
Juni Khyat                                                                                               ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                          Vol-10 Issue-7 No. 13  July 2020 

Page | 51                                                                        Copyright @ 2020 Authors 

Low-Power High-Accuracy Approximate Multiplier Using 

Approximate High-Order Compressors 

                                     Modalavalasa Rudrani
1
, Mohankrishna Potnuru

2
, Gadu Rambabu

3 

 

1  
PG Scholar, Dept of ECE, Sri Venkateswara College of Engineering and Technology, Srikakulam 

  2-3 
Assistant Professor, Dept of ECE, Sri Venkateswara College of Engineering and Technology, Srikakulam 

 

                                                               
1
modalavalasarudrani@gmail.com 

2
mohan.424@gmail.com 

3
 rambabu.g040@gmail.com 

 

Abstract – To reduce the power consumption, the design of approximate multiplier appears as a 

promising solution for many error-resilient applications. In this paper, we propose a low-power high-

accuracy approximate 8 x 8 multiplier design. The proposed design has two main features. First, 

according to the significance, different weights utilize different compressors (in different levels of 

accuracy) to accumulate their product terms. As a result, the power consumption can be saved with a 

small error. Second, for the middle significance weights, we use high-order approximate compressors 

(e.g., 8:2 compressor) to reduce the logic of carry chains. To our knowledge, the proposed design is 

the first work that successfully uses high order approximate compressors in the approximate 

multiplier design. Compared with an exact multiplier (DADDA tree multiplier), experimental results 

show that the proposed approximate multiplier can achieve both low power and high accuracy. 

Keywords:  Approximate Computing, Arithmetic Circuits, Logic Design, Low-Power Design, Partial 

Product Reduction  

1. INTRODUCTION  

Multipliers play an important role in today’s digital signal processing and various other applications. 

With advances in technology, many researchers have tried and are trying to design multipliers which 

offer either of the following design targets – high speed, low power consumption, regularity of layout 

and hence less area or even combination of them in one multiplier thus making them suitable for 

various high speed, low power and compact VLSI implementation. 

The common multiplication method is “add and shift” algorithm. In parallel multipliers number of 

partial products to be added is the main parameter that determines the performance of the multiplier. 

In applications like multimedia signal processing and data mining which can tolerate error, exact 

computing units are not always necessary. They can be replaced with their approximate counterparts. 

Research on approximate computing for error tolerant applications is on the rise. Adders and 

multipliers form the key components in these applications. In, approximate full adders are proposed 

at transistor level and they are utilized in digital signal processing applications. Their proposed full 

adders are used in accumulation of partial products in multipliers. To reduce hardware complexity of 
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multipliers, truncation is widely employed in fixed-width multiplier designs. Then a constant or 

variable correction term is added to compensate for the quantization error introduced by the truncated 

part. Approximation techniques in multipliers focus on accumulation of partial products, which is 

crucial in terms of power consumption. Broken array multiplier is implemented in, where the least 

significant bits of inputs are truncated, while forming partial products to reduce hardware complexity. 

The proposed multiplier in saves few adder circuits in partial product accumulation. In, two designs 

of approximate 4-2 compressors are presented and used in partial product reduction tree of four 

variants of 8 × 8 DADDA multiplier.  

The major drawback of the proposed compressors in is that they give nonzero output for zero valued 

inputs, which largely affects the mean relative error (MRE) as discussed later. The approximate 

design proposed in this brief overcomes the existing drawback. This leads to better precision. In static 

segment multiplier (SSM) proposed in, m-bit segments are derived from n-bit operands based on 

leading 1 bit of the operands. Then, m × m multiplication is performed instead of n × n multiplication, 

where m<n. Partial product perforation (PPP) multiplier in omits k successive partial products 

starting from j
th

 position, where j ∈ [0, n-1] and k ∈ [1, min (n-j, n-1)] of a n-bit multiplier. In 2 × 2 

approximate multiplier based on modifying an entry in the Karnaugh map is proposed and used as a 

building block to construct 4 × 4 and 8 × 8 multipliers. In inaccurate counter design has been 

proposed for use in power efficient Wallace tree multiplier. 

A new approximate adder is presented in which is utilized for partial product accumulation of the 

multiplier. For 16-bit approximate multiplier in, 26% of reduction in power is accomplished 

compared to exact multiplier. Approximation of 8-bit Wallace tree multiplier due to voltage over-

scaling (VOS) is discussed in. Lowering supply voltage creates paths failing to meet delay constraints 

leading to error. Previous works on logic complexity reduction focus on straight forward application 

of approximate adders and compressors to the partial products. In this brief, the partial products are 

altered to introduce terms with different probabilities. Probability statistics of the altered partial 

products are analyzed, which is followed by systematic approximation. Simplified arithmetic units 

(half-adder, full-adder, and 4-2 compressor) are proposed for approximation. The arithmetic units are 

not only reduced in complexity, but care is also taken that error value is maintained low. While 

systemic approximation helps in achieving better accuracy, reduced logic complexity of approximate 

arithmetic units consumes less power and area.  
 

2. LITERATURE SURVEY 

Gao et al., presents an optimized design approach of two’s complement large-size multipliers using 

embedded multipliers in FPGAs. The realization is based on Baugh-Wooley’s algorithm. To achieve 

efficient implementation, a set of optimized schemes for the realization of the addition of partial 
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products is proposed. The implementations of the multipliers is carried out for operands with sizes 

from 20 to 128 bits. The results indicate that the proposed approach outperforms the traditional 

methods by 50% in terms of LUT-delay product. In this chapter, a research overview of different 

technique used forthe power reduction in Modified Booth’s Multiplier for the past one decade is 

presented. Design techniques have clearly focused on power reduction in recent years, although the 

larger goal is to achieve power efficiency and performance without compromising the system 

functionality, which is much more difficult. In subsequent chapters, describes analysis and design of 

approximate computing for low power, using multiplier designs are down to reinforce the 

conclusions. 

 

3. PROPOSED HIGH ORDER COMPRESSORS 

The critical path of a multiplier is often related to the maximum height of PPM (partial product 

matrix). Thus, there is a need to compress the PPM. A n:2 compressor is a slice of a multiplier that 

reduces n numbers (i.e., product terms) to two numbers when properly replicated. In slice i of the 

multiplier, the n:2 compressor receives n bits in position i and one or more carry bits from the lower 

positions (such as i-1), and produces two output bits in positions i and i+1 and one or more carry bits 

into the higher positions.  

Conventionally, 4:2 compressors are used in the multiplier design. Fig. 1 (a) gives the block diagram 

of an accurate (i.e., exact) 4:2 compressor. The four input bits are denoted as X0, X1, X2 and X3. The 

two output bits in positions i and i+1 are denoted to as Sum and Carry respectively. The carry bit 

from the lower position is denoted as Cin while the carry bit into the higher position is denoted as 

Cout. Fig. 1 (b) gives the block diagram of an approximate 4:2 compressor. To save the logic of carry 

chains, the carry bits Cin and Cout are omitted. Moreover, in [1,2], to reduce the error rate, the logics 

of Sum and Carry are re-designed (i.e., different from the logics of Sum and Carry in an accurate 4:2 

compressor). 

                                 

Figure 1. (a) Accurate 4:2 compressor (b) Approximate 4:2 compressor 

3.1. The Approximation of Carry 
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Here, we study the approximation of the logic of the Carry output. In a conventional half adder, the 

carry bit Ch is defined as below: 

Ch (X0,X1) = X0．X1                                                                 (1) 

In a conventional full adder, the carry bit Cf is defined as below: 

Cf (X0,X1,X2) = X0．X1 + X1．X2 + X0．X2                        (2) 

As described in [6], we can implement the equation (1) as a modified half adder, and implement the 

equation (2) as a modified full adder. Fig. 2 (a) and Fig. 2 (b) give the logic of modified half adder 

and the logic of modified full adder, respectively. Then, based on the modified half adder and the 

modified full adder, we can construct the approximation logic for the Carry output of a high-order 

approximate compressor. In the following, we use the Carry output of our approximate 5:2 

compressor examples. When the number of input bits is 5 (i.e., n = 5), we can split the 5 input bits 

into 2 groups: one group includes X0, X1, and X2, and the other group includes X3 and X4. Then, the 

Carry output of our approximate 5:2 compressor is as below: 

Cf (X0,X1,X2) +Ch (X3,X4) + Ch (X0+X1+X2,X3+X4). Fig. 3 displays the logic of the Carry output 

of our approximate 5:2 compressor. When the number of input bits is 8 (i.e., n = 8), we can split the 8 

input bits into 3 groups: one group includes X0, X1, and X2, one group includes X3, X4, and X5, and 

one group includes X6 and X7. Then, the Carry output of our approximate 8:2 compressor is as 

below: Cf (X0,X1,X2) + Cf (X3,X4,X5) + Ch(X6,X7) + Cf(X0+X1+X2, X3+X4+X5, X6+X7). 

 

Figure 2. (a) Modified half adder (b) Modified full adder Modified 

 

Figure 3. The logic of Carry output of our approximate 5:2 compressor. 

 

3.2. The Approximation of Sum 
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Here, we study the approximation of the logic of Sum output. Conventionally, the tree of XOR gates 

are used to produce the output Sum. However, compared with other logic gates, XOR gate often has 

larger design overheads. We use the logic gates in SAED 32nm cell library as an example. Table I 

tabulates the comparisons among OR gate, NOR gate, XNOR gate, and XOR gate. From Table I, we 

find that XOR gate has the largest power, the largest area, and the largest delay. Thus, if we can 

replace XOR gates with other logic gates, all the design overheads (including the power, the area, and 

the delay) can be reduced. 

 

Figure 4. Sum of 5:2 compressor (a) Accurate (b) Our approximate 

We construct the approximation logic (a tree of logic gates) for the Sum output of a high-order 

approximate compressor as below. At the first level, we use XNOR gate instead of XOR gate. Note 

that the output of XNOR gate is the inverse of the output of XOR gate. To compensate for the error 

rate, we use NOR gate at the second level and OR gate at the third level. Since all XOR gates are 

replaced by other logic gates, the design overheads are greatly saved. 

In the following, we use the Sum output of 5:2 compressor (Fig. 4) as examples. Fig 4 (a) gives the 

logic of the Sum output of an accurate 5:2 compressor. Fig 4 (b) gives the logic of the Sum output of 

our approximate 5:2 compressor.  

 

4. PROPOSED APPROXIMATE MULTIPLIER DESIGN 

 

Typically, a multiplier consists of three parts. In the first part, AND gates are utilized to generate 

partial products. In the second part, the maximum height of PPM (partial product matrix) is reduced 

by using a carry save adder tree. In the third part, a carry propagation adder is used to produce the 

final result. The design complexity of a multiplier is primarily related to the PPM reduction circuitry 

(i.e., the multiplier is primarily related to the PPM reduction circuitry (i.e., the second part). Thus, the 

study of multiplier design [1-6] focuses on the optimization of the PPM reduction circuitry. In this 

section, we propose an approximate 8 x 8 multiplier design. Fig. 5 gives the overall structure of our 

PPM reduction circuitry. According to the significance, the weights are classified into three 

categories: the higher significance weights, the middle significance weights, and the lower 

significance weights. Note that the designers are allowed to configure the number of higher 

significance weights, the number of middle significance weights and the number of lower 
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significance weights for the trade-off between the power consumption and the computational 

accuracy. 

To reduce the power consumption with a small error, our PPM reduction circuitry applies the 

significance driven logic compression technique as below: the higher significance weights use 

accurate (i.e., exact) 4:2 compressors; the middle significance weights use our approximate high-

order compressors; the lower significance weights use inaccurate compressors (OR-tree based 

approximation).   Our PPM reduction circuitry has two stages. The first stage is for all the weights. 

The second stage is only for the higher significance weights. After the second stage is completed, 

each weight has at most two product terms. Thus, a carry propagation adder can be used to produce 

the final result. In the following, we elaborate the details of these two stages. 

 

4.1. The First Stage 

For each lower significance weight, we use a simple OR tree based approximation for power saving. 

Suppose that the number of inputs is n. If n ≤ 2, no action is performed. On the other hand, if n > 2, 

we use an OR tree for n-1 inputs to approximate the accumulation result of these n-1 inputs. Thus, 

after the first stage is done, each lower significance weight has at most two product terms. For each 

middle significance weight, we use our approximate n:2 compressor for power saving, where n is the 

number of product terms in this weight. As described in Section II, the designers can choose one of 

the following two implementations: one implementation is with accurate Sum and approximate Carry 

and the other implementation is with approximate Sum and approximate Carry. After the first stage is 

done, each middle significance weight has at most two product terms. To achieve high accuracy, for 

each higher significance weight, we use accurate (i.e., exact) 4:2 compressors. For each accurate 4:2 

compressor, if the number of product terms is less than 4, the values of other inputs to this 

compressor are set to be 0. In the rightmost higher significance weight, the carry bit Cin of one 

accurate 4:2 compressor is from the Carry output of the leftmost middle significance weight, and the 

carry bit Cin of the other one accurate 4:2 compressor is set to be 0. 

4.2. The Second Stage 

Note that the second stage is only for the higher significance weights. In order to achieve high 

accuracy, we use accurate (i.e., exact) 4:2 compressors to reduce the maximum height of the PPM. 

The carry bit Cin of the rightmost accurate 4:2 compressor is set to be 0. As shown in  Fig. 5, after the 

second stage is completed, each higher significance weight has two product terms. 
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Figure 5: The PPM reduction in the proposed approximate multiplier 

 

5. RESULTS 

 

 

Figure 6: RTL Schematic of approximate multiplier 
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Figure 7: View Technology Schematic of approximate multiplier 

 

Figure 8: Simulated Waveforms of approximate multiplier 

Parameter  DADDA multiplier  Approximate multiplier 

No of LUTs 146 142 

Delay (ns) 24.257 22.186 

Power (m Watt) 1.191 1.158 
 

Table 1: Parameter comparison table 
 

 
Figure 9: LUT comparison bar graph 
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Figure 10: Delay comparison bar graph 

 

 
Figure 11: Power comparison bar graph 

6. CONCLUSION 

This project presents a low-power high-accuracy approximate 8 x 8 multiplier design. To achieve 

high accuracy, we use accurate (i.e., exact) 4:2 compressors in the higher significance weights. To 

reduce power consumption, we use high-order approximate compressors in the middle significance 

weights. The experimental results show that the proposed approximate multiplier design can save 

area power consumption and high speed compared to normal DADDA multiplier. To our knowledge, 

the proposed design is the first work that successfully utilizes high-order approximate compressors in 

the approximate multiplier design for achieving low power dissipation while still maintaining high 

accuracy. 
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