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ABSTRACT 

The reliability of memory subsystem is fast 

becoming a concern in computer architecture and 

system design. From on-chip embedded 

memories in Internet-of-Things (IoT) devices and 

on-chip caches to off-chip main memories, they 

have become the limiting factor in reliability of 

computing systems. This is because they are 

primarily designed to maximize bit storage 

density; this makes memories particularly 

sensitive to manufacturing process variation, 

environmental operating conditions, and aging-

induced wear out. Addressing these concerns is 

particularly challenging in on-chip caches or 

embedded memories like scratchpads in IoT 

devices as additional area, power and latency 

overheads of reliability techniques in these 

memories need to be minimized as much as 

possible. Hence, this dissertation proposes MS-

OLS Fault Tolerance in SRAM based scratchpad 

memories and last level caches. In the first part of 

the dissertation we propose Difference Set: an 

approach to deal with known hard faults in 

software managed scratchpad memories. 

Difference Set avoids hard faults found during 

testing by generating a custom-tailored 

application binary image for each individual chip. 

During software deployment-time, Difference Set 

optimally packs small sections of program code 

and data into fault-free segments of the memory 

address space and generates a custom linker 

script for a lazy-linking procedure. The second 

part proposes two software defined MS-OLS 

error detection and correction techniques: 

Software Defined Error Localization Code (SED-

DEC) and MS-OLS-ML to recover from soft 

errors during run time. SED-DEC is mostly for 

embedded memories and uses novel and 

inexpensive MS-OLS Error-Localizing Codes 

(DS-SECs). These require fewer parity bits than 

single-error-correcting Difference Set codes. Yet 

our DS-SECs are more powerful than basic 

single-error-detecting parity: they localize single-

bit errors to a specific chunk of a codeword. 

SED-DEC then heuristically recovers from these 

localized errors using a small embedded C library 

that exploits observable side information (SI) 

about the application’s memory contents. MS-

OLS-ML is a novel unequal message protection 

scheme that preferentially provides stronger error 

protection to certain “special messages”. This 

protection scheme provides Single Error 
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Detection (SED) for all messages and Single 

Error Correction (SEC) for a subset of special 

messages. MS-OLS-ML can be used in both last 

level caches and MS-OLS embedded memories. 

1 .1 INTRODUCTION 

Memories are one of the key bottlenecks in the 

performance, reliability and energy efficiency of 

most computing systems. As computing systems 

have scaled over the decades, the need for 

memory systems where large amount of data can 

be stored and retrieved efficiently have also risen 

rapidly. To achieve this, main memory systems 

have been scaled for maximum information 

density. Moore’s Law has been the primary driver 

behind the phenomenal advances in computing 

capability of the past several decades. However, 

with technology scaling having reached the 

nanoscale era, integrated circuits, especially 

memory systems, are becoming increasingly 

sensitive to process variations leading to 

reliability and yield concerns. 

1.2 MEMORY RELIABILITY IS 

BECOMING A KEY CONCERN 

Memories have become the limiting factor in 

reliability of computing systems [3] because they 

are primarily designed to maximize bit storage 

density; this makes memories particularly 

sensitive to manufacturing process variation, 

environmental operating conditions, and aging-

induced wearout [4, 5]. Unfortunately, errors in 

computing memories have also increased. In 

warehouse-scale computers, these errors have 

become expensive culprits that cause machine 

crashes, corrupted data, security vulnerabilities, 

service disruption, and costly repairs and 

hardware servicing [3, 6]. Google has observed 

70000 failures in time (FIT)/Mb in commodity 

on-chip DRAM memory, with 8% of modules 

affected per year [3], while Facebook has found 

that 2.5% of their servers have experienced 

memory errors per month [7]. The Blue Waters 

supercomputer had 8.2% of the dual in-line 

memory modules (DIMMs) (modules that contain 

multiple RAM chips) encounter an error over the 

course of a 261 day study [8]. These trends are 

expected to continue to rise. 

Moreover, with IoT devices increasingly 

becoming part of critical infrastructure and being 

deployed in failure-intolerant modes (e.g., cars), 

development of inexpensive fault tolerance 

schemes for them has become important [9]. 

Also, with sensing and data-processing being one 

of the most important use cases for edge devices, 

these devices are seeing increasing use of large 

memories. SRAM based scratchpad memories are 

often the choice of memory architecture used in 

IoT devices. As demand for higher memory 

density increases, memory cells are shrunk using 

advanced technology nodes which in turn makes 

the memory cells more susceptible to both soft 

and hard faults. Need for low-power and hence 

lower operating voltage exacerbates the error 

rates further. These trends indicate that memory 

failures are likewise going to be critical for 

emerging edge/IoT computing devices as well. 
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Error-Correcting Codes (ECCs) 

ECCs are mathematical techniques that transform 

message data stored in memory into codewords 

using a hardware encoder to add redundancy for 

added protection against faults. When soft faults 

affect codewords, causing bit flips, the ECC 

hardware decoder is designed to detect and/or 

correct a limited number of errors. ECCs used for 

random-access memories are typically based on 

linear block codes. 

The encoder implements a binary generator 

matrix G and the complementary decoder 

implements the parity-check matrix H to 

detect/correct errors. To encode a binary message 

~m, one multiplies its bit-vector by G to obtain 

the codeword ~c: ~mG =~c. To decode, one 

multiplies the stored codeword (which may have 

been corrupted by errors) with the parity-check 

matrix to obtain the syndrome ~s, which provides 

error detection and correction information: H~c
T
 

=~s. Typical ECCs used for memory have the 

generator and parity-check matrices in systematic 

form, i.e., the message bits are directly mapped 

into the codeword and the redundant parity bits 

are appended to the end of the message. This 

makes it easy to directly extract message data in 

the common case when no errors occur. 

1.3 APPROACH 

We propose SED-DEC that together form a novel 

hybrid approach to low-cost embedded memory 

fault-tolerance. They specifically address the 

unique challenges posed by SPMs. 

The high-level concept is illustrated in Fig. 2.1. 

At fabrication time, process variation and defects 

may result in hard faults in embedded memories. 

During test-time, these are characterized and 

maintained in a per-chip fault map that is stored 

in a database for later. When the system 

developer later deploys the application software 

onto the devices, Difference Set is used to 

customize the binary for each individual chip in a 

way that avoids its unique hard fault locations. 

Finally, at run-time, unpredictable soft faults are 

detected, localized, and recovered heuristically 

using SED-DEC. 

Note that Difference Set is not heuristic and 

therefore does not induce errors. On the other 

hand, SED-DEC has a chance of introducing 

silent data corruption (SDC) if recovery turns out 

to be incorrect; this consideration will be 

revisited later in the discussion. We briefly 

explain the approaches of the SED-DEC steps 

before going into greater detail for each. 

1.4 SED-DEC 

We describe the SED-DEC architecture, the 

concept of DS-SEC codes, and two SED-DEC 

recovery policies for instruction and data 

memory. Architecture 

The SED-DEC architecture is illustrated in Fig. 

2.6 for a system with split on-chip instruction and 

data SPMs (each with its own DS-SEC code) and 

a single-issue core that has an in-order pipeline. 

We assume that hard faults are already mitigated 

using Difference Set. 

When a codeword containing a single-bit soft 

fault is read, the DS-SEC decoder detects and 
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localizes the error to a specific chunk of the 

codeword and places error information in a 

Penalty Box register (shaded in gray in the 

figure). A precise exception is then generated, 

and software traps to a handler that implements 

the appropriate SED-DEC recovery policy for 

instructions or data, which we will discuss 

shortly. 

Once the trap handler has decided on a candidate 

codeword for recovery, it must correctly commit 

the state in the system such that it appears as if 

there was no memory control flow disruption. For 

instruction errors, because the error occurred 

during a fetch, the program counter (pc) has not 

yet advanced. To complete the trap handler, we 

write back the candidate codeword to instruction 

memory. If it is not accessible by the load/store 

unit, one could use hardware debug support such 

as JTAG. We then return from the trap handler 

and re-execute the previously-trapped instruction, 

which will then cause the pc to advance and re-

fetch the instruction that had been corrupted by 

the soft error. On the other hand, data errors are 

triggered from the memory pipeline stage by 

executing a load instruction. We write back the 

chosen candidate codeword to data memory to 

scrub the error, update the register file 

appropriately, and manually advance pc before 

returning from the trap handler. 

Fault-Tolerant Caches 

There is an abundance of prior work on fault-

tolerant and/or low-voltage caches. Examples 

include PADded Cache [47], Gated-VDD [48], 

Process-Tolerant Cache [49], Variation-Aware 

Caches [50], Bit Fix/Word Disable [51], 

ZerehCache [52], Archipelago [53], FFT-Cache 

[54], VS-ECC [55], Correctable Parity Protected 

Cache (CPPC) [56], FLAIR [57], Macho [58], 

DPCS [59], DARCA [60], and others (see related 

surveys by Mittal [61, 4]). These fault-tolerant 

cache techniques tolerate hard faults/save energy 

by sacrificing capacity or remapping physical data 

locations. This affects the software-visible memory 

address space and hence they cannot be readily 

applied to SPMs. 

Although they are cache-specific, some of the 

above techniques can be roughly compared with 

Difference Set in terms of min-VDD. For instance, 

DPCS [59] achieves a similar min-VDD to 

Difference Set of around 600 mV, while FLAIR 

[57] achieves a lower min-VDD (485 mV). We 

emphasize that the above techniques cannot be 

applied to SPMs and are therefore not a valid 

comparison. 

Similar to SED-DEC, CPPC [56] can recover 

random soft faults using SED parity. However, 

CPPC requires additional hardware bookkeeping 

mechanisms that are in the critical path whenever 

data is added, modified, or removed from the cache 

(and again, their method is not applicable to 

SPMs). 

Performance Overheads 

Difference Set does not add any performance 

overheads because it is purely a link-time solution, 

while its impact on code size is less than 1%. SED-

DEC recovery of soft faults, however, requires about 
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1500 dynamic instructions, which takes a few ms on 

a typical microcontroller (the number of instructions 

varies depending on the specific recovery action 

taken and the particular DS-SEC code). However, for 

low-cost IoT devices that are likely to be operated in 

low-radiation environments with only occasional soft 

faults, the performance overhead is not a major 

concern. Simple recovery policies could be 

implemented in hardware, but then software-defined 

flexibility and application-specific support would be 

unavailable. 

Memory Reliability Binning 

Difference Set could bring significant cost savings 

to both IoT manufacturers and IoT application 

developers throughout the lifetime of the devices. 

Manufacturers could sell chips with hard defects in 

their on-chip memories to customers instead of 

completely discarding them, which increases yield. 

Customers could run their applications on 

commodity devices with or without hard defects at 

lower-than-advertised supply voltages to achieve 

energy savings. Fault maps for each chip at typical 

min-VDDs are small (bytes to KBs) and could be 

stored in a cloud database or using on-board flash. 

Several previous works have proposed 

heterogeneous reliability for approximate 

applications to reduce cost [70, 71, 72, 73]. 

Table Error! No text of specified style in 

document.-1 Fraction of Special Messages 

per Benchmark Within Suite 

 

 Top Two 

Most Freq 

Opcodes 

(Data 

Memory) 

First 6 bits 

are 0 

(Instruction 

Memory) 

Benchmark 

Suite Max Mean Max Mean 

AxBench 0.51 0.46 0.92 0.86 

SPEC 
CPU2006 

0.56 0.37 0.99 0.89 

MS-OLS ERROR CORRECTION CODE 

  

Flow of a read operation in a cache with ECC 

protection 
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Fig 1.1 Flow of read operation in cache with 

memory speculation and MS-OLS-ML 

protection schemes 

Additional Cache Support for Speculation 

Figure 3.3 depicts the additional circuitry that 

needs to be added to a traditional cache to support 

the memory speculation scheme with MS-OLS-

ML. 

 

Fig1.2 Cache architecture to implement MS-

OLS-ML with memory speculation 

The non linear bit is first checked. If it is a 

special message, then speculation is triggered 

and the speculated value is forwarded to the 

next stage. This speculated value comprises of 

the lower 26-bits of the received codeword to 

which the special prefix is separately 

appended. Meanwhile, the decoding and the 

error detection circuitry works in parallel. If an 

error is detected, the control module initiates a 

squash operation to squash all the dependant 

instructions that used the mis-predicted data 

and the ECC correction engine provides the 

correct output. The control module also stalls 

the pipeline when the non linear bit indicates 

that the message is not special and hence, the 

codeword is not systematic. Therefore, 

speculation cannot be used and the pipeline 

needs to be stalled for one cycle till the 

original message is decoded. The stall latency 

is, of course, greater than one cycle when an 

error is detected and the ECC correction 

engine needs to be triggered. This additional 

control module is simple and has minimal 

overhead in terms of area and energy. 

Storage Overhead 

Single-error detection requires only a single 

parity bit; our Pairty++ scheme adds an 

additional parity-bit for a total of 2. The most 

efficient SEC code is the Difference Set code. 

Assuming our message length, k, is a power of 

2, then the number of redundancy bits required 

for the (shortened) Difference Set code is 

log(k) +1. Since the Difference Set code has a 

minimum distance of 3, we can create a 

SECDED code—the extended Difference Set 
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code—with the addition of a single parity bit, 

yielding a total of log(k) + 2 redundancy bits. 

Similarly, we can use a (shortened) extended 

BCH code as a DECTED code, with 2 log(k) + 

3 redundancy bits. 

 

Fig 1.3 Storage overhead of different 

commonly used ECC schemes along with 

our scheme MS-OLS-ML 

1.5 Experimental Methodology 

We evaluated MS-OLS-ML over applications 

from the SPEC 2006 benchmark suite. Two 

sets of core micro-architectural parameters 

(provided in Table 3.3) were chosen to 

understand the performance benefits in both a 

MS-OLS in-order(InO) processor and a larger 

out-of-order(OoO) core. Per-formance 

simulations were run using Gem5 [99], fast 

forwarding for 1 billion instructions and 

executing for 2 billion instructions. 

The first processor is a MS-OLS single in-order 

core architecture with a 32kB L1 cache for 

instruction and 64kB L1 cache for data. Both the 

instruction and data caches are 4-way associative. 

The LLC is a unified 1MB L2 cache which is 

also 8-way associative. The second processor is a 

dual core out-of-order architecture. The L1 

instruction and data caches have the same 

configuration as the previous processor. The LLC 

comprises of both L2 and L3 caches. The L2 is a 

shared 512kB SRAM based cache while the L3 is 

a shared 2MB cache which is 16-way associative. 

For both the baseline processors it is assumed 

that the LLCs (L2 for the InO processor and L2 

and L3 for the OoO processor) have SECDED 

ECC protection. 

The performance evaluation was done only for 

cases where there are no errors. Thus, latency due 

to error detection is taken into consideration but 

not error correction as correction is rare when 

compared to the processor cycle time and doesn’t 

fall in the critical path. In order to compare the 

performance of the systems with MS-OLS-ML 

against the baseline cases with SECDED ECC 

protection, the size of the LLCs were increased 

by 10% due to the lower storage overhead of 

Parity as provided in Section 3.3.4. We call this 

iso-area since the additional area coming from 

reduction in redundancy is used to increase the 

total capacity of the SRAM. The iso-area 

evaluation was done for both with and without 

memory speculation. The analysis was also done 

for the iso-capacity where the memory capacity 

of the systems with MS-OLS-ML and SECDED 

remain same and their performances are 

measured. As mentioned before, SECDED allows 

speculation in all cases and thus, incurs no 

additional read latency due to error detection 

when there is no error. But for MS-OLS-ML, 

only the special messages are systematic and 

thus, for all non-special messages, there is an 

additional one cycle read latency due to the error 

detection circuitry. This additional latency for 
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non-special messages was also taken into 

consideration for our simulations.  

1.6  Results & Discussion 

In this section we discuss the performance results 

obtained from the Gem5 simulations (as 

mentioned in Section 3.4). Figures 3.5 and 3.6 

show the comparative results for the two different 

sets of core micro-architectures across a variety 

of benchmarks from the SPEC2006 suite when 

using memory speculation. In both the 

evaluations, performance of the system with MS-

OLS-ML was compared against that with 

SECDED. The evaluation was further split into 

iso-area 

Simulation results of MS-OLS-MLD are shown 

in figure 5.2. Here IC(0:7),ID(0:31),R,S(0:7) are 

inputs and OD(0:31) is the output. The 

parameters considered for the designed 

architecture are delay, power and area. Through 

this approach the delay,area and power 

consumption successfully reduced. 

RTL is an acronym for register transfer level. 

This implies that Verilog HDL code written 

based on the architecture describes how data is 

transformed and how it is passed from register to 

register. If the simulation and synthesis is done, 

we have to check for the RTL schematic. We 

have to click on the RTL schematic double times, 

and then we will get the basic block diagram of 

the schematic or our module. 

 

Fig1.4 Simulation Result for MS-OLS-MLD 

The detailed view of the RTL schematic of 

MS_OLS_MLD is shown in Fig. 5.3 (a) and Fig. 

5.3 (b). It indicates the internal blocks and 

connection between the blocks. 

 

 

Fig1.5 Top Figure bloc 

 

Fig1.6 internal architecture 
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Fig1.7 Complete internal architecture 

Simulation Results of A Double Error 

Correction Code For 32-Bit Data Words With 

Efficient Decoding 

6.3.1 Simulation Results of  Encoder 

Simulation results of encoder are shown in 

fig.5.4. Here IN(31:0) are the input and 

OUT(38:0) is the output. . These are synthesized 

and simulated using Xilinx ISE 14.7 tool for 

vertex family device and simulation results as 

well as synthesis reports are presented. 

 

 

Fig 1.8 Simulation Results of encoder 

The RTL view of the encoder is shown in below 

fig.5.5. It shows the internal blocks and 

connections of the architecture. 

 

 



 

 

Juni Khyat                                                                                                                 ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                                                 Vol-11 Issue-01 2021 

 

Page | 102                                                                                              Copyright @ 2021 Authors 
 

Fig 1.9 Simulation Results of  Decoder 

 In this section simulation results of a double 

error correction code for 32-bit data words with 

efficient decoding shown in fig.5.8. Here IN(38:0),  

clk, are the inputs and OUT(38:0), 

SYN(6:0),DBL,ERR,SGL are the output. 

Fig1.10 

Simulation Results of Deco  

RTL schematic view of the decoder is shown in below 

Fig. 5.9 (a) and (b). RTL schematic gives the detailed 

details of the architecture and internal blocks 

connections. 

 

Fig1.11RTL view diagram of decoder 

 

 

  

Fig1.12Detailed RTL view diagram of 

decoder 
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Table Error! No text of specified style in 

document.-2 Design summary of  MS-OLS-

MLD with A double error correction  

Name of the 

system 

Power(mw) 

A double error 

correction code 

for 32_bit data 

words with 

efficient decoding  

15.311 

MS_OLS-MLD   

based double error 

detection and 

correction 

11.484 

 

 

 

code for 32- bit data words with efficient 

decoding 

 Table 5.1. Here Number of Slice LUTS , 

Number of occupied Slices, Number of 

bonded IOBs , No:of LUT’S flipflop pairs 

,Delay, Power are discussed. 

Power Report 

Table Error! No text of specified style in 

document.-3 Power report comparison of 

existing and proposed MS-OLS-MLD code 

Table.6.2 shows the power comparison 

between the existing and proposed 

architecture. Proposed architecture reduces the 

3.827mw power than existing architecture, so 

the performance of the system is increased. 

 

 

  

 

 

 

Comparisons 

Table 5.3 shows the MS-OLS-MLD correction 

code   is compared with A double error correction 

code with 32-bit data words with efficient 

decoding  in various parameters like number of 

slice LUTs, number of occupied slices, number of 

bonded IOBs, dynamic power, Quiescent power, 

total power .The implementation results are almost 

give the same output but power, area is less when 
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compared to existing work. 

Fig.5.12 explains the power comparison between 

MS-OLS-MLD correction code   compared with A 

double error correction code with 32-bit data words 

with efficient decoding. Finally it states that the 

MS-OLS-MLD correction code  performance is 

increased. 

Fig.5.13 states the Delay  comparision for MS-

OLS-MLD correction code   and A double error 

correction code with 32-bit data words with 

efficient decoding. Finally absorbed that MS-OLS-

MLD correction code  is less than the existing 

work . 
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