STUDY OF IMPACT ON APPLYING ACCURACY VALIDATION OF SOME FIXED POINT THEOREMS FOR SEQUENCE OF MAPPINGS IN PROBABILISTIC METRIC SPACES
 Rajesh Vyas ${ }^{1}$ Neelam Dawar ${ }^{2}$
 rajeshvyas09@rediff.com ${ }^{1}$ Dawarneelam18@gmail.com ${ }^{2}$

Abstract

The theory of metric spaces in several cases has applied to the association of a single number as the distance between a pair of elements is rather an over-idealization ${ }^{3}$.Vasuki ${ }^{4}$ generalized the result of Schweizer and Sklar ${ }^{5}$ for a sequence of maps satisfying a new contraction type condition in Menger Spaces and proved a common fixed point theorem for a sequence of self maps ${ }^{6}$. Present paper is based on the basic theory and applications and their repercussion of probabilistic metric spaces (PM -space). ${ }^{1}$ In this paper the descriptions of many probabilistically confined sets have been presented. In the form of repercussion obtained from the various sets, some definitions and theorem are presented to study the linear operator theory and fixed point theory on PM-spaces. ${ }^{2}$

KEYWORDS--PM-spaces, Manger space, mappings, contraction pair, self-mappings, uniqueness INTRODUCTION
The purpose of this is to give some fixed point theorems for sequence of mappings in Menger spaces by generalizing the results of Vasuki, ${ }^{7}$

Definition 1.1 : Let (X, F) be PM space and $\mathrm{T}_{\mathrm{i}}: \mathrm{X} \rightarrow \mathrm{X}, \mathrm{i}=1,2$. two mappings. This pair of mappings is a contraction pair of ($X, F)$ iff there is an $x \in(0,1)$ such that

$$
\mathrm{F}_{\mathrm{T}_{1} \mathrm{q}, \mathrm{~T}_{2} \mathrm{p}}(\mathrm{x}) \quad \geq \mathrm{F}_{\mathrm{p}, \mathrm{q}}(\mathrm{x} / \mathrm{x}) .
$$

for every $\mathrm{p}, \mathrm{q} \in \mathrm{S}$.
Definition 1.2: Let $\left\{T_{i}\right\}_{i=1,2}$ be a contraction pair and $p_{0} \in S$. The sequence of iterates of p_{0} under the pair $\left\{T_{i}\right\}_{i=1,2}$ is the sequence $\left\{p_{n}\right\}$ defined as follows:

$$
\begin{aligned}
& \mathrm{p}_{2 \mathrm{j}}=\mathrm{T}_{2}\left(\mathrm{p}_{2 \mathrm{j}-1}\right) \\
& \mathrm{p}_{2 \mathrm{i}-1}=\mathrm{T}_{1}\left(\mathrm{p}_{2 \mathrm{i}}\right)
\end{aligned}
$$

For all $\mathrm{i}=0,1$, \qquad ; $\mathrm{j}=1,2$,
Theorem 1.3: Let $\left\{T_{n}\right\}$ be a sequence of self-mappings of complete Menger space (X, F, t) into itself with $t(u, v)=\min (u, v)$ for every $u, v \in[0,1]$. If for any two mappings T_{1} and T_{2}, we have

$$
\begin{equation*}
\mathrm{F}_{\mathrm{T}_{1}^{\mathrm{m}} \mathrm{~m}_{\mathrm{T}}^{\mathrm{m}} \mathrm{v}}(\alpha \mathrm{p}) \geq \mathrm{F}_{\mathrm{u}, \mathrm{v}}(\mathrm{p}) . \tag{i}
\end{equation*}
$$

(ii) $\quad \mathrm{F}_{\mathrm{T}_{1}^{\mathrm{m}}{ }_{\mathrm{u}, \mathrm{T}_{2} \mathrm{v}}}$ ($\left.\alpha \mathrm{p}\right) \geq \mathrm{F}_{\mathrm{u}, \mathrm{T}_{2} \mathrm{v}}$ (p)

For some m and for $\mathrm{u}, \mathrm{v} \in \mathrm{X}, \mathrm{p}>0$ and $0 \leq \alpha<1$, then for $\mathrm{x}_{0} \in \mathrm{X}$ the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is defined as

$$
\mathrm{x}_{\mathrm{n}}=\mathrm{T}_{\mathrm{n}}^{\mathrm{m}} \mathrm{x}_{\mathrm{n}-1}, \quad \mathrm{n}=1,2, \ldots \ldots \ldots \ldots
$$

converges and its limit is the unique common fixed point of T_{n}.
Proof : Let x_{0} be any arbitrary point in X. Then for each $p>0$ and $0 \leq \alpha<1$,

$$
\begin{gathered}
\mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}(\alpha \mathrm{p})=\mathrm{F}_{\mathrm{T}_{1}^{\mathrm{m}} \mathrm{x}_{0}, \mathrm{~T}_{2}^{\mathrm{m}} \mathrm{x}_{1}} \quad(\alpha \mathrm{p}) \\
\geq \mathrm{F}_{\mathrm{x}_{0}, \mathrm{x}_{1}} \quad(\mathrm{p})
\end{gathered}
$$

Again

$$
\begin{gathered}
\mathrm{F}_{\mathrm{x}_{2}, \mathrm{x}_{3}}(\alpha \mathrm{p})=\mathrm{F}_{\mathrm{T}_{1}^{\mathrm{m}} \mathrm{x}_{1}, \mathrm{~T}_{2}^{\mathrm{m}} \mathrm{x}_{2}} \quad(\alpha \mathrm{p}) \\
\geq \mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}
\end{gathered}
$$

and by induction

$$
\mathrm{F}_{\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}} \quad(\alpha \mathrm{p}) \geq \mathrm{F}_{\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}}
$$

For each $\mathrm{p}>0$ and $0 \leq \alpha<1$.

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in X.

Since X being complete, let $x_{n} \rightarrow \xi$ for some $\xi \in X$.

Now for any integer k,

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{x}_{\mathrm{n}}, \mathrm{~T}_{\mathrm{k}} \xi} \quad(\alpha \mathrm{p})= \\
\mathrm{F}_{\mathrm{T}_{1}^{\mathrm{m}} \mathrm{x}_{\mathrm{n}-1}, \mathrm{~T}_{\mathrm{k}} \xi}(\alpha \mathrm{p}) \\
\geq \mathrm{F}_{\mathrm{x}_{\mathrm{n}-1}, \mathrm{~T}_{\mathrm{k}} \xi}
\end{array}
$$

Taking limits on both sides, we get

$$
\mathrm{F}_{\xi, \mathrm{T}_{\mathrm{k}} \xi} \quad(\alpha \mathrm{p}) \geq \mathrm{F}_{\xi, \mathrm{T}_{\mathrm{k}} \xi}(\mathrm{p})
$$

If $\xi \neq \mathrm{T}_{\mathrm{k}} \xi$, a contradiction since $\alpha<1$.

This implies that $\xi=\mathrm{T}_{\mathrm{k}} \xi$ for any integer k .

Thus ξ is a common fixed point of $\mathrm{T}_{\mathrm{n}}, \mathrm{n}=1,2, \ldots \ldots \ldots \ldots$

For the uniqueness of fixed point let if possible $\eta \neq \xi$ be another common fixed point of $T_{n}, n=1,2, \ldots \ldots \ldots \ldots$

Then for each p>0

$$
\begin{array}{r}
\mathrm{F}_{\xi, \eta}(\alpha p)=\mathrm{F}_{\mathrm{T}_{1}^{\mathrm{m}} \xi, \mathrm{~T}_{1}^{\mathrm{m}}{ }_{\eta}}(\alpha \mathrm{p}) \\
\geq \mathrm{F}_{\xi, \eta}
\end{array}
$$

which is impossible since $0 \leq \alpha<1$.
Therefore $\xi=\eta$.
Hence ξ is an unique common fixed point of $\mathrm{T}_{\mathrm{n}}, \mathrm{n}=1,2, \ldots \ldots \ldots \ldots$

Remark 1.4 : Vasuki ${ }^{4}$ proved a fixed point theorem for a sequence of mappings for contractive iterates. In the above theorem we generalized the result of Vasuki ${ }^{4}$ in Menger spaces.
Theorem 1.5: Let $\left\{T_{n}\right\}, n=1,2, \ldots \ldots \ldots$. be a sequence of self maps of complete Menger space (X, F, t) into itself with $t(u, v)$ $=\min (u, v)$ for every $u, v \in[0,1]$. If for any two mappings T_{1} and T_{2}, we have

$$
\begin{aligned}
& \left(\mathrm{F}_{\mathrm{T}_{1} \mathrm{u}, \mathrm{~T}_{2} \mathrm{v}}(\alpha \mathrm{p})\right)^{2} \geq \min \left\{\left(\mathrm{F}_{\mathrm{u}, \mathrm{v}}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\mathrm{u}, \mathrm{~T}_{1} \mathrm{u}}(\mathrm{p})\right)^{2},\right. \\
& \left.\quad\left(\mathrm{F}_{\mathrm{v}, \mathrm{~T}_{1} \mathrm{u}}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\mathrm{v}, \mathrm{~T}_{2} \mathrm{v}}(\mathrm{p})\right)^{2}\right\}
\end{aligned}
$$

for all $u, v \in X, p>0$ and $0 \leq \alpha<1$, then for $x_{0} \in X$ the sequence $\left\{x_{n}\right\}$ is defined as

$$
\mathrm{x}_{\mathrm{n}}=\mathrm{T}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}-1}, \quad \mathrm{n}=1,2, \ldots \ldots \ldots \ldots
$$

converges and its limit is the unique common fixed point of T_{n}.
Proof : Let X_{0} be any arbitrary point in X . Then for each $\mathrm{p}>0$ and $0 \leq \alpha<1$,

$$
\begin{aligned}
\left(\mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}(\alpha \mathrm{p})\right)^{2}= & \left(\mathrm{F}_{\mathrm{T}_{1} \mathrm{x}_{0}, \mathrm{~T}_{2} 1}(\alpha \mathrm{p})\right)^{2} \\
& \geq \min \left\{\left(\mathrm{F}_{\mathrm{x}_{0}, \mathrm{x}_{1}}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\mathrm{x}_{0}, \mathrm{~T}_{1} \mathrm{x}_{0}}(\mathrm{p})\right)^{2},\right. \\
& \left.\quad\left(\mathrm{F}_{\mathrm{x}_{1}, \mathrm{~T}_{1} \mathrm{x}_{0}}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\mathrm{x}_{1}, \mathrm{~T}_{2} \mathrm{x}_{1}}(\mathrm{p})\right)^{2}\right\} \\
& \geq \min \left\{\left(\mathrm{F}_{\mathrm{x}_{0}, \mathrm{x}_{1}}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\mathrm{x}_{0}, \mathrm{x}_{1}}(\mathrm{p})\right)^{2},\right.
\end{aligned}
$$

$$
\left.\left(\mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{1}}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}(\mathrm{p})\right)^{2}\right\}
$$

$$
\geq\left(\mathrm{F}_{\mathrm{x}_{0}, \mathrm{x}_{1}}(\mathrm{p})\right)^{2}
$$

So

$$
\left(\mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}(\alpha \mathrm{p})\right)^{2} \geq\left(\mathrm{F}_{\mathrm{x}_{0}, \mathrm{x}_{1}}(\mathrm{p})\right)^{2}
$$

for each $\mathrm{p}>0$ and $0 \leq \alpha<1$.
Suppose $\quad F_{x_{1}, x_{2}}(\alpha p) \quad \geq F_{x_{0}, x_{1}} \quad$ (p)
for each $\mathrm{p}>0$ and $0 \leq \alpha<1$.
Again

$$
\begin{aligned}
&\left(\mathrm{F}_{\mathrm{x}_{2}, \mathrm{x}_{3}}(\alpha \mathrm{p})\right)^{2}=\left(\mathrm{F}_{\mathrm{T}_{1} \mathrm{x}_{1}, \mathrm{~T}_{2} \mathrm{x}_{2}}(\alpha \mathrm{p})\right)^{2} \\
& \geq \min \left\{\left(\mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\mathrm{x}_{1}, \mathrm{~T}_{1} \mathrm{x}_{1}}(\mathrm{p})\right)^{2},\right. \\
&\left.\quad\left(\mathrm{F}_{\mathrm{x}_{2}, \mathrm{~T}_{1} \mathrm{x}_{1}}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\mathrm{x}_{2}, \mathrm{~T}_{2} \mathrm{x}_{2}}(\mathrm{p})\right)^{2}\right\} \\
& \geq \min \left\{\left(\mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}(\mathrm{p})\right)^{2},\right. \\
&\left.\quad\left(\mathrm{F}_{\mathrm{x}_{2}, \mathrm{x}_{2}}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\mathrm{x}_{2}, \mathrm{x}_{3}}(\mathrm{p})\right)^{2}\right\} \\
& \geq\left(\mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}(\mathrm{p})\right)^{2} \quad
\end{aligned}
$$

So $\quad\left(\mathrm{F}_{\mathrm{x}_{2}, \mathrm{x}_{3}}(\alpha \mathrm{p})\right)^{2} \geq\left(\mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}(\mathrm{p})\right)^{2}$
for each $\mathrm{p}>0$ and $0 \leq \alpha<1$.
Again suppose $\quad \mathrm{F}_{\mathrm{x}_{2}, \mathrm{x}_{3}}(\alpha \mathrm{p}) \quad \geq \mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}$ (p)
for each $\mathrm{p}>0$ and $0 \leq \alpha<1$.
Therefore by induction

$$
\mathrm{F}_{\mathrm{x}_{\mathrm{n}}, x_{n+1}}(\alpha \mathrm{p}) \geq \mathrm{F}_{\mathrm{x}_{\mathrm{n}-1}, x_{\mathrm{n}}} \text { (p) }
$$

Thus $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ is a Cauchy sequence in X .
Since X being complete, let $\mathrm{x}_{\mathrm{n}} \rightarrow \xi$ for some $\xi \in \mathrm{X}$.
Now for any integer k,

$$
\begin{aligned}
\left(F_{x_{n}, T_{k} \xi}(\alpha p)\right)^{2}= & \left(F_{T_{n} x_{n-1}, T_{k} \xi}(\alpha p)\right)^{2} \\
\geq & \text { min }\left\{\left(F_{x_{n-1}, \xi}(p)\right)^{2},\left(F_{x_{n-1}, T_{n} x_{n-1}}(p)\right)^{2},\right. \\
& \left.\quad\left(F_{\xi, T_{n} x_{n-1}}(p)\right)^{2},\left(F_{\xi, T_{k} \xi}(p)\right)^{2}\right\} \\
\geq & \min \left\{\left(F_{x_{n-1}, \xi}(p)\right)^{2},\left(F_{x_{n-1}, x_{n}}(p)\right)^{2},\right. \\
& \left.\quad\left(F_{\xi, x_{n}}(p)\right)^{2},\left(F_{\xi, T_{k} \xi}(p)\right)^{2}\right\}
\end{aligned}
$$

Taking limits on both sides, we get

$$
\left(\mathrm{F}_{\mathrm{x}_{\mathrm{n}}, T_{\mathrm{k} \xi}}(\alpha \mathrm{p})\right)^{2} \geq \min \left\{\left(\mathrm{F}_{\xi, \xi}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\xi, \xi}(\mathrm{p})\right)^{2},\right.
$$

$$
\left.\left(F_{\xi, \xi}(p)\right)^{2},\left(F_{\xi, T_{k} \xi}(p)\right)^{2}\right\}
$$

$$
\geq\left(\mathrm{F}_{\xi, \mathrm{T}_{\mathrm{k}} \xi}(\mathrm{p})\right)^{2}
$$

Suppose $\mathrm{F}_{\xi, \mathrm{T}_{\mathrm{k}} \xi}$ ($\alpha \mathrm{p}$) $\quad \geq \mathrm{F}_{\xi, \mathrm{T}_{\mathrm{k}} \xi}(\mathrm{p})$
for each $\mathrm{p}>0$ and $0 \leq \alpha<1$.
If $\xi \neq T_{k} \xi$, a contradiction since $\alpha<1$.

CONCLUSION

This implies that $\xi=\mathrm{T}_{\mathrm{k}} \xi$ for any integer k .
Thus ξ is a common fixed point of $\mathrm{T}_{\mathrm{n}}, \mathrm{n}=1,2, \ldots \ldots \ldots \ldots$
For the uniqueness ${ }^{8}$ of fixed point let $\eta \neq \xi$ be another common fixed point of
$\mathrm{T}_{\mathrm{n}}, \mathrm{n}=1,2$
Then for each $\mathrm{p}>0$

$$
\begin{aligned}
\left(\mathrm{F}_{\xi, \eta}(\alpha \mathrm{p})\right)^{2}= & \left(\mathrm{F}_{\mathrm{T}_{1} \xi, \mathrm{~T}_{2} \eta}(\alpha \mathrm{p})\right)^{2} \\
& \geq \min \left\{\left(\mathrm{F}_{\xi, \eta}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\xi, \mathrm{T}_{1} \xi}(\mathrm{p})\right)^{2},\right. \\
& \left.\left(\mathrm{F}_{\eta, \mathrm{T}_{1} \xi}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\eta, \mathrm{T}_{2} \eta}(\mathrm{p})\right)^{2}\right\} \\
& \geq \min \left\{\left(\mathrm{F}_{\xi, \eta}(\mathrm{p})\right)^{2},\left(\mathrm{~F}_{\xi, \xi}(\mathrm{p})\right)^{2},\right.
\end{aligned}
$$

$$
\left.\left(F_{\eta, \xi}(p)\right)^{2},\left(F_{\eta, \eta}(p)\right)^{2}\right\}
$$

$$
\geq\left(\mathrm{F}_{\xi, \eta}(\mathrm{p})\right)^{2}
$$

This is impossible.
Therefore $\xi=\eta$.
Hence ξ is an unique common fixed point of $\mathrm{T}_{\mathrm{n}}, \mathrm{n}=1,2, \ldots \ldots \ldots \ldots$

REFERENCES

[1]. Chang, S.S., Cho, Y.J. and Kang, S.M., Probabilistic Metric Spaces and Nonlinear Operator Theory, Sichuan Univ. Press (Chengdu), 1994.
[2]. Chang, S.S., Lee, B.S., Cho, Y.J., Chen, Y.Q., Kang, S.M., and Jung, J.S., Generalized contraction mapping principle and differential equations in probabilistic metric spaces, Proc. Amer. Math. Soc. 124 (1996), 2367-2376.
[3]. El Naschie M.S., A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons \& Fractals 19 (2004), 209-236.
[4]. Vasuki R., A fixed point theorem for a sequence of maps satisfying a new contraction type condition in Menger spaces. Math. Japonica 35, No. 6 (1990), 1099-1102.
[5]. Schweizer B. and Sklar A., Traingle inequalities in a class of statistical metric spaces.
J. London Math. Soc. 38 (1963), 401-406.
[6]. Schweizer B. and SklarA.,Statistical metric spaces. Pacific J. Math. 10, (1960), 313-334.
[7]. Vasuki R., A fixed point theorem for a sequence of mappings. Indian J. Pure Appl. Math. 19 (9), (1988), 827-829.
[8]. Schweizer B. and Sklar A. Probabilistic metric spaces. North Holland Series, New York (1983).

