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Abstract: MapReduce is a popular parallel 

computing paradigm for large-scale data 

processing in clusters and data centers. A 

MapReduce workload generally contains a set of 

jobs, each of which consists of multiple map 

tasks followed by multiple reducetasks. 

Due to 1) that map tasks can only run in map 

slots and reduce tasks can only run in reduce 

slots, and 2) the general executionconstraints that 

map tasks are executed before reduce tasks, 

different job execution orders and map/reduce 

slot configurations for a MapReduce workload 

have significantly different performance and 

system utilization. This paper proposes two 

classes of algorithms to minimize the makespan 

and the total completion time for an offline 

MapReduce workload. Our first class of 

algorithms focuses on the job ordering 

optimization for a MapReduce workload under a 

given map/reduce slot configuration. In contrast, 

our second class of algorithms considers the 

scenario that we can perform optimization for 

map/reduce slot configuration for a MapReduce 

workload.We perform simulations as well as 

experiments on Amazon EC2 and show that our 

proposed algorithms produce results that are up 

to 50- 80 percent better than currently 

unoptimized Hadoop, leading to significant 

reductions in running time inpractice. 

I. INTRODUCTION 

MAPREDUCE is a widely used computing 

model for large scale data processing in 

cloud computing. A MapReduce job consists 

of a set of map and reduce tasks, where 

reduce tasks are performed after the 

maptasks.Hadoop, an open source 

implementation of MapReduce, has been 

deployed in large clusters containing 

thousands of machines by companies such 

as Amazon and Facebook. In those cluster  
 

 

 

 

and data center environments, MapReduce and 

Hadoop are used to support batch processing for 

jobs submitted from multiple users (i.e., 

MapReduce workloads).Despite many research 

efforts devoted to improve the performance of a 

single MapReduce job, there is relatively little 

attention paid to the system performance of 

MapReduce workloads. Therefore, this paper tries 

to improve the performance of Map Reduce work 

loads .Makespan and total completion time (TCT) 

are two key performance metrics. Generally, 

makespan is defined as the time period since the 

start of the first job until the completion of the last 

job for a set of jobs. It considers the computation 

time of jobs and is often used to measure the 

performance and utilization efficiency of a system. 

In contrast, total completion time is referred to as 

the sum of completed time periods for all jobs 

since  the start of the first job. It is a generalized 

makespan with queuing time (i.e., waiting time) 

included.We can use it to measure the satisfaction 

to the system from a single job’s perspective 

through dividing the total completion time by the 

number of jobs (i.e., average completion time). 

Therefore, in this paper, we aim to optimize these 

two metrics. 

II. METHODOLOGY 

In this section, we give an overview of 

related work from two aspects. First, we 

review batch job ordering optimization work 

in HPC literature. Second, we summarize the 

MapReduce job optimization work 

proposedin recentyears. 

A. Job Ordering Optimization 
The batch job ordering problem has been 

extensively studied in the high performance 

computing literature. Minimizing the makespan 

has been shown to be NP-hard, and a number of 

approximation and heuristic algorithms have been 

proposed. 
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In addition, there has been work on bi-criteria 

optimization which aims to mini size makespan 

and total completion time simultaneously, such 

as. 

The previous works all focused on the single-

stage parallelism, where each job only has a 

single stage. In contrast, MapReduce is an 

interleaved parallel and sequential computation 

model which is related to the two-stage hybrid 

flow shop (2HFS) problem. Minimizing the 

makespan for 2HFS is strongly NP-hard when at 

least one stage contains multiple processors. 

There has been a large body of approximation 

and heuristic algorithms proposed for 2HFS. 

Additionally, there has been work targeted at the 

bi-criteria optimization of both make- span and 

total completion time. 

The main difference between MapReduce and 

traditional 2HFS is that MapReduce jobs can run 

multiple map and reduce tasks concurrently in 

each phase, whereas 2HFS allows at most one 

task to be processed at a time. In this way, 

MapReduce is more similar to the two-stage 

hybrid flow shop with multiprocessor tasks 

(2HFSMT), problem, which allows a task at  

each stage can be processed on multiple 

processorssimultaneously. One is a greedy 

algorithm job ordering method based on 

Johnson’s Rule.Another is a heuristic algorithm 

called Balanced Pool. They discuss and evaluate 

the algorithms experimentally. We follow their 

job ordering approach (i.e., MK_JR algorithm in 

our paper). But our main contributions go 

beyond it in a number of significant 

aspects.First, we prove a 1 þ d upper bound on 

the approximation ratio of our MK_JR 

algorithm. 

Second, we give the relationship between upper-

bound makespan, lower-bound makespan, and 

the corresponding job orders. Additionally, our 

MK_TCT_JR algorithm obtains a trade-off in 

the makespan and total completion time, which 

produces very good results. Moreover, for online 

workloads, we proposed a prototype named 

MROrder to perform online job ordering 

optimization by incorporating MK_JRalgorithm. 

B. MapReduce Job Optimization 

There is a large body of research work that 

focuses on the optimization for MapReduce 

jobs. One optimization policy focuses on the 

architectural design and optimization issues.  

We propose a set of general low-level 

optimizations including improving I/O 

speed,utilizing indexes, using fingerprinting for 

faster key comparisons, and block size tuning. 

presented an I/O-efficient MapReduce system 

called Themis that improves the performance of  

MapReduce by  minimizing  the   number   of   

I/O operations. Likewise, Sailfish improves 

MapReduce’s performance through more efficient 

disk I/O. It mitigates partitioning skew in 

MapReduce by choosing the number of reduce 

tasks and intermediate data partitioning 

dynamically at runtime, using an index 

constructed on intermediate data. There are also 

methods that reduce I/O cost in MapReduce by 

using indexing structures, column-oriented 

storage. proposed a scheduling technique and 

implemented a prototype called Adaptive 

Scheduler that can adaptively manage the 

workload performance with the awareness of 

hardware heterogeneity, distributed storage to 

meet user’s deadline requirement. propose a 

flexible scheduling allocation scheme called 

FLEX, which can optimize any of a variety of 

standard scheduling theory metrics, such as 

response time, stretch, makespan. proposed a 

dynamic slot allocation system called 

DynamicMR to improve the performance for the 

slot-based Hadoop MRv1, by allowing map (or 

reduce) tasks can be run on map slots and 

reduceslots. 

C. Problem FormulationAnd 

PerformanceModel 

In this section, we give a formal model for 

MapReduce and formalize its associated 

optimization problems. 

1) ProblemFormulation 

A MapReduce job Ji computation consists of two 

phases, a map phase M and reduce phase R. Each 

phase consists of a number of tasks. We 

writejJiMjandjJiRjforthenumberoftasksin 

Ji’s map phase and reduce phase, respectively. 

Let tMi;j and tRi;j denote the execution time of 

Ji’sjjth map task and jth reduce task, respectively. 

We consider a MapReduce workload with a set of 

independent jobs J ¼ {J1; J2; .. . Jn}, for some n. 

These jobs can be executed in any order. The 

workload is executed on a MapReduce cluster 

under FIFO scheduling, consisting of a set of 

(map and reduce) slots, denoted as S. 
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Fig:Flow for the simplified case 

MapReduce tasks execution 

Let f denote the job submission order for a 

MapReduce workload. We focus on the offline 

situation in which all the jobs are available at 

time 0. Let ci   denote   the   completion time    

of Ji (i.e., the time when Ji’s reduce tasks all 

finish). The   makespan   for   the 

workload    J1;  ...  ;   Jn    is    defined     as 

Cmax  ¼   maxi2½n]fcig.   The   total 

completion  time  for   the   workload   is  

defined as Ctct ¼Pi2½n]ci. 

In our work, we consider four optimization 

problems, defined as follows: 

Problem 1. Find an ordering f to execute the 

jobs J1; ... ; Jn in a MapReduce workload such 

that Cmax is minimized, under a given slot 

configuration ðSM; SRÞ? 

Problem 2. Find an ordering f to execute the 

jobs J1; ... ; Jn in a MapReduce workload that 

can optimize (minimize) Cmax and Ctct 

simultaneously, under a given slot 

configuration ðSM; SRÞ? 

Moreover, if we are MapReduce cluster 

administrators, we can perform the following 

optimization work: 

Problem 3. Find a map/reduce slot 

configuration ðSM; SRÞ and ordering f to 

execute the jobs J1; 

... ; Jn in a MapReduce workload such that 

Cmax is minimized, under a given value of 

total slotsS? 

Problem 4. Find a map/reduce slot 

configuration ðSM; SRÞ and ordering f to 

execute the jobs J1; 

Jn in a MapReduce workload that can optimize 

(minimize) Cmax and Ctctsimulta- neously, 

under a given value of total slots S? 

2)Performance Model for Makespan and 

Total CompletionTime 

In this section, we aim to deduce the 

mathematical per- formancemodel  

formakespan  and  total  completion  time.  We  

start  by   considering   a   simplified   case 

where we can give a close-form formula for 

makespan  and  total  completion  time.   

 

Next, we   consider   the    general    case    in  

which   it is complex and difficult to get the exact 

mathematical formula. Instead, we deduce an 

upper bound forit. 

We first consider a simplified case where jSMj¼ 

1 andjSRj¼ 1. It turns out to be a perfect two-

machine flow-shop problem. gives an example of 

an execution for this case. For each job Ji, let TiM 

be the total processing time of map tasks and TiR 

be the total processing time for the reduce tasks. 

Let Xi be the idle period of time for reduce 

machines before the reduce tasks of job Ji 

startrunning. 

D. Job Ordering Optimization 

ForMapreduce Workload 

his section attempts to address Problem 1 and 

Problem 2. We first focus on makespan 
optimization. We describe the MK_JR algorithm 

that produces the optimized job order and also 

prove its approximation ratio. We also describe 

the job order which gives the worst, i.e., longest 

makespan, which is used for derivation of the 

upper bound makespan of a workload. Next, we 

describe the MK_TCT_JR algorithm, which 

optimizes both makespan and total completion 

time. Finally, it shows that the orderings 

produced by MK_JR and MK_TCT_JR are 

stable, even when MapReduce servers fail. 

1) Makespan Optimization  

Recall the simplified case described in the 
previous section, where the number of map and 

reduce tasks of all the jobs were divisible by the 

number of map and reduce slots. The optimal job 

order for the simplified case can be obtained by 
using Johnson’s Rule  which is an efficient job 
ordering algorithm for the minimum makespan 

Copt max for the two-stage flow shop with one 
processor per stage. When the number of tasks is 

not divisible by the number of slots, the 

makespan minimization problem becomes NP-

hard which has first noted it and proposed an 
algorithm based on Johnson’s rule. 

2) Bi-Criteria Optimization of Makespan and 

Total Completion Time 

Makespan and total completion time are two key 

performance metrics. Generally, makespan refers 

to the maximum completion time for a batch of 

jobs.  

It considers the computation time of jobs and is 
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often used to measure the performance 

and utilization efficiency of a system.  

In contrast, total completion time is the sum of 

completion time of all jobs. It is a generalized 

makespan with queuing time (i.e., waiting 

time) included. It can be used to measure the 

satisfaction to the system from a single job’s 

perspective. So far, we focus only on the 

optimization of makespan. Note that the total 

completion time that can be poor subject to 

obtaining optimal makespan, as illustrated in 

Fig. Therefore, there is a need for bi-criteria 

optimization on both makespan and total 

completion time. Intuitively, the makespan is 

affected primarily by the positions of large-

size jobs. In contrast, the total completion time 

is mainly influenced by the positions of small-

size jobs. The algorithm shortest processing 

time first (SPTF) is optimal for the total 
completion time on a single machine where 

there is one task per job and no precedence 

constrains. 

However, MK_JR is not aware of varying job 

sizes. Indeed, the job order produced by 

MK_JR can have adverse effect on the total 

completion time if we follow Johnson’s Rule 

strictly in some scenarios. 

III. EXPERIMENTRESULTS 

To well reflect practical workloads, we 

generate our testbed workloads by choosing 

nine benchmarks arbitrarily from Pur- due 

MapReduce Benchmarks Suite1 and using 

their provided datasets. The detailed 

benchmarks are described asfollows. 

WordCount: Computes the occurrence 

frequency of each word in adocument.Sort: 

Sorts the data in the input files in a 

dictionaryorder. 

Grep: Finds the matches of a regex in the 

inputfiles. 

InvertedIndex: Takes a list of documents as 

input and generates word-to-

documentindexing.Classification: Classifies 

the input into one of k pre- determinedclusters.  

HistogramMovies: Generates a histogram of 

input data and is a generic tool used in many 

dataanalyses. 

HistogramRatings: Generates a histogram of 

the ratings as opposed to that of the movies 

based on their averageratings. 

SequenceCount: Generates a count of all unique sets of 

three consecutive words per document in the inputdata. 

TeraSort: Sorts 100-byte <key,value> tuples on 

the keys where key is a 10-byte field and the rest 

of the bytes as value(payload). 

A. Job Ordering Optimization Algorithms 

Let’s begin with the evaluation of job 

ordering optimization algorithms MK_JR 

and MK_TCT_JR first presents 

thenormalized performance results for 

testbed workloads under three different job 

orders, i.e., an unoptimized job order based 

on Theorem 2, the job order based on 

MK_JR and the job order based on 

MK_TCT_JR, in a Hadoop cluster, where we 

configure three map and one reduce slots per 

slave node. Therefore, we have jSMj¼ 

57 and jSRj ¼ 19. For makespan (or total 

completion time), we normalize it by using 

makespan speedup (or total completion time 

speedup), defined as the ratio of makespan (or 

total completion time) from the unoptimized case 

to that from the designated job order. Moreover, 

there is a slight drop in makespan speedup for 

MK_TCT_JR in comparison to MK_JR, 

sacrificing a bit performance improvement in 

makespan for a good total com- pletion time. It 

can be noted in that MK_TCT_JR has a good 

total completion time speedup. 

B. Slot Configuration Optimization 

Algorithms 

In this section, let’s come to evaluate map/reduce 

slot con- figuration optimization algorithms, 

namely, Algorithm MK_SF_JR and Algorithm 

MK_TCT_SF_JR. Fig. 6 illustrates experimental 

results for testbed workloads under various slot 

configuration optimization algorithms. 

Particularly, we take the Hadoop default 

configuration which sets each slave node with two 

map slots and two reduce slots as the unoptimized 

case. Then for 19 slave nodes, it holds jSMj¼ 38 

and jSRj¼ 38. Here, there is about 24 ~ 41 percent 

performance improvement from Algorithm 

MK_SF_JR. For Algorithm MK_TCT_SF_JR, in 

contrast, it is a bi-criteria optimization algorithm 

for make- span and total completion time. They 

illustrate that  there  is  a  significant performance 

improvement (112 ~ 132) percent for total 

completion time,  
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at the expense of a small drop in 

makespan improvement in comparison 

to Algorithm MK_SF_JR.  

Likewise, we will show for Facebook 

workloads that therecan also be a very 

seriously negativeimpact in total completion 

time for Algorithm MK_SF_JR, whereas 

Algorithm MK_TCT_SF_JR can overcome 

and improve it significantly. 

C.Simulation Result with Synthetic      

Facebook Workload 

MapReduce jobs in production at Facebook in 

October 2009, provided by Zaharia. They are 

classified into nine bins based on job sizes 

(numbers of maps). We make our synthetic 

workloads (SW for short) by picking 

representative sizes and number of jobs from 

each bin based on the percentage of the total 

number of jobs as well as the size of SW. 

Table: Facebook and Sizes and Number of 

Jobs.        

 
 

IV. CONCLUSION &FUTUREWORK 

This paper focuses on the job ordering and 

map/reduce slot configuration issues for 

MapReduce production workloads that run 

periodically in a data warehouse, where the 

aver- age execution time of map/reduce tasks 

for a MapReduce job can be profiled from the 

history run, under the FIFO scheduling in a 

Hadoop cluster. Two performance metrics are 

considered, i.e., makespan and total 

completion time. We first focus on the 

makespan. 

Map/reduce slot configurationoptimization 

algorithm. We observe that the total 

completion time can be poor subject to getting 

the optimal make-span, therefore, we further 

propose a new greedy job ordering algorithm 

to minimize the makespan and total 

completion time together.  

The theoretical analysis is also given for our 

proposed heuristic algorithms, including approximation 

ratio, upper and lower bounds on makespan.  

Finally, we conduct extensive experiments to 

validate the effectiveness of our proposed 

algorithms and their theoretical results. 
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