
Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-7 No. 11 July 2020

Page | 106 www.junikhyat.com Copyright ⓒ 2020 Authors

DYNAMIC JOB SCHEDULING FOR MAPREDUCE WORKLOADS
THROUGH SLOT CONFIGURATION TECHNIQUE

Mr. G. J. SUNNYDEOL

Assistant Professor, Department of CSE, Sri Mittapalli College of Engineering,

Tummalapalem, on NH-16, Guntur, Andhra Pradesh, India.

1) O. SAI, 2) R. SANKAR, 3) A. AJAY, 4) K. NAVEEN
B. Tech Student, Department of CSE, Sri Mittapalli College of Engineering,

Tummalapalem, on NH-5, Guntur, Andhra Pradesh, India.

Abstract: MapReduce is a popular parallel

computing paradigm for large-scale data

processing in clusters and data centers. A

MapReduce workload generally contains a set of

jobs, each of which consists of multiple map

tasks followed by multiple reducetasks.

Due to 1) that map tasks can only run in map

slots and reduce tasks can only run in reduce

slots, and 2) the general executionconstraints that

map tasks are executed before reduce tasks,

different job execution orders and map/reduce

slot configurations for a MapReduce workload

have significantly different performance and

system utilization. This paper proposes two

classes of algorithms to minimize the makespan

and the total completion time for an offline

MapReduce workload. Our first class of

algorithms focuses on the job ordering

optimization for a MapReduce workload under a

given map/reduce slot configuration. In contrast,

our second class of algorithms considers the

scenario that we can perform optimization for

map/reduce slot configuration for a MapReduce

workload.We perform simulations as well as

experiments on Amazon EC2 and show that our

proposed algorithms produce results that are up

to 50- 80 percent better than currently

unoptimized Hadoop, leading to significant

reductions in running time inpractice.

I. INTRODUCTION

MAPREDUCE is a widely used computing

model for large scale data processing in

cloud computing. A MapReduce job consists

of a set of map and reduce tasks, where

reduce tasks are performed after the

maptasks.Hadoop, an open source

implementation of MapReduce, has been

deployed in large clusters containing

thousands of machines by companies such

as Amazon and Facebook. In those cluster

and data center environments, MapReduce and

Hadoop are used to support batch processing for

jobs submitted from multiple users (i.e.,

MapReduce workloads).Despite many research

efforts devoted to improve the performance of a

single MapReduce job, there is relatively little

attention paid to the system performance of

MapReduce workloads. Therefore, this paper tries

to improve the performance of Map Reduce work

loads .Makespan and total completion time (TCT)

are two key performance metrics. Generally,

makespan is defined as the time period since the

start of the first job until the completion of the last

job for a set of jobs. It considers the computation

time of jobs and is often used to measure the

performance and utilization efficiency of a system.

In contrast, total completion time is referred to as

the sum of completed time periods for all jobs

since the start of the first job. It is a generalized

makespan with queuing time (i.e., waiting time)

included.We can use it to measure the satisfaction

to the system from a single job’s perspective

through dividing the total completion time by the

number of jobs (i.e., average completion time).

Therefore, in this paper, we aim to optimize these

two metrics.

II. METHODOLOGY

In this section, we give an overview of

related work from two aspects. First, we

review batch job ordering optimization work

in HPC literature. Second, we summarize the

MapReduce job optimization work

proposedin recentyears.

A. Job Ordering Optimization
The batch job ordering problem has been

extensively studied in the high performance

computing literature. Minimizing the makespan

has been shown to be NP-hard, and a number of

approximation and heuristic algorithms have been

proposed.

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-7 No. 11 July 2020

Page | 106 www.junikhyat.com Copyright ⓒ 2020 Authors

In addition, there has been work on bi-criteria

optimization which aims to mini size makespan

and total completion time simultaneously, such

as.

The previous works all focused on the single-

stage parallelism, where each job only has a

single stage. In contrast, MapReduce is an

interleaved parallel and sequential computation

model which is related to the two-stage hybrid

flow shop (2HFS) problem. Minimizing the

makespan for 2HFS is strongly NP-hard when at

least one stage contains multiple processors.

There has been a large body of approximation

and heuristic algorithms proposed for 2HFS.

Additionally, there has been work targeted at the

bi-criteria optimization of both make- span and

total completion time.

The main difference between MapReduce and

traditional 2HFS is that MapReduce jobs can run

multiple map and reduce tasks concurrently in

each phase, whereas 2HFS allows at most one

task to be processed at a time. In this way,

MapReduce is more similar to the two-stage

hybrid flow shop with multiprocessor tasks

(2HFSMT), problem, which allows a task at

each stage can be processed on multiple

processorssimultaneously. One is a greedy

algorithm job ordering method based on

Johnson’s Rule.Another is a heuristic algorithm

called Balanced Pool. They discuss and evaluate

the algorithms experimentally. We follow their

job ordering approach (i.e., MK_JR algorithm in

our paper). But our main contributions go

beyond it in a number of significant

aspects.First, we prove a 1 þ d upper bound on

the approximation ratio of our MK_JR

algorithm.

Second, we give the relationship between upper-

bound makespan, lower-bound makespan, and

the corresponding job orders. Additionally, our

MK_TCT_JR algorithm obtains a trade-off in

the makespan and total completion time, which

produces very good results. Moreover, for online

workloads, we proposed a prototype named

MROrder to perform online job ordering

optimization by incorporating MK_JRalgorithm.

B. MapReduce Job Optimization

There is a large body of research work that

focuses on the optimization for MapReduce

jobs. One optimization policy focuses on the

architectural design and optimization issues.

We propose a set of general low-level

optimizations including improving I/O

speed,utilizing indexes, using fingerprinting for

faster key comparisons, and block size tuning.

presented an I/O-efficient MapReduce system

called Themis that improves the performance of

MapReduce by minimizing the number of

I/O operations. Likewise, Sailfish improves

MapReduce’s performance through more efficient

disk I/O. It mitigates partitioning skew in

MapReduce by choosing the number of reduce

tasks and intermediate data partitioning

dynamically at runtime, using an index

constructed on intermediate data. There are also

methods that reduce I/O cost in MapReduce by

using indexing structures, column-oriented

storage. proposed a scheduling technique and

implemented a prototype called Adaptive

Scheduler that can adaptively manage the

workload performance with the awareness of

hardware heterogeneity, distributed storage to

meet user’s deadline requirement. propose a

flexible scheduling allocation scheme called

FLEX, which can optimize any of a variety of

standard scheduling theory metrics, such as

response time, stretch, makespan. proposed a

dynamic slot allocation system called

DynamicMR to improve the performance for the

slot-based Hadoop MRv1, by allowing map (or

reduce) tasks can be run on map slots and

reduceslots.

C. Problem FormulationAnd

PerformanceModel

In this section, we give a formal model for

MapReduce and formalize its associated

optimization problems.

1) ProblemFormulation

A MapReduce job Ji computation consists of two

phases, a map phase M and reduce phase R. Each

phase consists of a number of tasks. We

writejJiMjandjJiRjforthenumberoftasksin

Ji’s map phase and reduce phase, respectively.

Let tMi;j and tRi;j denote the execution time of

Ji’sjjth map task and jth reduce task, respectively.

We consider a MapReduce workload with a set of

independent jobs J ¼ {J1; J2; .. . Jn}, for some n.

These jobs can be executed in any order. The

workload is executed on a MapReduce cluster

under FIFO scheduling, consisting of a set of

(map and reduce) slots, denoted as S.

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-7 No. 11 July 2020

Page | 107 www.junikhyat.com Copyright ⓒ 2020 Authors

Fig:Flow for the simplified case

MapReduce tasks execution

Let f denote the job submission order for a

MapReduce workload. We focus on the offline

situation in which all the jobs are available at

time 0. Let ci denote the completion time

of Ji (i.e., the time when Ji’s reduce tasks all

finish). The makespan for the

workload J1; ... ; Jn is defined as

Cmax ¼ maxi2½n]fcig. The total

completion time for the workload is

defined as Ctct ¼Pi2½n]ci.

In our work, we consider four optimization

problems, defined as follows:

Problem 1. Find an ordering f to execute the

jobs J1; ... ; Jn in a MapReduce workload such

that Cmax is minimized, under a given slot

configuration ðSM; SRÞ?

Problem 2. Find an ordering f to execute the

jobs J1; ... ; Jn in a MapReduce workload that

can optimize (minimize) Cmax and Ctct

simultaneously, under a given slot

configuration ðSM; SRÞ?

Moreover, if we are MapReduce cluster

administrators, we can perform the following

optimization work:

Problem 3. Find a map/reduce slot

configuration ðSM; SRÞ and ordering f to

execute the jobs J1;

... ; Jn in a MapReduce workload such that

Cmax is minimized, under a given value of

total slotsS?

Problem 4. Find a map/reduce slot

configuration ðSM; SRÞ and ordering f to

execute the jobs J1;

Jn in a MapReduce workload that can optimize

(minimize) Cmax and Ctctsimulta- neously,

under a given value of total slots S?

2)Performance Model for Makespan and

Total CompletionTime

In this section, we aim to deduce the

mathematical per- formancemodel

formakespan and total completion time. We

start by considering a simplified case

where we can give a close-form formula for

makespan and total completion time.

Next, we consider the general case in

which it is complex and difficult to get the exact

mathematical formula. Instead, we deduce an

upper bound forit.

We first consider a simplified case where jSMj¼

1 andjSRj¼ 1. It turns out to be a perfect two-

machine flow-shop problem. gives an example of

an execution for this case. For each job Ji, let TiM

be the total processing time of map tasks and TiR

be the total processing time for the reduce tasks.

Let Xi be the idle period of time for reduce

machines before the reduce tasks of job Ji

startrunning.

D. Job Ordering Optimization

ForMapreduce Workload

his section attempts to address Problem 1 and

Problem 2. We first focus on makespan
optimization. We describe the MK_JR algorithm

that produces the optimized job order and also

prove its approximation ratio. We also describe

the job order which gives the worst, i.e., longest

makespan, which is used for derivation of the

upper bound makespan of a workload. Next, we

describe the MK_TCT_JR algorithm, which

optimizes both makespan and total completion

time. Finally, it shows that the orderings

produced by MK_JR and MK_TCT_JR are

stable, even when MapReduce servers fail.

1) Makespan Optimization

Recall the simplified case described in the
previous section, where the number of map and

reduce tasks of all the jobs were divisible by the

number of map and reduce slots. The optimal job

order for the simplified case can be obtained by
using Johnson’s Rule which is an efficient job
ordering algorithm for the minimum makespan

Copt max for the two-stage flow shop with one
processor per stage. When the number of tasks is

not divisible by the number of slots, the

makespan minimization problem becomes NP-

hard which has first noted it and proposed an
algorithm based on Johnson’s rule.

2) Bi-Criteria Optimization of Makespan and

Total Completion Time

Makespan and total completion time are two key

performance metrics. Generally, makespan refers

to the maximum completion time for a batch of

jobs.

It considers the computation time of jobs and is

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-7 No. 11 July 2020

Page | 108 www.junikhyat.com Copyright ⓒ 2020 Authors

often used to measure the performance

and utilization efficiency of a system.

In contrast, total completion time is the sum of

completion time of all jobs. It is a generalized

makespan with queuing time (i.e., waiting

time) included. It can be used to measure the

satisfaction to the system from a single job’s

perspective. So far, we focus only on the

optimization of makespan. Note that the total

completion time that can be poor subject to

obtaining optimal makespan, as illustrated in

Fig. Therefore, there is a need for bi-criteria

optimization on both makespan and total

completion time. Intuitively, the makespan is

affected primarily by the positions of large-

size jobs. In contrast, the total completion time

is mainly influenced by the positions of small-

size jobs. The algorithm shortest processing

time first (SPTF) is optimal for the total
completion time on a single machine where

there is one task per job and no precedence

constrains.

However, MK_JR is not aware of varying job

sizes. Indeed, the job order produced by

MK_JR can have adverse effect on the total

completion time if we follow Johnson’s Rule

strictly in some scenarios.

III. EXPERIMENTRESULTS

To well reflect practical workloads, we

generate our testbed workloads by choosing

nine benchmarks arbitrarily from Pur- due

MapReduce Benchmarks Suite1 and using

their provided datasets. The detailed

benchmarks are described asfollows.

WordCount: Computes the occurrence

frequency of each word in adocument.Sort:

Sorts the data in the input files in a

dictionaryorder.

Grep: Finds the matches of a regex in the

inputfiles.

InvertedIndex: Takes a list of documents as

input and generates word-to-

documentindexing.Classification: Classifies

the input into one of k pre- determinedclusters.

HistogramMovies: Generates a histogram of

input data and is a generic tool used in many

dataanalyses.

HistogramRatings: Generates a histogram of

the ratings as opposed to that of the movies

based on their averageratings.

SequenceCount: Generates a count of all unique sets of

three consecutive words per document in the inputdata.

TeraSort: Sorts 100-byte <key,value> tuples on

the keys where key is a 10-byte field and the rest

of the bytes as value(payload).

A. Job Ordering Optimization Algorithms

Let’s begin with the evaluation of job

ordering optimization algorithms MK_JR

and MK_TCT_JR first presents

thenormalized performance results for

testbed workloads under three different job

orders, i.e., an unoptimized job order based

on Theorem 2, the job order based on

MK_JR and the job order based on

MK_TCT_JR, in a Hadoop cluster, where we

configure three map and one reduce slots per

slave node. Therefore, we have jSMj¼

57 and jSRj ¼ 19. For makespan (or total

completion time), we normalize it by using

makespan speedup (or total completion time

speedup), defined as the ratio of makespan (or

total completion time) from the unoptimized case

to that from the designated job order. Moreover,

there is a slight drop in makespan speedup for

MK_TCT_JR in comparison to MK_JR,

sacrificing a bit performance improvement in

makespan for a good total com- pletion time. It

can be noted in that MK_TCT_JR has a good

total completion time speedup.

B. Slot Configuration Optimization

Algorithms

In this section, let’s come to evaluate map/reduce

slot con- figuration optimization algorithms,

namely, Algorithm MK_SF_JR and Algorithm

MK_TCT_SF_JR. Fig. 6 illustrates experimental

results for testbed workloads under various slot

configuration optimization algorithms.

Particularly, we take the Hadoop default

configuration which sets each slave node with two

map slots and two reduce slots as the unoptimized

case. Then for 19 slave nodes, it holds jSMj¼ 38

and jSRj¼ 38. Here, there is about 24 ~ 41 percent

performance improvement from Algorithm

MK_SF_JR. For Algorithm MK_TCT_SF_JR, in

contrast, it is a bi-criteria optimization algorithm

for make- span and total completion time. They

illustrate that there is a significant performance

improvement (112 ~ 132) percent for total

completion time,

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-7 No. 11 July 2020

Page | 109 www.junikhyat.com Copyright ⓒ 2020 Authors

at the expense of a small drop in

makespan improvement in comparison

to Algorithm MK_SF_JR.

Likewise, we will show for Facebook

workloads that therecan also be a very

seriously negativeimpact in total completion

time for Algorithm MK_SF_JR, whereas

Algorithm MK_TCT_SF_JR can overcome

and improve it significantly.

C.Simulation Result with Synthetic

Facebook Workload

MapReduce jobs in production at Facebook in

October 2009, provided by Zaharia. They are

classified into nine bins based on job sizes

(numbers of maps). We make our synthetic

workloads (SW for short) by picking

representative sizes and number of jobs from

each bin based on the percentage of the total

number of jobs as well as the size of SW.

Table: Facebook and Sizes and Number of

Jobs.

IV. CONCLUSION &FUTUREWORK

This paper focuses on the job ordering and

map/reduce slot configuration issues for

MapReduce production workloads that run

periodically in a data warehouse, where the

aver- age execution time of map/reduce tasks

for a MapReduce job can be profiled from the

history run, under the FIFO scheduling in a

Hadoop cluster. Two performance metrics are

considered, i.e., makespan and total

completion time. We first focus on the

makespan.

Map/reduce slot configurationoptimization

algorithm. We observe that the total

completion time can be poor subject to getting

the optimal make-span, therefore, we further

propose a new greedy job ordering algorithm

to minimize the makespan and total

completion time together.

The theoretical analysis is also given for our

proposed heuristic algorithms, including approximation

ratio, upper and lower bounds on makespan.

Finally, we conduct extensive experiments to

validate the effectiveness of our proposed

algorithms and their theoretical results.

V. REFERENCES

[1] Amazon ec2 [Online].

 Available:http://aws.amazon.com/ec2,2015.

[2] Apache hadoop [Online].

 Available:http://hadoop.apache.org, 2015.

 [3]Howmanymapsandreduces[Online].

Available:http://wikiapache.org/hadoop/HowMany

MapsAndReduces, 2014.

[4] Lognormal distribution [Online]. Available:

http://en.wikipedia.

org/wiki/Log-normal_distribution, 2015.

[5] The scheduling problem [Online]. Available:

http://riot.ieor.berkeley.edu/Applications/Schedu

ling/algorithms.html,1999.

[6]S. R. Hejazi and S. Saghafian, “Flowshop-

scheduling problems with makespan criterion: A

review,” Int. J. Production Res., vol. 43, no. 14, pp.

2895–2929, 2005.

[7]S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu,

I. Stoica, and J. Zhou, “Re-optimizing data-parallel

computing,” in Proc. 9th USE- NIX Conf. Netw.

Syst. Design Implementation, 2012, p. 21.

[8]P. Agrawal, D. Kifer, and C. Olston,

“Scheduling shared scans of large data files,” Proc.

VLDB Endow., vol. 1, no. 1, pp. 958–969,

Aug. 2008.

[9]W. Cirne and F. Berman, “When the herd is

smart: Aggregate behavior in the selection of job

request,” IEEE Trans. Parallel Dis- trib. Syst., vol.

14, no. 2, pp. 181–192, Feb. 2003.

[10]T. Condie, N. Conway, P. Alvaro, J. M.

Hellerstein, K. Elmeleegy, and R. Sears,

“Mapreduce online,” in Proc. 7th USENIX Conf.

Netw. Syst. Design Implementation, 2010, p. 21.

 [11]J. Dean and S. Ghemawat, “Mapreduce:

Simplified data process- ing on large clusters,” in

Proc. 6th Conf. Symp. Oper. Syst. Design

Implementation, 2004, vol. 6, p.1.

http://aws.amazon.com/ec2
http://hadoop.apache.org/
http://wiki./
http://en.wikipedia/
http://en.wikipedia/
http://riot.ieor.berkeley.edu/Applications/Schedu
http://riot.ieor.berkeley.edu/Applications/Schedu

	Mr. G. J. SUNNYDEOL
	1) O. SAI, 2) R. SANKAR, 3) A. AJAY, 4) K. NAVEEN
	II. METHODOLOGY
	A. Job Ordering Optimization
	B. MapReduce Job Optimization
	C. Problem FormulationAnd PerformanceModel
	In this section, we give a formal model for MapReduce and formalize its associated optimization problems.
	1) ProblemFormulation
	2)Performance Model for Makespan and Total CompletionTime
	III. EXPERIMENTRESULTS
	B. Slot Configuration Optimization Algorithms
	IV. CONCLUSION &FUTUREWORK
	V. REFERENCES

