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ABSTRACT 

It has been seen that any convex subspace of  
n¡  has a trivial fundamental group; the authors have computed some 

fundamental groups that are not trivial. One of the most useful tools for this purpose is the notion of covering space, 

which have been introduced in this paper. Covering spaces are also important in the study of Riemann surfaces and 

complex manifolds. The authors have shown the relationship between topology and covering spaces by giving many 

proofs and examples. 
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1. THE UNIVERSAL COVERING SPACE 

Suppose p : E  B is a covering map, with p(e0) = b0. If E is simply connected, then E is called a universal 

covering space of B. Since 1 (E, e0) is trivial, this covering space corresponds to the trivial subgroup of 1 (B, b0) 

under the correspondence defined in the preceding section. Theorem thus implies that any two universal covering 

spaces of B are equivalent. For this reason, we often speak of "the" universal covering space of a given space B. Not 

every space has a universal covering space, as we shall see. For the moment, we shall simply assume that B has a 

universal covering space and derive some consequences of this assumption [1-3]. 

 

Lemma 1.1 Let B be path connected and locally path connected. Let p : E  B be a covering map in the 

former sense (so that E is not required to be path connected). If E0 is a path component of E, then the map po : E0  

B obtained by restricting p is a covering map. 

Proof.    We first show p0 is surjective. Since the space E is locally homeomorphic to B, it is locally path 

connected. Therefore E0 is open in E. It follows that p(E0) is open in B. We show that p(E0) is also closed in B, so 

that p(E0) = B. 

Let x be a point of B belonging to the closure to the closure of p(E0). Let U be a path-connected neighborhood of x 

that is evenly covered by p. Since U contains a point of p(E0), some slice V of p
–1

 (U) must intersect E0. Since V is 

homeomorphic to U, it is path connected; therefore it must be contained in E0. Then p(V) = U is contained in p(E0), 

so that in particular,   x  p (E0). 

Now we show po : E0  B is a covering map. Given x  B, choose a neighborhood U of x as before. If V is a slice 

of p
–1

 (U), then V is path connected; if it intersects E0, it lies in E0. Therefore p0
–1

 (U) equals the union of those 



Juni Khyat                                                                                                       ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                  Vol-10 Issue-6 No. 13 June 2020 

Page | 674                            www.junikhyat.com                         Copyright ⓒ 2020 Authors 

slices V of p
–1

(U) that intersect E0; each of these is open in E0 and is mapped homeomorphically by p0 onto U. Thus 

U is evenly covered by p0. 

 

Lemma 1.2 Let p, q, and r be continuous maps with p = r o q , as in the following diagram: 

    X         q 

           p           Y  

            Z 

   (a)  If p and r are covering maps, so is q. 

* (b) If p and r are covering maps, so is r. 

Proof.    By our convention X, Y, and Z are path connected and locally path connected. Let x0  X; set y0 = q(x0) 

and z0 = p(x0) 

(a)  Assume that p and r are covering maps. We show first that q is surjective Given y  Y, choose a path °  in Y 

from y0 to y. Then  = r o °  is a path in Z beginning at z0; let °° be a lifting of  to a path in X beginning at x0. 

Then q o °°
 
is a lifting of  to Y that begins at y0. By uniqueness of path liftings, °  = q o °° .  Then q  maps the 

end point of °°  to the end point y of ° . Thus q is surjective.  

Given y  Y, we find a neighborhood of y that is evenly covered by q, Let z = r(y). Since p and r are covering maps, 

we can find a path-connected neighborhood U of z that is evenly covered by both p and r. Let V be the slice of r
–1

 

(U) that contains the point y; we show V is evenly covered by q. Let {U} be the collection of slices of p
–1

(U). Now 

q maps each set U into the set r
–1

(U); because U is connected it must be mapped by q into a single one of the slices 

of r
–1

(U). Therefore, q
–1

 (V) equals the union of those slices U that are mapped by q into V. It is easy to see that 

each such U is mapped homeomorphically onto V by q. For let p0, q0 r0 be the maps obtained by restricting p, q, 

and r, respectively, as indicated in the following diagram: 

    U    q0 

         p0       V  

          U             r0  

Because p0 and r0 are homeomorphisms, so is q0 = r0
–1

 o p0. 

(b)  We shall use this result only in the exercises. Assume that p and q are covering maps. Because p = r o q and p 

is surjective, r is also surjective. 

Given z  Z, let U be a path-connected neighborhood of z that is evenly covered by p. We show that U is also 

evenly covered by r. Let {V} be the collection of path components of r
–1

 (U); these sets are disjoint and open in Y. 

We show that for each  the map r carries V homeomorphically onto U. 

Let {U} be the collection of slices p
–1

(U); they are disjoint, open, and path connected, so they are the path 

components of p
–1

 (U). Now q maps each U into the set r
–1 

(U); because U is connected, it must be mapped by q 

onto one of the sets V. Therefore q
–1

 (V) equals the union of a subcollection of the collection {U}. Theorem and 
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j

Lemma together imply that if U0 is any one of the path components of q
–1

 (V) then the map q0 : U0  V 

obtained by restricting q is a covering map. 

In particular, q0 is surjective. Hence q0 is a homeomorphism, being continuous, open and injective as well. Consider 

the maps. 

    U0   q0 

         p0      V  

          U        r0  

obtained by restricting p, q, and r. Because p0 and q0 are homeomorphism, so is r0. 

 

Lemma 1.3    Let p : E  B be a covering map; let p(e0) = b0. If E is simply connected, then b0 has a neighborhood 

U such that inclusion i : UB induces the trivial homomorphism 

   i : 1 (U, b0)  1 (B, b0) 

Proof.   Let U be a neighborhood of b0 that is evenly covered by p; break p
–1

 (U) up into slices; let U be the slice 

containing e0. Let f be a loop in U based at b0. Because p defines a homeomorphism of U with U, the loop f lifts to a 

loop °f  in U based at e0. Since E is simply connected, there is a path homotopy °F  in E between °f  and a constant 

loop. Then p o °F  is a path homotopy in B between f and a constant loop. 

Example 1. Let X be our familiar "infinite earning" in the plane; if Cn is the circle of radius 1/n in the plane 

with centre at the point (1/n, 0), then X is the union of the circles Cn. Let b0 be the origin; we show that if U is any 

neighborhood of b0 in X, then  hte homomorphism of fundamental groups induced by inclusion i : U  X is not 

trivial. 

Given n, there is a retraction r : X  Cn obtained by letting r map each circle Ci for i  n to the point b0. Choose n 

large enough that Cn lies in U. Then in the following diagram of homomorphisms induced by inclusion, j is 

injective; hence i cannot be trivial. 

          1 (Cn, b0)        1(X, b0) 

 

        k*                  i* 

               

                 1 (U, b0)  

It follows that even through X is path connected and locally path connected, it has no universal covering space. 

 

2. COVERING TRANSFORMATIONS  

Given a covering map p : E  B, it is of some interest to consider the set of all equivalences of this covering space 

with itself. Such an equivalence is called a covering transformation. Composites and inverses of covering 

transformations are covering transformations, so this set forms a group; it is called the group of covering 

transformations and denoted C (E, p, B) [4-6].  
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Throughout this section, we shall assume that p : E  B is a covering map with p(e0) = b0; and we shall let H0 = p 

(1 (E, e0)). We shall show that the group C (E, p, B) is completely determined by the group 1 (B, b0) and the 

subgroup H0. Specifically, we shall show that if N(H0) is the largest subgroup of 1 (B, b0) of which H0 is a normal 

subgroup. C (E, p, B) is isomorphic to N (H0) / H0. 

 

Definition 2.1. If H is a subgroup of the group G, then the normalizer of H in G is the subset of G defined by the 

equation.   N(H) = [g] gHg
–1

 = H} 

It is easy to see that N(H)is a subgroup of G. It follows from the definition that it contains H as a normal subgroup 

and is the largest such subgroup of G.  

 

Definition 2.2.  Given p : E  B with p(e0) = b0, let F be the set F = p–1 (e0).     

Let  : 1 (B, b0) / H0   F 

be the lifting correspondence of Theorem 3.21; it is a bijection. Define also a correspondence.  

   : C (E, p, B)  F 

by setting  (h) = (e0) for each covering transformation h : E  E. Since h is uniquely determined once its value at 

e0 is known, the correspondence  is injective.  

 

Lemma 2.3.   The image of the map  equals the image under  of the subgroup N(H0) / H0 of 1 (B, b0) / H0. 

Proof.    Recall that the lifting correspondence  : 1 (B, b0)  F is defined as follows: Given a loop  in B at b0, 

let  be its lift to E beginning at e0; let e1 = (1); and define  by setting ([]) = e1. To prove the lemma, we need to 

show that there is a covering transformation h : E  E with h(e0) = e1 if and only if []  N (H0). 

This is easy. Lemma 3.41 tells us that h exists if and only if H0 = H1, where H1 = p (1 E, e1). And Lemma 3.43 tells 

us that []  H1  []
–1 

= H0. Hence h exists if and only if []  H0  []
–1

 = H0, which is simply the statement that 

[]  N (H0). 

 

Theorem 2.4 The bijection  
–1

 o  : C (E, p, B)  N(H0) / H0 is an isomorphism of groups. 

Proof.    We need only show that 
–1

 o  is a homomorphism. Let h, k :        E  E be covering transformations. 

Let h(e0) = e1 and k(e0) = e2; then  (h) = e1       and     (k) = e2. 

by definition. Choose paths  and  in E from e0 to e1 and e2, respectively. If  = po and  = p o , then 

   ([]) H0) = e1    and      ([])H0) = e2, 

by definition. Let e3 = h (k(e0)); then  (h o k) = e3. We show that  

    ([  ] H0) = e3.    and the proof is complete. 

Since  is a path from e0 to e2, the path h o  is a path from h(e0) = e1 to h(e2) = h(k (e0) ) = e3. See Figure 1. Then the 

product   (h o ) is defined and is a path from e0 to e3. It is a lifting of   , since p o  =  and p o h o  = p o  = 

. Therefore  ([  ]H0 = e3, as desired. 
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Figure 1 

 

Corollary 2.5. The group H0 is a normal subgroup of 1 (B, b0) if and only if for every pair of points e1 and e2 of 

p
–1

 (b0), there is a covering transformation h : E  E with h(e1) = e2. In this case, there is an isomorphism 

  
–1

 o  : C (E, p, B)  1 (B, b0) | H0 

 

Corollary 2.6.   Let p : E  B be a covering map. If is simply connected, then     

C (E, p, B)   1 (B, b0) 

If h0 is a normal subgroup of 1 (B, b0), then p : E  B is called a regular covering map. (Here is another example of 

the overuse of familiar terms. The words "normal" and "regular" have already been used to mean quite different 

things!) 

Example 2. Because the fundamental group of the circle is abelian, every covering of S
1
 is regular. If p : ¡   

S
1
 is the standard covering map, for instance, the covering transformation are the homeomorphisms x  x + n. The 

group of such transformation is isomorphic to Z.. 

 

Theorem 2.7. Let X be path connected and locally path connected; let G be a group of homeomorphism of X. 

The quotient map  : X  X/G is a covering map if and only if the action of G is properly discontinuous. In this 

case, the covering map  is regular and G is its group of covering transformations.  

Proof.    We show  is an open map. If U is open in X, then 
–1

 (U) is the union of the open sets g(U) of X, for g 

 G. Hence 
–1

 (U) is open in X, so that (U) is open in X/G by definition. Thus  is open. 

Step 1.  We suppose that the action of G is properly discontinuous and show that  is a covering map. Given x  X, 

let U be a neighborhood  of x such that g0(U) and g1(U) are disjoint whenever g0  g1. Then (U) is evenly covered 

by . Indeed, 
–1

 (U) equals the union of the disjoint open sets g(U), for g  G, each of which contains at most one 

point of each orbit. Therefore, the map g(U)  (U) obtained  by restricting  is bijective; being continuous and 

open, it is a homeomorphism. The set g(U), for g  G, thus form a partition of 
–1

 (U) into slices.  

Step 2.  We suppose now that  is a covering map and show that the action of G is properly discontinuous. Given x 

 X, let V be a neighborhood of (x) that is evenly covered by . Partition 
–1

 (V) into slices; let U be the slice 

containing x. Given g  G with g  e, the set g(U) must be disjoint from U, for otherwise, two points of U would 
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belong to the same orbit and the restriction of  to U would not be injective. It follows that the action of G is 

properly discontinuous.  

Step 3.  We show that if  is a covering map, then G is its group of covering transformations and  is regular. 

Certainly any g  G is a covering transformation for  o g =  because the orbit of g(x) equals the orbit of x. On the 

other hand, let h  be a covering transformation with h(x1) = x2, say. Because  o h  = , the points x1 and x2 map to 

the same point under ; therefore there is an element g  G such that g(x1) = x2. The uniqueness part of Theorem 

then implies that h = g. 

It follows that  is regular. Indeed, for any two points x1 and x2 lying in the same orbit, there is an element g  G 

such that g(x1) = x2. The corollary applies.  

 

Theorem 2.8. If p : X  B is a regular covering map and G is its group of covering transformation, then there is 

a homeomorphism k : X/G  B such that p = k o , where  : X  X/G is the projection. 

    X       =       X 

          p 

           X/G               B  

Proof.   If g is a covering transformation, then p(g(x)) = p(x) by definition. Hence p is constant on each orbit, so it 

induces a continuous k of the quotient space X/G into B. On the other hand, p is a quotient map because it is 

continuous, surjective, and open. Because p is regualr, any two points of p
–1

 (b) belong to the same orbit under the 

action of G. Therefore,  induces a continuous map B  X/G that is an inverse for k. 

Example 3. Let X be the cylinder S
1
  1; let h : X  X be the homeomorphism h(x, t) = (–x, t); and let k : X  

X be the homeomorphism k(x, t) = (–x, 1 – t). The groups G1 = {e, h} and G2 = {e, k} are isomorphic to the integers 

modulo 2; both act properly discontinuously on X. But X/G1 is homeomorphic to X, while X/G2 is homeomorphic to 

the Mobius band, as you can check. See Figure 2. 

 

Figure 2 

 

3. EXISTENCE OF COVERING SPACES 

We have shown that corresponding to each covering map p : E  B is a conjugacy class of subgroups of 1 (B, b0) 

and that two such covering maps are equivalent if and only if they correspond to the same such class. Thus, we have 

an injective correspondence from equivalence classes of coverings of B to conjugacy classes of subgroups of 1 (B, 

b0). Now we ask the question whether this correspondence is surjective, that is, whether for every conjugacy class of 

subgroups of 1 (B, b0), there exists a covering of B that corresponds to this class [7-9].  
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Definition 3.1. A space B is said to be semilocally simply connected if for each b  B, there is a neighborhood U 

of b such that the homomorphism  

   i : 1 (U, b)  1 (B, b)   induced by inclusion is trivial. 

Note that if U satisfies this condition, then so does any smaller neighborhood of b, so that b bas "arbitrarily small" 

neighborhoods satisfying this condition. Note also that this condition is weaker than true local simple connectedness, 

which would require that within each neighborhood of b there should exist a neighborhood U of b that is itself 

simply connected.  

Semilocal simple connectedness of B is both necessary and sufficient for there to exist, for every conjugacy class of 

subgroups of 1 (B, b0) a corresponding covering space of B. Necessity was proved in Lemma ; sufficiency is proved 

in this section. 

 

Theorem 3.2. Let B be path connected, locally path connected and semilocally simply connected. Let b0  B. 

Given a subgroup H of 1 (B, b0) there exists a covering map p : E  B and points e0  p
–1

 (b0) such that 

   P (1 (E, e0)) = H. 

Proof.  Step 1. Construction of E. The procedure for constructing E is reminiscent of the procedure used 

in complex analysis for constructing Riemann surfaces. Let .P denote the set of all paths in B beginning at b0. Define 

an equivalence relation on .P by setting  ~  if  and  end at the same point of B and  

   [  β ]  H. 

This relation is easily seen to be an equivalence relation. We will denote the equivalence class of the path  by 
#
. 

Let E denote the collection of equivalence classes, and define p: E  B by the equation  

   p(
#
) = (1). 

Since B is path connected, p is surjective. We shall topologize E so that p is a covering map. 

 We first note two facts :  

(a) If [] = [], then 
#
 = 

#
. 

(b)   If 
#
=

#
, then (  )

#
 = (  )

#
 for any path  in B beginning at (1).                                         

The first follows by noting that if [] = [], then [  β ]  is the identity element, which belongs to H. The second 

follows by noting that    and        end at the same point of B, and 

 [( * )  (β δ) ] = [(  )  (δ   β )] = [   β ), 

which belongs to H by hypothesis. 

Step 2. Topologizing E. One way to topologize E is to give .P the compact open topology and E the corresponding 

quotient topology. But we can topologize E directly as follows: 

Let  be any element of P and let U be any path-connected neighborhood of (1). Define 

B(U, ) = {(  )
#
 |  is a path in U beginning at (1)}. Note that 

#
 is an element of B(U, ), since if b = 

(1), then 
#
 =      (  eb)

#
; this element belongs to B(U, ) by definition. We assert that the sets B(U, ) form a 

basis for a topology on E.  



Juni Khyat                                                                                                       ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                  Vol-10 Issue-6 No. 13 June 2020 

Page | 680                            www.junikhyat.com                         Copyright ⓒ 2020 Authors 

First, we show that if 
#
 B (U, ) then 

#
B (U, ) and B(U, ) = B (U, ). If 

#
  B (U, ), then 

#
 = (  )

#
 for 

some path  in U. Then  

  (  δ )
#
 = ((  )  δ )

#
  by (2) 

     = 
#
   by (1). 

so that 
#
  B(U, ) by definition. See figure 3. We show first that B(U, )  B (U, ). Note that the general 

element of B(U, ) is of the form ()
#
, where  is a path in U. Then note that  

   (  )
#
 = ((  )  )

#
 

       = (  (  ))
#
 

which belongs to B(U, ) by definition. Symmetry gives the inclusion B    (U, )  B(U, ) as well. 

 

Figure 3 

Now we show the sets B(U, ) form a basis. If 
#
 belongs to the intersection B(U1  1)  B (U2  2) we need 

merely choose a path-connected neighborhood V of (1) contained in U1  U2.  The inclusion  

  B(V, )  B (U1  )  B (U2, ) 

follows from the definition of these sets, and the right side of the equation equals B(U1, 1)  B(U2, 2) by the result 

just proved.  

Step 3.  The map p is continuous and open. It is easy to see that p is open, for the image of the basis element B(U, 

) is the open subset U of B : Given x  U, we choose a path  in U from (1) to x; then ( )
#
 is in B   (U, ) and 

p((  )
#
) = x. 

To show that p is continuous, let us take an element 
#
 of E and a neighborhood W of p(

#
). Choose a path-

connected neighborhood U of the point p(
#
) =  (1) lying in W. Then B(U, ) is a neighborhood of 

#
 that p maps 

into W. Thus p is continuous at 
#
. 

Step 4.  Every point of B has a neighborhood that is evenly covered by p. Given b1  B, choose U to be a path-

connected neighborhood of b1 that satisfies the further condition that the homomorphism 1 (U, b1) 1 (B, b1) 

induced by inclusion is trivial. We assert that U is evenly covered by p. 

First, we show that p
–1

 (U) equals the union of sets B(U, ), as  ranges over all paths in B from b0 to b1. Since p 

maps each set B(U, ) onto U, it is clear that p
–1

 (U) contains this union. On the other hand, if B
#
 belongs to p

–1
 (U), 
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then (1)  U. Choose a path  in U from b1 to (1) and let  be the path   δ  from b0 to b1. Then [] = [  ], so 

that 
#
 =(  )

#
, which belongs to B(U, ). Thus p

–1
(U) is contained in the union of the sets B(U, ). 

Second, note that distinct sets B(U, ) are disjoint. For if B
#
 belongs to B (U, 1) B(U, 2), then B(U, 1) = B(U, 

) = B(U, 2) by step 2. 

Third, we show p defines a bijective map of B(U, ) with U. It follows that p|B (U, ) is a homeomorphism, being 

bijective  and continuous and open. We already know that p maps B(U, ) onto U. To prove injectivit, suppose that  

   p((  )
#
) = p((  )

#
), 

where 1 and 2 are paths in U. Then 1 (1) = 2 (1). Because the homomorphism 1 (U, b1)  (B, b1) induced by 

inclusion is trivial, 1  δ 2 is path homotopic in B to the constant loop. Then [  1] = [  2], so that    (  1)
#
 = 

( = 2)#, as desired.  

It follows that p : E  B is a covering map in the sense used in earlier chapters. To show it is a covering map in the 

sense used in this chapter, we must show E is path connected. This we shall do shortly. 

Step 5.  Lifting  path in B. Let e0 denote the equivalence class of the constant path at b0; then p(e0) = b0 by 

definition. Given a path  in B beginning at b0, we calculate its lift to a path in E beginning at e0 and show that this 

lift ends at 
#
. 

To begin, given c  [0, 1] let 0 : I  B denote the path defined by the equation  

   0(t) =  (tc)     for     0  t  1. 

Then 0 is the "portion" of  that runs from (0) to (c). In particular, 0 is the constant path at b0, and 1 is the 

path  itself. We define α  : I  E by the equation  

    α (c) = (0)
#
 

and show that α  is continuous. Then α  is a lift of , since p(α (c)) = c(1) = (c); furthermore, α  begins at (0)
#
 = 

e0 and ends at (1)
#
 = 

#
. 

To verify continuity, we introduce the following notation. Given 0  c < d  1, let c, d denote the path that equals the 

positive linear map of I onto [c, d] followed by . Note that the paths d and c  c, d are path homotopic because one 

is just a reparmetrization of the other. See Figure 4. 

 

Figure 4 
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We now verify continuity of α  at the point c of [0, 1]. Let w be a basis element in E about the point α (c). Then W 

equals B(U, c) for some path-connected neighborhood U of (c). Choose  > 0 so that for |c – t| < , the point (t) 

lies in U. We show that if d is a point of [0, 1] with |c – d| < , then α (d)  W; this proves continuity of α  at c. 

So suppose |c – d| < . Take first the case where d > c. Set c, d; then since [d] = [c ], we have 

  α (d) = (d)
#
 = (c  )

#
. 

Since  lies in U, we have α (d)  B(U, c) as desired. If d < c, set  = d, c and proceed similarly.  

Step 6.  The map p : E  B is a covering map. We need only verify that E is path connected, and this is easy. For if 


#
 is any point of E, then the lift α  of the path  is a path in E from e0 to 

#
. 

Step 7.  Finally, H = p(1 E, e0). Let  be a loop in B at b0. Let α  be its lift to E beginning at e0. Theorem 3.21 tells 

us that []  p (1(E, e0)) if and only if α  is a loop in E. Now the final point of α  is the point 
#
, and 

# 
= e0 if and 

only if  is equivalent to the constant path at b0, i.e., if and only if          [  
0be ]  H. This occurs precisely when 

[]  H. 

 

4. CONCLUSION 

The paper deals with the important relationship between the topological spaces and the covering spaces which has 

been very well supported with many theorems and suitable examples.  
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