuitry works in parallel. If an

error is detected, the control module initiates a

squash operation to squash all the dependant

instructions that used the mis-predicted data

and the ECC correction engine provides the

correct output. The control module also stalls

the pipeline when the non linear bit indicates

that the message is not special and hence, the

codeword is not systematic. Therefore,

speculation cannot be used and the pipeline

needs to be stalled for one cycle till the

original message is decoded. The stall latency

is, of course, greater than one cycle when an

error is detected and the ECC correction

engine needs to be triggered. This additional

control module is simple and has minimal

overhead in terms of area and energy.

Storage Overhead

Single-error detection requires only a single

parity bit; our Pairty++ scheme adds an

additional parity-bit for a total of 2. The most

efficient SEC code is the Difference Set code.

Assuming our message length, k, is a power of

2, then the number of redundancy bits required

for the (shortened) Difference Set code is

log(k) +1. Since the Difference Set code has a

minimum distance of 3, we can create a

SECDED code—the extended Difference Set

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 99 Copyright @ 2021 Authors

code—with the addition of a single parity bit,

yielding a total of log(k) + 2 redundancy bits.

Similarly, we can use a (shortened) extended

BCH code as a DECTED code, with 2 log(k) +

3 redundancy bits.

Fig 1.3 Storage overhead of different

commonly used ECC schemes along with

our scheme MS-OLS-ML

1.5 Experimental Methodology

We evaluated MS-OLS-ML over applications

from the SPEC 2006 benchmark suite. Two

sets of core micro-architectural parameters

(provided in Table 3.3) were chosen to

understand the performance benefits in both a

MS-OLS in-order(InO) processor and a larger

out-of-order(OoO) core. Per-formance

simulations were run using Gem5 [99], fast

forwarding for 1 billion instructions and

executing for 2 billion instructions.

The first processor is a MS-OLS single in-order

core architecture with a 32kB L1 cache for

instruction and 64kB L1 cache for data. Both the

instruction and data caches are 4-way associative.

The LLC is a unified 1MB L2 cache which is

also 8-way associative. The second processor is a

dual core out-of-order architecture. The L1

instruction and data caches have the same

configuration as the previous processor. The LLC

comprises of both L2 and L3 caches. The L2 is a

shared 512kB SRAM based cache while the L3 is

a shared 2MB cache which is 16-way associative.

For both the baseline processors it is assumed

that the LLCs (L2 for the InO processor and L2

and L3 for the OoO processor) have SECDED

ECC protection.

The performance evaluation was done only for

cases where there are no errors. Thus, latency due

to error detection is taken into consideration but

not error correction as correction is rare when

compared to the processor cycle time and doesn’t

fall in the critical path. In order to compare the

performance of the systems with MS-OLS-ML

against the baseline cases with SECDED ECC

protection, the size of the LLCs were increased

by 10% due to the lower storage overhead of

Parity as provided in Section 3.3.4. We call this

iso-area since the additional area coming from

reduction in redundancy is used to increase the

total capacity of the SRAM. The iso-area

evaluation was done for both with and without

memory speculation. The analysis was also done

for the iso-capacity where the memory capacity

of the systems with MS-OLS-ML and SECDED

remain same and their performances are

measured. As mentioned before, SECDED allows

speculation in all cases and thus, incurs no

additional read latency due to error detection

when there is no error. But for MS-OLS-ML,

only the special messages are systematic and

thus, for all non-special messages, there is an

additional one cycle read latency due to the error

detection circuitry. This additional latency for

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 100 Copyright @ 2021 Authors

non-special messages was also taken into

consideration for our simulations.

1.6 Results & Discussion

In this section we discuss the performance results

obtained from the Gem5 simulations (as

mentioned in Section 3.4). Figures 3.5 and 3.6

show the comparative results for the two different

sets of core micro-architectures across a variety

of benchmarks from the SPEC2006 suite when

using memory speculation. In both the

evaluations, performance of the system with MS-

OLS-ML was compared against that with

SECDED. The evaluation was further split into

iso-area

Simulation results of MS-OLS-MLD are shown

in figure 5.2. Here IC(0:7),ID(0:31),R,S(0:7) are

inputs and OD(0:31) is the output. The

parameters considered for the designed

architecture are delay, power and area. Through

this approach the delay,area and power

consumption successfully reduced.

RTL is an acronym for register transfer level.

This implies that Verilog HDL code written

based on the architecture describes how data is

transformed and how it is passed from register to

register. If the simulation and synthesis is done,

we have to check for the RTL schematic. We

have to click on the RTL schematic double times,

and then we will get the basic block diagram of

the schematic or our module.

Fig1.4 Simulation Result for MS-OLS-MLD

The detailed view of the RTL schematic of

MS_OLS_MLD is shown in Fig. 5.3 (a) and Fig.

5.3 (b). It indicates the internal blocks and

connection between the blocks.

Fig1.5 Top Figure bloc

Fig1.6 internal architecture

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 101 Copyright @ 2021 Authors

Fig1.7 Complete internal architecture

Simulation Results of A Double Error

Correction Code For 32-Bit Data Words With

Efficient Decoding

6.3.1 Simulation Results of Encoder

Simulation results of encoder are shown in

fig.5.4. Here IN(31:0) are the input and

OUT(38:0) is the output. . These are synthesized

and simulated using Xilinx ISE 14.7 tool for

vertex family device and simulation results as

well as synthesis reports are presented.

Fig 1.8 Simulation Results of encoder

The RTL view of the encoder is shown in below

fig.5.5. It shows the internal blocks and

connections of the architecture.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 102 Copyright @ 2021 Authors

Fig 1.9 Simulation Results of Decoder

 In this section simulation results of a double

error correction code for 32-bit data words with

efficient decoding shown in fig.5.8. Here IN(38:0),

clk, are the inputs and OUT(38:0),

SYN(6:0),DBL,ERR,SGL are the output.

Fig1.10

Simulation Results of Deco

RTL schematic view of the decoder is shown in below

Fig. 5.9 (a) and (b). RTL schematic gives the detailed

details of the architecture and internal blocks

connections.

Fig1.11RTL view diagram of decoder

Fig1.12Detailed RTL view diagram of

decoder

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 103 Copyright @ 2021 Authors

Table Error! No text of specified style in

document.-2 Design summary of MS-OLS-

MLD with A double error correction

Name of the

system

Power(mw)

A double error

correction code

for 32_bit data

words with

efficient decoding

15.311

MS_OLS-MLD

based double error

detection and

correction

11.484

code for 32- bit data words with efficient

decoding

 Table 5.1. Here Number of Slice LUTS ,

Number of occupied Slices, Number of

bonded IOBs , No:of LUT’S flipflop pairs

,Delay, Power are discussed.

Power Report

Table Error! No text of specified style in

document.-3 Power report comparison of

existing and proposed MS-OLS-MLD code

Table.6.2 shows the power comparison

between the existing and proposed

architecture. Proposed architecture reduces the

3.827mw power than existing architecture, so

the performance of the system is increased.

Comparisons

Table 5.3 shows the MS-OLS-MLD correction

code is compared with A double error correction

code with 32-bit data words with efficient

decoding in various parameters like number of

slice LUTs, number of occupied slices, number of

bonded IOBs, dynamic power, Quiescent power,

total power .The implementation results are almost

give the same output but power, area is less when

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 104 Copyright @ 2021 Authors

compared to existing work.

Fig.5.12 explains the power comparison between

MS-OLS-MLD correction code compared with A

double error correction code with 32-bit data words

with efficient decoding. Finally it states that the

MS-OLS-MLD correction code performance is

increased.

Fig.5.13 states the Delay comparision for MS-

OLS-MLD correction code and A double error

correction code with 32-bit data words with

efficient decoding. Finally absorbed that MS-OLS-

MLD correction code is less than the existing

work .

REFERENCES

M. Gottscho, I. Alam, C. Schoeny, L. Dolecek,

and P. Gupta, “Low-cost memory fault

tolerance for iot devices,” ACM Trans.

Embed. Comput. Syst., vol. 16, pp. 128:1–

128:25, Sept. 2017.

C. Schoeny, F. Sala, M. Gottscho, I. Alam, P.

Gupta, and L. Dolecek, “Context-aware

resiliency: Unequal message protection for

random-access memories,” in 2017 IEEE

Information Theory Workshop (ITW), pp.

166–170, Nov 2017.

L. A. D. Bathen and N. D. Dutt, “E-RoC:

Embedded RAIDs-on-Chip for Low Power

Dis-tributed Dynamically Managed Reliable

Memories,” in Design, Automation, and Test

in Europe (DATE), 2011.

L. A. D. Bathen, N. D. Dutt, A. Nicolau, and

P. Gupta, “VaMV: Variability-Aware Memory

0

2

4

6

8

10

12

14

16

18

A double error
correction code for 32-

bit data words with
efficient decoding

MS-OLS-MLD correction
code

Series 1

2.4

2.5

2.6

2.7

2.8

2.9

3

A double error
correction code for 32-

bit data words with
efficient decoding

MS-OLS-MLD correction
code

Series 1

0
10
20
30
40
50
60
70
80

A double error
correction code for 32_

bit data words with
efficient decoding

MS-OLS-MLD correction
code

No of slice
LUT's

No:of
occupied slices

No :of bonded
IOB's in %

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 105 Copyright @ 2021 Authors

Virtualization,” in Design, Automation, and

Test in Europe (DATE), 2012.

M. Gottscho, L. A. D. Bathen, N. Dutt, A.

Nicolau, and P. Gupta, “ViPZonE: Hardware

Power Variability-Aware Memory

Management for Energy Savings,” IEEE

Transactions on Computers (TC), vol. 64, no.

5, pp. 1483–1496, 2015.

A. Yazdanbakhsh, D. Mahajan, H.

Esmaeilzadeh, and P. Lotfi-Kamran,

“AxBench: A Mul-tiplatform Benchmark

Suite for Approximate Computing,” IEEE

Design and Test, vol. 34, no. 2, pp. 60–68,

2017.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T.

M. Austin, T. Mudge, and R. B. Brown,

“MiBench: A Free, Commercially

Representative Embedded Benchmark Suite,”

in Proceedings of the IEEE International

Workshop on Workload Characterization

(IWWC), 2001.

S. Hamdioui, A. J. van de Goor, and M.

Rodgers, “March SS: A Test for All Static

Simple RAM Faults,” in International

Workshop on Memory Technology, Design,

and Testing (MTDT), 2002.

P. P. Shirvani and E. J. McCluskey, “PADded

Cache: A New Fault-Tolerance Technique for

Cache Memories,” in Proceedings of the VLSI

Test Symposium, 1999.

M. Powell, S.-H. Yang, B. Falsafi, K. Roy,

and T. N. Vijaykumar, “Gated-Vdd: A Circuit

Technique to Reduce Leakage in Deep-

Submicron Cache Memories,” in Proceedings

of the IEEE International Symposium on Low

Power Electronics and Design (ISLPED),

2000.

A. Agarwal, B. C. Paul, H. Mahmoodi, A.

Datta, and K. Roy, “A Process-Tolerant Cache

Architecture for Improved Yield in Nanoscale

Technologies,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol.

13, no. 1, pp. 27–38, 2005.

M. Mutyam and V. Narayanan, “Working with

Process Variation Aware Caches,” in Design,

Automation, and Test in Europe (DATE),

2007.

C. Wilkerson, H. Gao, A. R. Alameldeen, Z.

Chishti, M. Khellah, and S.-L. Lu, “Trading

off Cache Capacity for Reliability to Enable

Low Voltage Operation,” in Proceedings of

the ACM/IEEE International Symposium on

Computer Architecture (ISCA), 2008.

A. Ansari, S. Gupta, S. Feng, and S. Mahlke,

“ZerehCache: Armoring Cache Architec-tures

in High Defect Density Technologies,” in

Proceedings of the ACM/IEEE International

Symposium on Microarchitecture (MICRO),

2009.

A. Ansari, S. Feng, S. Gupta, and S. Mahlke,

“Archipelago: A Polymorphic Cache Design

for Enabling Robust Near-Threshold

Operation,” in Proceedings of the IEEE

International Symposium on High

Performance Computer Architecture (HPCA),

2011.

A. BanaiyanMofrad, H. Homayoun, and N.

Dutt, “FFT-Cache: A Flexible Fault-Tolerant

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 106 Copyright @ 2021 Authors

Cache Architecture for Ultra Low Voltage

Operation,” in Proceedings of the ACM/IEEE

International Conference on Compilers,

Architectures and Synthesis for Embedded

Systems (CASES), 2011.

A. R. Alameldeen, I. Wagner, Z. Chishti, W.

Wu, C. Wilkerson, and S.-L. Lu, “Energy-

Efficient Cache Design Using Variable-

Strength Error-Correcting Codes,” in

Proceedings of the ACM/IEEE International

Symposium on Computer Architecture

(ISCA), 2011.

M. Manoochehri, M. Annavaram, and M.

Dubois, “CPPC: Correctable Parity Protected

Cache,” in Proceedings of the ACM/IEEE

International Symposium on Computer

Architecture (ISCA), 2011.

M. K. Qureshi and Z. Chishti, “Operating

SECDED-Based Caches at Ultra-Low Voltage

with FLAIR,” in Proceedings of the IEEE/IFIP

International Conference on Dependable

Systems and Networks (DSN), 2013.

T. Mahmood, S. Hong, and S. Kim, “Ensuring

Cache Reliability and Energy Scaling at Near-

Threshold Voltage with Macho,” IEEE

Transactions on Computers (TC), vol. 64, no.

6, pp. 1694–1706, 2015.

M. Gottscho, A. BanaiyanMofrad, N. Dutt, A.

Nicolau, and P. Gupta, “DPCS: Dynamic

Power/Capacity Scaling for SRAM Caches in

the Nanoscale Era,” ACM Transactions on

Architecture and Code Optimization (TACO),

vol. 12, no. 3, p. 26, 2015.

M. Mavropoulos, G. Keramidas, and D.

Nikolos, “A Defect-Aware Reconfigurable

Cache Architecture for Low-Vccmin DVFS-

Enabled Systems,” in Design, Automation,

and Test in Europe (DATE), 2015.

S. Mittal, “A Survey of Architectural

Techniques for Improving Cache Power

Efficiency,” Sustainable Computing:

Informatics and Systems, vol. 4, no. 1, pp. 33–

43, 2014.

F. J. Aichelmann, “Fault-Tolerant Design

Techniques for Semiconductor Memory

Applica-tions,” IBM Journal of Research and

Development, vol. 28, no. 2, pp. 177–183,

1984.

R. van Rein, “BadRAM: Linux Kernel

Support for Broken RAM Modules,” 2016.

M. M. Sabry, D. Atienza, and F. Catthoor,

“OCEAN: An Optimized HW/SW Reliability

Mitigation Approach for Scratchpad Memories

in Real-Time SoCs,” ACM Transactions on

Embedded Computing Systems (TECS), vol.

13, no. 4s, 2014.

H. Sayadi, H. Farbeh, A. M. H. Monazzah,

and S. G. Miremadi, “A Data Recomputation

Approach for Reliability Improvement of

Scratchpad Memory in Embedded Systems,”

in Proceedings of the IEEE International

Symposium on Defect and Fault Tolerance in

VLSI and Nanotechnology Systems (DFT),

2014.

A. M. H. Monazzah, H. Farbeh, S. G.

Miremadi, M. Fazeli, and H. Asadi, “FTSPM:

A Fault-Tolerant ScratchPad Memory,” in

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-01 2021

Page | 107 Copyright @ 2021 Authors

Proceedings of the IEEE/IFIP International

Conference on Dependable Systems and

Networks (DSN), 2013.

F. Li, G. Chen, M. Kandemir, and I. Kolcu,

“Improving Scratch-Pad Memory Reliability

Through Compiler-Guided Data Block

Duplication,” in Proceedings of the

IEEE/ACM Inter-national Conference on

Computer-Aided Design (ICCAD), 2005.

H. Farbeh, M. Fazeli, F. Khosravi, and S. G.

Miremadi, “Memory Mapped SPM: Protecting

Instruction Scratchpad Memory in Embedded

Systems against Soft Errors,” in Proceedings

of the European Dependable Computing

Conference (EDCC), 2012.

D. P. Volpato, A. K. Mendonca, L. C. dos

Santos, and J. L. Guntzel,¨ “A Post-Compiling

Approach that Exploits Code Granularity in

Scratchpads to Improve Energy Efficiency,” in

Proceedings of the IEEE Computer Society

Annual Symposium on VLSI (ISVLSI), pp.

127–132, 2010.

A. Sampson, J. Nelson, K. Strauss, and L.

Ceze, “Approximate Storage in Solid-State

Mem-ories,” in Proceedings of the IEEE/ACM

International Symposium on Microarchitecture

(MICRO), 2013.

Y. Luo, S. Govindan, B. Sharma, M.

Santaniello, J. Meza, A. Kansal, J. Liu, B.

Khessib, K. Vaid, and O. Mutlu,

“Characterizing Application Memory Error

Vulnerability to Optimize Datacenter Cost via

Heterogeneous-Reliability Memory,” in

Proceedings of the IEEE/IFIP International

Conference on Dependable Systems and

Networks (DSN), 2014.

M. Shoushtari, A. BanaiyanMofrad, and N.

Dutt, “Exploiting Partially-Forgetful

Memories for Approximate Computing,” IEEE

Embedded Systems Letters (ESL), vol. 7, no.

1, pp. 19–22, 2015.

A. Ranjan, S. Venkataramani, X. Fong, K.

Roy, and A. Raghunathan, “Approximate

Storage for Energy Efficient Spintronic

Memories,” in Proceedings of the ACM/IEEE

Design Automation Conf

