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Abstract—In this paper, we propose new 

location privacy preserving schemes for 

database-driven cognitive radio networks 

(CRN s) that protect secondary users’ (SU s) 

location privacy while allowing them to learn 

spectrum availability in their vicinity. Our 

schemes harness probabilistic set membership 

data structures to exploit the structured nature 

of spectrum databases (DBs) and SU s’ 

queries. This enables us to create a compact 

representation of DB that could be queried by 

SU s without having to share their location 

with DB, thus guaranteeing their location 

privacy. Our proposed schemes offer different 

cost performance characteristics. Our first 

scheme relies on a simple yet powerful two- 

party protocol that achieves unconditional 

security with a plausible communication 

overhead by making DB send a compacted 

version of its content to SU which needs only 

to query this data structure to learn spectrum 

availability. Our second scheme achieves 

significantly lower communication and 

computation overhead for SU s, but requires 

an additional architectural entity which 

receives the compacted version of the 

database and fetches the spectrum availability 

information in lieu of SU s to alleviate the 

overhead on the latter. We show that our 

schemes are secure, and also demonstrate that 

they offer significant advantages over existing 

alternatives for various performance and/or 

security metrics. 

I. INTRODUCTION 

Cognitive radio networks (CRN s) have 

emerged as a key technology for addressing 

the problem of spectrum utilization 

inefficiency. CRN’s allow unlicensed users, 

also referred to as secondary users (SU s), to 

access licensed frequency bands 

opportunistically, so long as doing so does not 

harm licensed users, also referred to as primary 

users (PU s). In order to enable SU s to  

identify vacant frequency bands, also called 

white spaces, the federal communications 

commission (FCC ) has adopted two main 

approaches: spectrum sensing based approach 

and geo-location database-driven approach. In 

the sensing-based approach, SU s themselves 

sense the licensed channels to decide whether a 

channel is available prior to using it so as to 

avoid harming PU s. In the database driven 

approach, SU s rely on a geo-location database 

(DB) to obtain channel availability 

information. For this, SU s are required to be 

equipped with GPS devices so as to be able to 

query DB on a regular basis using their exact 

locations. Upon receipt of a query, DB returns 

to SU the list of available This manuscript was 

published in: Computer Networks and 

Information Security (WSCNIS), 2015 World 

Symposium on. channels in its vicinity, as well 

as the transmission parameters that are to be 

used by SU . This database-driven approach 

has advantages over the sensing-based 

approach. First, it pushes the responsibility and 

complexity of complying with spectrum 

policies to DB. Second, it eases the adoption of 

policy changes by limiting updates to just a 

handful number of databases, as opposed to 

updating large numbers of devices. 
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A. Our Contribution 

In this paper, we propose two location 

privacy-preserving schemes for database- 

driven CRN s with different performance and 

architectural benefits. The first scheme, 

location privacy in database-driven CRNs 

(LPDB), provides optimal location privacy to 

SU s within DB’s coverage area by leveraging 

set membership data structures (used to test 

whether an element is a member of a set) to 

construct a compact version of DB. The 

second scheme, LPDB with two servers 

(LPDBQS), minimizes the overhead at SU ’s 

side at the cost of deploying an additional 

entity in the network. The cost performance 

tradeoff gives more options to system 

designers to decide which topology and which 

approach is more suitable to their specific 

requirements. 

II. METHODOLOGY 

Despite its importance, the location privacy 

issue in CRN s only recently gained interest 

from the research community. Some works 

focused on addressing this issue in the context 

of collaborative spectrum sensing while others 

focused on addressing it in the context of 

dynamic spectrum auction. However, these 

works are not within the scope of this paper as 

we focus on the location privacy issue in 

database-driven CRN s. 

 

III. SYSTEM MODEL AND SECURITY 

ASSUMPTIONS 

A. Database-driven CRN Model 

We first consider a CRN that consists 

of a set of SU s and a geo-location database 

(DB). SU s are assumed to be enabled with 

GPS and spectrum sensing capabilities, and to 

have access to DB to obtain spectrum 

availability information within its operation 

area. To learn about spectrum availability, a 

SU queries DB by including its location and 

its device characteristics. DB responds with a 

list of available channels at the specified 

location and a set of parameters for 

transmission over those channels. SU then 

selects and uses one of the returned channels. 

While using the channel, SU needs to recheck 

its availability on a daily basis or whenever it 

changes its location by 100 meters as 

mandated by PAWS . 

B. Security Model and Assumptions DB and 

QS are assumed to be honest but curious. That 

is, DB and QS follow the protocol honestly but 

may try to infer information on the input of 

other parties beyond what the output of the 

protocol reveals. Specifically, our objective is 

to prevent these two entities from learning SU 

s’ location. Therefore, our  security 

assumptions are as follows: Security 

Assumption 1. DB and QS do not modify the 

integrity of their input. That is, (i) DB does not 

maliciously change SU ’s query’s content; (ii) 

QS does not modify the input that it receives 

from DB or SU . Security Assumption 2. DB 

and QS do not collude with each other to infer 

the location of SU s from their queries. 

 

IV. SET MEMBERSHIP DATA 

STRUCTURES 

Our proposed privacy-preserving schemes 

utilize set membership data structures to 

exploit the highly structured property of DB. 

There are several data structures that are 

designed for set membership tests, e.g. bloom 

filter, cuckoo filter, etc. However, in this  

paper, we opt for cuckoo filter as the building 

block of our schemes. We use cuckoo filter to 

construct a compact representation of the 

spectrum geolocation database as explained in 

Sections V-A & V-B. What motivates our 

choice is that cuckoo filter offers the highest 

space efficiency among its current well known 

alternatives, such as bloom filters. Besides, it 

has been proven to be more efficient than these 

alternatives especially for large sets 

 

Fig: Cuckoo Filter: 2 hashes per item, 8 buckets 

each containing 4 entries 

V. PROPOSED SCHEMES 

In this section, we describe our proposed 

schemes. The first scheme, LPDB, is simple as 

it involves only two parties, SU s and DB, and 

provides unconditional location privacy to SU  

s within the coverage area of DB. The second 

scheme, LPDBQS, offers computational 

privacy with a significantly reduced overhead 

on SU s’ side compared to LPDB, but at the 
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cost of introducing an extra architectural 

entity. 

 

A. LPDB 

In this section, we describe our basic 

scheme, which is referred to as location 

privacy in database-driven CRN s (LPDB). 

The novelty of LPDB lies in the use of set 

membership data structures to construct a 

compact (space efficient) representation of 

DB that can be sent to querying SU s to 

inform them about spectrum availability. In 

our scheme, instead of sending its location, a 

SU sends only its characteristics (e.g., its 

device type, its antenna type, etc.), as 

specified by PAWS to DB, which then uses 

them to retrieve the corresponding entries in 

all possible locations. DB then puts these 

entries in a cuckoo filter and sends it to SU . 

Upon receiving this filter, SU constructs a 

query that includes its characteristic 

information, its location, and one of the 

possible channels with its associated 

parameters. SU then looks up this query in the 

received cuckoo filter to see whether that 

channel is available in its current location. 

 

B. LPDBQS 

In this section, we propose a new scheme, 

LPDBQS, which offers better performance at 

SU s’ side than that of LPDB. This comes at 

the cost of deploying an additional entity, 

referred to as query server (QS), and having a 

computational security as opposed to 

unconditional. QS is introduced to handle SU 

s’ queries instead of DB itself, which prevents 

DB from learning information related to SU s’ 

location information. QS learns nothing but 

secure messages sent by SU s to check the 

availability of a specific channel. • Intuition: 

We introduce QS to avoid sending CF, which 

might be large, to SU . Instead, CF, that 

contains HMAC secure entries inserted by DB 

using a secret key provided by SU , is sent to 

QS through a high throughput link pre- 

established with DB. SU just needs to query, 

using HMAC messages, QS which looks for 

its queries in CF. Using HMAC , SU can hide 

the content of the query string, which includes 

its location information, among others, from 

QS which ignores the key used to construct 

the hashed query and the CF. This not only 

prevents QS from learning the query’s content 

but also the entry that matches it in the filter. 

As most of the computation and 

communication overhead are incurred by both 

DB and QS, this scheme is the most efficient in 

terms of overhead incurred by SU’s. 

VI. SECURITY ANALYSIS 

In this section, we analyze the security of our 

proposed schemes LPDB and LPDBQS. 

Theorem 1. Under Security Assumptions 1 and 

2, LPDB does not leak any information on SU 

s’ location. Proof: We construct a history list H 

of each entity’s knowledge about SU s’ 

information during the execution of LPDB. SU 

. A SU cannot learn anything about other SU s 

information nor the filters {CFi,t} n−1,tf 

i=1,t=t0 that they receive from DB as the 

communication between each SU and DB is 

secured, i.e. HSU = ∅ . Note that, even if, a SU 

would learn the filters of other SU s, i.e. HSU 

= {CFi,t} n−1,tf i=1,t=t0 , HSU includes no 

information about SU s’ location. DB. In Step 

1 of Algorithm 1, DB learns HDB = {char} n 

i=1 which contains the characteristics of the 

querying SU s. HDB may include information 

like frequency ranges in which SU can operate, 

antenna characteristics, etc. This information is 

not related to the querying SU s’ location. This 

shows that the knowledge that DB gains during 

the execution of LPDB does not allow it to 

infer SU s’ location when they try to learn 

about spectrum opportunities. LPDB offers an 

unconditional privacy in the sense that DB’s 

knowledge about SU s’ location, during the 

execution of LPDB, does not increase 

compared to its initial knowledge, which is 

necessarily the coverage area  of  DB. Theorem 

2. Under Security Assumptions 1 and 2 

LPDBQS does not leak any information about 

SU s’ location beyond κ − HMAC secure 

values. Proof: We construct a history list of 

each entity’s knowledge during the execution 

of LPDBQS. SU . As the communication 

between different entities is secured, SU s 

cannot learn any information about the 

communicated  information   of  other entities, 

i.e. HSU = ∅ . DB. In Line 1 of Algorithm 2, 

DB learns HDB = {ki,t, char i , ts t} n,tf 

i=0,t=t0 . Obviously, SU s’ secret keys {ki,t} 

n,tf i=0,t=t0 and timestamp values {ts t} tf t=t0 

cannot leak any information about SU s’ 

location since these values are not correlated to 

their physical location. Similarly, their 

characteristics {char i} n i=1 contain 

information about SU s’ devices capabilities, 

like  their  possible  transmit  powers, antennas 
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height, etc, which cannot be used to localize 

them. This proves that DB’s knowledge about 

SU s’ location during the execution of 

LPDBQS does not differ from its initial 

knowledge; i.e. that SU s are within DB’s 

covered area. QS. As indicated in Lines 8 & 

12 of Algorithm 2, the only information that 

QS can learn during the execution of 

LPDBQS, is HQS = {yki,t , CFki,t } n,tf 

i=1,t=t0 . {yki,t } n,tf i=1,t=t0 are as secure as 

HMAC . The elements of {CFki,t } n,tf 

i=1,t=t0 are computed using a pseudo random 

function (as an HMAC is also a pseudo 

random  function)   with   SU   s’   secret keys 

{ki,t} n,tf i=1,t=t0 , where {ki,t} n,tf i=1,t=t0 

$← {0, 1} κ and κ is the security level. {yki,t 
} n,tf i=1,t=t0 are independent from each 

other. The same applies to {CFki,t } n,tf 

i=1,t=t0 . Each query from {yki,t } n,tf 

i=1,t=t0 has a corresponding HMAC key, 

which means that even for the same SU 

querying the same information, there will be 

randomly independent and uniformly 

distributed outputs generated by DB and SU s. 

Since only SU s and DB know the keys {ki,t} 

n,tf i=1,t=t0 and that these keys are updated 

for every query made by SU s, QS cannot 

learn any information about SU s’ location as 

long as it does not collude with DB as stated 

in Security Assumption 2. Correlating queries 

{yki,t } n,tf i=1,t=t0 to SU s’  physical 

location is equivalent to breaking the 

underlying HMAC or P RF, which is of 

probability 1/2 κ . We can conclude that 

LPDBQS is as secure as the underlying 

HMAC . 

 

VII. EVALUATION AND ANALYSIS 

In this section, we evaluate the performance 

of our proposed schemes. We consider that 

DB’s covered area is modeled as a √ m × √ m 

grid that contains m cells each represented by 

one location pair (locX ,locY ) in DB. We use 

the efficient cuckoo filter implementation 

provided in for our performance analysis with 

a very small false positive rate = 10−8 and a 

load factor α = 0.95. In addition, since 

personal/portable TVBD devices of SU s can 

only transmit on available channels in the 

frequency bands 512 − 608 MHz (TV 

channels 21−36) and 614-698 MHz (TV 

channels 38−51), this means that users can 

only access 31 white-space TV band channels 

in a dynamic spectrum access manner. 

Therefore, in our evaluation we set the 

number of TV channels s = 31. 

 

A. Communication and Computation 

Overhead 

1) Communication Overhead: We provide 

analytical expressions of the communication 

overhead of these schemes in Table II. For 

LPDB, we provide two expressions of the 

overhead with respect to two scenarios: (i) 

when SU s do not reveal one of their 

coordinates, (ii) when one of the coordinates is 

revealed by SU s. In both scenarios the data 

transmitted consist basically of query, sent by 

SU , and the response of DB to it. 
 

 

Fig: Communication Overhead 
 

2) Computational Overhead: 

 

We also investigate the efficiency of our 

proposed schemes in terms of their 

computational overhead. We evaluate the 

computation required at each entity separately, 

and we provide the corresponding analytical 

expression of the overhead. 

Again we provide two estimated costs for both 

scenarios of LPDB. The computation of DB is 

given in terms of the number of insertions it 

has to perform into CF. This depends on the 

number of DB entries that comply with query 

considering only the available channels. 

 

This number is equal to %·s ·m in LPDB 

and reduces to % · s · √ m in LPDB with 

leakage. For the computational cost at the SU 

’s side, LPDB’s overhead depends solely on 

the number of possible channels, s, and the 

cost of one Hash and one Lookup operations. 
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Fig: Lookup Performance 

 

We also assess the insertion throughput that 

DB experiences to construct the CF as a 

function of the load factor α as shown in 

Figure. As opposed to the lookup throughput 

shown in Figure a, CF has a decreasing insert 

throughput when it is more filled (though their 

overall construction speed is still high). This 

is mainly due to the fact that CF may have to 

move a sequence of existing fingerprints 

recursively before successfully inserting a 

new item, and this process becomes more 

expensive when the load factor grows higher. 

3) Impact of varying the percentage % of 

entries with available channels: We also study 

the impact of % on the overhead incurred by 

our schemes. For this, we plot in Figure 6 the 

communication and the system computational 

overheads for different values of %. We plot 

only LPDB and LPDB with leakage as 

LPDBQS has almost the same overhead as 

LPDB. 

B. Location privacy 

We compare our schemes to existing 

approaches in terms of location privacy level 

by presenting the security problems on which 

they rely as illustrated in Table III. We also 

precise the localization probability of SU s 

under these schemes. The best probability that 

could be achieved is 1/m, i.e. SU s are within 

DB coverage area. If one of the schemes is 

broken then this probability increases 

considerably. LPDB offers unconditional 

security, as SU s do not share any information 

that could reveal their location. LPDB could be 

seen as a variant of PIR in which the server 

sends a whole copy of the database to the user 

and this is the only way to achieve information 

theoretic privacy (i.e. cannot be broken even 

with computationally unbounded adversary) in 

a single server setting. Even if one of the 

coordinates is intentionally revealed by a SU , 

its location is still indistinguishable from √ m − 

1 remaining possible locations. 
 

 
VIII. CONCLUSION 

In this paper, we have proposed two location 

privacy preserving schemes, called LPDB and 

LPDBQS, that aim to preserve the location 

privacy of SU s in database-driven CRN s. 

They both use set membership data structures 

to transmit a compact representation of the 

geo-location database to either SU or QS, so 

that SU can query it to check whether a 

specific channel is available in its vicinity. 

These schemes require different architectural 

and performance tradeoffs. 
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